Contents

1 **Summary of Currently Available Mouse Models**
Ami Ito, Namiko Ito, Kimie Niimi, Takashi Arai, and Eiki Takahashi

1.1 Introduction
1.2 Origin and History of Laboratory Mice
1.3 Laboratory Mouse Strains
1.3.1 Wild-Derived Mice
1.3.2 Inbred Mice
1.3.3 Hybrid Mice
1.3.4 Outbred Stocks
1.3.5 Closed Colony
1.3.6 Congenic Mice
1.4 Mutant Mice
1.4.1 Spontaneous
1.4.2 Transgenesis
1.4.3 Targeted Mutagenesis
1.4.4 Inducible Mutagenesis
1.4.5 Cre–loxP System
1.4.6 CRISPR/Cas9 System
1.5 Resources of Laboratory Strains
1.6 Germ-Free Mice
1.7 Gnotobiotic Mice
1.8 Specific Pathogen-Free Mice
1.9 Immunocompetent and Immunodeficient Mice
1.10 Mouse Health Monitoring
1.11 Production and Maintenance of Mouse Colony
1.11.1 Production Planning
1.11.2 Breeding Systems and Mating Schemes
1.12 Mating
1.13 Gestation Period
1.14 Parturition
1.15 Parental Behavior and Rearing Pups
1.16 Growth of Pups
1.17 Reproductive Lifespan
1.18 Record Keeping and Colony Organization
1.19 Animal Identification 24
1.20 Animal Models in Preclinical Research 24
References 29

2 General Notes of Chemical Administration to Live Animals 33
Ami Ito, Namiko Ito, Takashi Arai, Eiki Takahashi, and Kimie Niimi
2.1 Introduction 33
2.2 Restraint 34
2.2.1 One-Handed Restraint 34
2.2.2 Two-Handed Restraint 34
2.3 Substances 34
2.3.1 Substance Characteristics 34
2.3.2 Vehicle Characteristics 35
2.3.3 Frequency and Volume of Administration 36
2.3.4 Needle Size 37
2.4 Anesthesia 37
2.4.1 Inhaled Agents 38
2.4.2 Injectable Agents 38
2.5 Euthanasia 40
2.6 Administration 41
2.6.1 Enteral Administration 42
2.6.1.1 Oral Administration 42
2.6.1.2 Intragastric Administration 42
2.6.2 Parenteral Administration 42
2.6.2.1 Subcutaneous Administration 44
2.6.2.2 Intraperitoneal Administration 44
2.6.2.3 Intravenous Administration 46
2.6.2.4 Intramuscular Administration 46
2.6.2.5 Intranasal Administration 46
2.6.2.6 Intradermal Administration 46
2.6.2.7 Epicutaneous Administration 46
2.6.2.8 Intratracheal Administration 51
2.6.2.9 Inhalational Administration 51
2.6.2.10 Retro-orbital Administration 52
References 53

3 Optical-Based Detection in Live Animals 55
Mikako Ogawa and Hideo Takakura
3.1 Introduction 55
3.1.1 Basics of Luminescence 55
3.1.2 Appropriate Wavelengths for Live Animal Imaging 56
3.1.3 Advantages and Disadvantages of In Vivo Optical Imaging 58
3.2 Fluorescence Imaging in Live Animals 58
3.2.1 Fluorescent Molecules for Live Animal Imaging 58
3.2.2 How to Detect Fluorescence in Live Animals? 61
3.2.3 Activatable Probes 62
3.2.4 Microscope 68
3.2.5 Application of Fluorescence Imaging to Drug Development 68
3.3 Luminescence Imaging in Live Animals 69
3.3.1 Luminescence Systems for Live Animal Imaging 70
3.3.1.1 Firefly/Beetle Luciferin–Luciferase System 70
3.3.1.2 Coelenterazine-Dependent Luciferase System 76
3.3.1.3 Chemiluminescence System 82
3.3.2 How to Detect Luminescence in Live Animals? 84
3.3.3 Luciferase-Based Bioluminescence Probes for In Vivo Imaging 84
3.4 Summary 87
References 87

4 Ultrasound Imaging in Live Animals 103
Francesco Faita
4.1 Introduction 103
4.2 High-Frequency Ultrasound Imaging 105
4.3 Ultrasound Contrast Agents 109
4.4 Photoacoustic Imaging 112
4.5 Preclinical Applications 115
4.5.1 Cardiovascular 115
4.5.2 Oncology 120
4.5.3 Developmental Biology 121
References 123

