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1.1 Polymer Design

The performance of electronic or optoelectronic devices fabricated from
conjugated polymers depends on three key factors: the structure of the macro-
molecule, its packing and morphology in a solid thin film, and the interfacing
of the film with the outside world. The present book is mainly concerned with
devices made by polymer deposition from solution. This formation of thin films
is a complex process comprising a subtle interplay of scientific and engineering
issues and thus asks for quite different competences. Complications arise when
additional criteria come into play such as costs or the speed of the processing
upon printing. There is, however, a serious caveat, which must be obeyed right
at the beginning of such research and development: do not commence processing
and device fabrication before having optimized and ensured the integrity of
the macromolecular structure as well as its reliable and reproducible synthesis.
Understandably, not every reader might be interested in the fine details of
synthesis, but every reader, even if leaning toward the physics side of the field,
would greatly benefit from knowing

(i) the basic design principles for conjugated polymers as well as
(ii) the concepts behind and potential pitfalls of the synthetic methods used.

Comprehensive reviews describing conjugated polymer synthesis in all its vari-
ations can be found elsewhere [1–9]. Such collections are beyond the scope of this
introductory chapter, which is, instead, restricted to preparing the reader’s mind
before proceeding to polymer processing.

In a conjugated polymer, unsaturated aromatic, olefinic, or acetylenic building
blocks are covalently connected by single bonds to create a “box” of delocalized
π-electrons. Although some torsion about single bonds is tolerated, too large
deviation from coplanarity would hamper π-conjugation. Clearly, π-conjugation
would also be interrupted by sp3-hybridized carbon centers [10]. It is this large
domain of mobile, polarizable electrons that qualifies an organic material to
interact with light or to undergo electron transfer [11]. The energy levels of
the electronic bands (corresponding to HOMO [highest occupied molecular
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orbital] and LUMO [lowest unoccupied molecular orbital] energies of small
molecules) predict whether a polymer can readily be reduced or oxidized, and
thus if it is a p-type or n-type material [10, 12, 13]. The band gap determines
whether a material is an insulator, a semiconductor, or a conductor. The extended
π-conjugation has originally been considered as being responsible for electrical
conductivity, but the pioneering work of Heeger, MacDiarmid, Shirakawa, and
coworkers has shown that conductivity requires the formation of charge carriers
by doping [14–16], which is nothing other than partial oxidation or reduction
[17]. The operation of devices implies an additional process, that is, electron
transfer between external electrodes and the active organic component [18], and
the efficiency of this interfacial process will again depend on the energy levels of
the materials. Finally, the band gap is decisive not only for electron transfer but
also for the optical properties in determining the wavelength of light absorption
and emission [11].

The classical examples of conjugated polymers are polyacetylene (PA)
with an alternating array of single and double bonds, poly-1,4-phenylene
(PPP), and its electron-rich, though less stable congener polythiophene (PT).
There are also “hybrid” structures such as polyphenylenevinylene (PPV)
and polyphenylenethinylene (PPE) comprising both aromatic and olefinic or
acetylenic moieties, respectively (see Scheme 1.1). The key difference between
PA and PPP is that the former is obtained as an insoluble film upon catalyzed
polymerization of acetylene whereby the catalyst can also act as a dopant to
yield electrical conductivity, whereas PPP, in an alkyl substituted form, is more
commonly synthesized in solution. Solubility in organic solvents is thus a central
issue for the success of both synthesis and processing. What should not be
ignored is the issue of stability. Thus, PA, for example, is known to readily
interact with air with the formation of oxygen-containing functional groups,
which hamper the flexibility and conductivity of the material [18, 20].
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Scheme 1.1 Structures of classical conjugated polymers. Source: Müllen et al. 2013 [19].
Reproduced with permission of Royal Society of Chemistry.

It is impossible not to be impressed by the huge available “toolbox” for conju-
gated polymer synthesis including

(i) the broad choice of aromatic building blocks,
(ii) the doping of such hydrocarbons with heteroatoms,

(iii) the (regular or irregular) incorporation of different repeat units into one
polymer,

(iv) the modes of their connection (e.g. 1,4-, 1,2-, or 1,3-phenylene), and
(v) the attachment of substituents.

All this creates an enormous structural and thus functional manifold. Even if
one ignores here their structurally related oligomers and other small conjugated
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molecules, which would certainly widen the wealth of organic electronic
materials, it is this versatility of polymer structures that constitutes one strength
of organic electronics and that opens the possibility of tailoring optical and
electronic properties. This variety can be further extended into new directions
by, for example, co-incorporation of metal centers or by synthesis in con-
fining geometries to furnish discrete nanoparticles [21–27]. The latter are of
tremendous use in photonics [28–31].