5 Positron Emission Tomography (PET) Imaging in Live Animals 127
Xiaowei Ma and Zhen Cheng
5.1 Introduction 127
5.2 Brief History of PET 128
5.3 Principles of PET 129
5.4 Small-Animal PET Scanners 133
5.5 PET Imaging Tracers 134
5.5.1 Metabolic Probe 134
5.5.2 Specific Receptor Targeting Probe 135
5.5.3 Gene Expression 136
5.5.4 Specific Enzyme Substrate 137
5.5.5 Microenvironment Probe 137
5.5.6 Biological Processes 138
5.5.7 Perfusion Probes 140
5.5.8 Nanoparticles 140
5.6 PET in Animal Imaging 141
5.6.1 PET in Oncology Model 141
5.6.1.1 Cancer Diagnosis 142
5.6.1.2 Personal Treatment Screening 142
5.6.1.3 Therapeutic Effect Monitoring 143
5.6.1.4 Radiotherapy Planning 144
5.6.1.5 Drug Discovery 144
5.6.2 PET in Cardiology Model 145
5.6.3 PET in Neurology Model 146
5.6.4 PET Imaging in Other Disease Models 147
5.7 PET Image Analysis 147
5.8 Outlook for the Future 148

Reference 149

6 Single-Photon Emission Computed Tomographic Imaging in Live Animals 151
Yusuke Yagi, Hidekazu Kawashima, Kenji Arimitsu, Koki Hasegawa, and Hiroyuki Kimura

6.1 Introduction 151
6.2 SPECT Devices Used in Small Animals 152
6.2.1 Innovative Preclinical Full-Body SPECT Imager for Rats and Mice: γ-CUBE 155
6.2.2 Innovative Preclinical Full-Body PET Imager for Rats and Mice: β-CUBE 156
6.2.3 Innovative Preclinical Full-Body CT Imager for Rats and Mice: X-CUBE 156
6.2.4 Animal Monitoring: Its Importance and Overview of MOLECUBES's Integrated Solution to Advance Physiological Monitoring 157
6.2.5 Selected Applications Acquired on the CUBES 157
6.2.5.1 SPECT Imaging with γ-CUBE 158
6.2.5.2 PET Imaging with β-CUBE 158
6.2.5.3 CT Imaging with X-CUBE 161
6.3 Characteristics of SPECT Radionuclides and SPECT Imaging Probes 162
6.3.1 Characteristics of SPECT Radionuclides 162
6.3.2 Characteristics of SPECT Imaging Probes 162
6.4 Radiolabeling 163
6.4.1 Characteristic of Radiolabeling 164
6.4.2 Radiolabeling with Technetium-99m 164
6.4.3 Radiolabeling with Iodine-123 and Iodine-131 171
6.4.4 Radioactive Iodine Labeling for Small Molecular Compounds 171
6.4.5 Aromatic Electrophilic Substitution Reaction 171
6.5 In Vivo Imaging of Disease Models 172
6.5.1 Imaging of Central Nervous System Disease 173
6.5.1.1 Alzheimer's Disease 173
6.5.1.2 Parkinson's Disease 174
6.5.1.3 Cerebral Ischemia 176
6.5.2 Imaging of Cardiovascular Disease 177
6.5.2.1 Atherosclerotic Plaque 177
6.5.2.2 Myocardial Ischemia 177
6.5.2.3 Imaging of Cancer 178
6.6 Conclusions 179

References 180
Contents

7 Radiotherapeutic Applications 185
Koki Hasegawa, Hidekazu Kawashima, Yusuke Yagi, and Hiroyuki Kimura

7.1 Introduction 185
7.2 Radionuclide Therapy in Tumor-Bearing Mice 186
7.2.1 Radiotherapy with β-Emitting Nuclides 186
7.2.2 Radiotherapy Using α-Emitting Nuclides 188
7.3 Radiolabeling Strategy 191
7.3.1 Labeled Target Compounds 191
7.3.2 211At-Labeled Compounds 192
7.3.3 Chelating Agents for 90Y, 177Lu, 225Ac, 213Bi 193
7.3.4 Peptides for Radionuclide Therapy 195
7.3.4.1 Octreotate (TATE) and [Tyr3]-Octreotide (TOC) 195
7.3.4.2 NeoBOMB1 196
7.3.4.3 Pentixather 196
7.3.4.4 PSMA-617 196
7.3.4.5 Minigastrin 196
7.3.5 Antibodies for Radionuclide Therapy 197
7.3.5.1 Lintuzumab 197
7.3.5.2 Rituximab 197
7.3.5.3 Trastuzumab 197
7.3.6 Examples of Radiotherapeutic Agents and Target Diseases 197
7.4 Radiotheranostics 200
7.4.1 Radiotheranostics Probe 200
7.4.2 Our Approach to Radiotheranostics Probe Development 202
7.4.3 Expectations and Challenges in Radiotheranostics 202
7.4.4 Boron Neutron Capture Therapy (BNCT) 203
7.4.5 Current Status of BNCT Drugs 204
7.4.5.1 4-Borono-l-Phenylalanine (BPA) 204
7.4.5.2 Sodium Borocaptate (BSH) 204
7.5 Conclusion 205
References 205

8 Metabolic Glycan Engineering in Live Animals: Using Bio-orthogonal Chemistry to Alter Cell Surface Glycans 209
Danielle H. Dube and Daniel A. Williams

8.1 Introduction 209
8.2 Overview of Metabolic Glycan Engineering 210
8.2.1 Origin of Metabolic Glycan Engineering 210
8.2.2 Expansion of the Methodology to Include Unnatural Functional Groups and Bio-orthogonal Elaboration 213
8.3 Bio-orthogonal Chemistries that Alter Cell Surface Glycans 216
8.3.1 Bio-orthogonal Chemistries Amenable to Deployment in Live Animals 216
8.3.2 Bio-orthogonal Chemistries Amenable to Deployment on Cells 221
8.4 Permissive Carbohydrate Biosynthetic Pathways 223
8.4.1 Deployment of Unnatural Monosaccharides in Mammalian Cells 223
8.4.2 Unnatural Sugars that Label Glycans on Bacterial Cells 225
8.5 Harness Inherent Differences in Carbohydrate Biosynthesis 227
8.5.1 Metabolically Label Cells Ex vivo Before Introducing Them In vivo 227
8.5.2 Label Tissues or Organs In vivo Before Analyzing Them Ex vivo 229
8.5.3 Employ Tissue-Specific Enzymes to Release Monosaccharide Substrates 229
8.5.4 Deliver Monosaccharide Substrates via Liposomes 231
8.5.5 Use Tissue-Specific Transporters to Induce Monosaccharide Uptake 234
8.5.6 Applications of Metabolic Glycan Labeling in Mice 234
8.6 Beyond Mice: Metabolic Glycan Engineering in Diverse Animals 237
8.6.1 Zebra Fish 237
8.6.2 Worms 239
8.6.3 Plants 240
8.7 Conclusions and Future Outlook 240
8.7.1 Metabolic Glycan Engineering Offers a Test Bed for Bio-orthogonal Chemistries 240
8.7.2 New Bio-orthogonal Reactions Could Transform the Field 241
8.7.3 Basic Questions About Glycans Within Living Systems Remain Unanswered 241
Acknowledgments 241
References 241

9 In Vivo Bioconjugation Using Bio-orthogonal Chemistry 249

9.1 Introduction 249
9.1.1 IEDDA Chemistry Between trans-Cyclooctene and Tetrazine 249
9.1.2 Synthesis of New Tetrazines and Characterization of Their Reactivity 251
9.1.3 Second Generation of IEDDA Reagents 251
9.1.4 Bond-cleaving Bio-orthogonal “Click-to-Release” Chemistry 251
9.2 Pretargeting Approach for Cell Imaging 252
9.2.1 Pretargeting Approach for In vivo Imaging 256
9.2.2 Application of the Pretargeting Strategy for In vivo Radio Imaging 259
9.2.3 In Vivo Drug Activation Using Bond-cleaving Bio-orthogonal Chemistry 260
9.2.4 Reloadable Materials Allow Local Prodrug Activation 265
9.2.5 Reloadable Materials Allow Local Prodrug Activation Using IEDDA Chemistry 266
9.2.6 Controlled Activation of siRNA Using IEDDA Chemistry 272
Contents

9.3 Future Outlook 274
References 277

10 In Vivo Targeting of Endogenous Proteins with Reactive Small Molecules 281
Naoya Shindo and Akio Ojida

10.1 Introduction 281
10.2 Ligand-Directed Chemical Ligation 282
10.2.1 Ligand-Directed Tosyl Chemistry 282
10.2.2 Ligand-Directed Acyl Imidazole Chemistry 284
10.2.3 Other Chemical Reactions for Endogenous Protein Labeling 287
10.3 Labeling Chemistry of Targeted Covalent Inhibitors 287
10.3.1 Michael Acceptors 290
10.3.2 Haloacetamides 293
10.3.3 Activated Esters, Amides, Carbamates, and Ureas 295
10.3.4 Sulfur(VI) Fluorides 297
10.3.5 Other Warheads and Reactions 300
10.4 Conclusion 301
References 302

11 In Vivo Metal Catalysis in Living Biological Systems 309
Kenward Vong and Katsunori Tanaka

11.1 Introduction 309
11.2 Metal Complex Catalysts 310
11.2.1 Protein Decaging 310
11.2.2 Protein Bioconjugation 311
11.2.3 Small Molecule – Bond Formation 319
11.2.4 Small Molecule – Bond Cleavage 324
11.3 Artificial Metalloenzymes 332
11.3.1 ArMs Utilizing Naturally Occurring Metals 332
11.3.2 ArMs Utilizing Abiotic Transition Metals 335
11.4 Concluding Remarks 340
References 343

12 Chemical Catalyst-Mediated Selective Photo-oxygenation of Pathogenic Amyloids 355
Youhei Sohma and Motomu Kanai

12.1 Introduction 355
12.2 Catalytic Photo-oxygenation of Aβ Using a Flavin–Peptide Conjugate 357
12.3 On–Off Switchable Photo-oxygenation Catalysts that Sense Higher Order Amyloid Structures 358
12.4 Near-Infrared Photoactivatable Oxygenation Catalysts: Application to Amyloid Disease Model Mice 363
12.5 Closing Remarks 367
References 368
13 Nanomedicine Therapies 373
Patrícia Figueiredo, Flavia Fontana, and Hélder A. Santos

13.1 Introduction 373
13.2 Engineering Nanoparticles for Therapeutic Applications 375
13.2.1 Physicochemical Properties of NPs 375
13.2.2 Surface Functionalization 379
13.2.3 Stimuli-Responsive Nanomaterials 381
13.2.4 Route of Administration 384
13.3 Nanomedicine Platforms 384
13.3.1 Lipidic Nanoplatforms 384
13.3.2 Polymer-Based Nanoplatforms 389
13.3.3 Inorganic Nanoplatforms 391
13.3.4 Biomimetic Cell-Derived Nanoplatforms 393
13.4 Conclusions 394

References 395

14 Photoactivatable Targeting Methods 401
Xiangzhao Ai, Ming Hu, and Bengang Xing

14.1 Introduction 401
14.2 UV Light-Responsive Theranostics 403
14.2.1 UV Light-Triggered Photocaged Strategy 403
14.2.2 UV Light-Mediated Photoisomerization Strategy 405
14.3 Visible Light-Responsive Theranostics 408
14.4 Near-Infrared (NIR) Light-Responsive Theranostics 410
14.4.1 NIR Light-Mediated Drug Delivery Approach 411
14.4.2 NIR Light-Mediated Photodynamic Therapy (PDT) Approach 415
14.4.3 NIR Light-Mediated Photothermal Therapy (PTT) Approach 419
14.5 Conclusion and Prospects 421

Acknowledgment 423

References 423

15 Photoactivatable Drug Release Methods from Liposomes 433
Hailey I. Kilian, Dyego Miranda, and Jonathan F. Lovell

15.1 Introduction 433
15.1.1 Light-Sensitive Liposomes 434
15.2 Mechanisms of Light-Triggered Release from Liposomes 435
15.2.1 Light-Induced Oxidation 435
15.2.2 Photocrosslinking 436
15.2.3 Photoisomerization 438
15.2.4 Photocleavage 440
15.2.5 Photothermal Release 442

References 444

16 Peptide Targeting Methods 451
Ruei-Min Lu, Chien-Hsun Wu, Ajay V. Patil, and Han-Chung Wu

16.1 Introduction 451
16.2 Identification of Targeting Peptides 452