Materials chemistry has developed powerful rules, either empirical or guided
by theory, to predict and explain the chromophoric and electrophoric prop-
erties of macromolecules, and it can clearly be understood that these are also
determining electrical or optical device function. The art of thus “synthesizing”
desired functions and performances is based on reliable structure–property
relationships. Clearly, this fundamental concept becomes obsolete without
reliable structures. Deviations from an idealized structure of the polymer,
whether detectable or not, and impurities will thus not only compromise
structure–property relations but also diminish device performance by trapping
charges or excited states [32].

Understandably, the early science and technology of conjugated polymers was
more concerned with exploring unknown territory by making new materials,
rather than with ensuring whether they possessed sufficiently high structural
precision and purity. This was accentuated by the slow rate at which the com-
petences of cutting-edge synthetic organic chemistry were applied to this field.
Improvements of synthetic protocols toward conjugated polymers and better
analytical methods have, however, tremendously strengthened the validity of the
materials science of conjugated polymers. More powerful synthetic protocols
included metal-catalyzed bond formation [33–41] and metathesis polymer-
ization [42–46] (see Scheme 1.2), whereas on the analytical side, established
methods became more sensitive and new ones were additionally employed. Thus,
the power of nuclear magnetic spectroscopy has been significantly enhanced
by the availability of higher magnetic fields and multidimensional techniques
[47–49]. More importantly, solid-state nuclear magnetic resonance (NMR)
measurements [50, 51] have provided insights into the packing of polymers,
which could not be ascertained by X-ray scattering [52]. Classical elemental
analysis [53] remains of undiminished value but has become complemented by
X-ray fluorescence microscopy [54–56].
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Scheme 1.2 Representative metathesis polymerization of cycloolefins. Source: Albertsson and
Varma 2003 [44]. Reproduced with permission of American Chemical Society.
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Consequently, optimizing precise synthesis, scrupulous purification, and sensi-
tive detection of defects must be carefully approached in order to make solution
processing of polymers meaningful. Failure to meet these requirements would
put the validity of the science and technology of (opto)electronics at risk. Accord-
ingly, no reader should lightly excuse himself by setting aside the chemical fun-
damentals of the field and by relying only on expertise in physics.

There is, indeed, a tight connection between molecular structure and key
physical processes in devices. Historically, conjugated polymers were considered
to be candidates for developing electrically conducting “plastics,” which was
best illustrated by the notions of obtaining “conducting polymers” or even
“synthetic metals” [17]. As has been mentioned, conductivity is bound to the
formation of charge carriers and this, in turn, leads to chemical instability.
This obstacle together with unintentional doping of low band gap, and thus
chemically reactive, polymers has caused loss of interest in this field, and other
optical and electronic functions have moved into the limelight. This has then
redefined the needs of synthesis, so that, for example, the first use of polymers
as emitters in LEDs (light emitting diodes) by the group of Friend required a
suitable synthesis of PPV by the Holmes group [57, 58]. In an LED, opposite
charges injected from different electrodes must recombine to create excitons,
so good device efficiency requires high and balanced concentrations of holes
and electrons [59]. High charge carrier mobility is less important, whereas that
is the decisive parameter for a polymer-based field effect transistor (FET) [60].
Thus, the availability of a regioregular poly-3-alkylthiophene, first synthesized
by McCullough and Lowe [61], was instrumental in enabling Sirringhaus’ work
[62] on polymer FETs. A polymer solar cell, in turn, is different from LEDs and
FETs because a second component will be required. In order for a solar cell
to become efficient, an electron-donating polymer must be combined with an
electron acceptor to facilitate charge separation. Here, a breakthrough came
when Heeger, Sariciftci, and coworkers [63] added C[60] fullerene (1) to a
substituted PPV (2) to enhance the desired light-induced charge separation (see
Scheme 1.3). All these cases nicely document the crucial role in obtaining good
device performance of the nature of the material, although, as cannot be stressed
enough, supramolecular order in the solid state and morphology of films come
into play as well.
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Scheme 1.3 Examples of milestones in organic electronics. Source: Müllen et al. 2013 [19].
Reproduced with permission of Royal Society of Chemistry.
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Although we will be looking in this chapter at polymer chemistry as the basis
of device research, one must admit that efficient organic LEDs and solar cells
have also been fabricated from small molecules [64]. Films of small molecules,
but not of polymers, can be fabricated by vacuum deposition procedures.
Although deposition from solution is cheaper, it requires, of course, sufficiently
soluble materials [65]. Additional problems will arise if multilayers are needed.
This asks for orthogonal solubility of different materials in different solvents,
or loss of solubility by cross-linking before deposition of the subsequent layer
[66, 67]. The advantages and disadvantages of employing polymers or small
molecules and oligomers as active components of devices must be considered
separately for each case. The latter can be purified by vacuum sublimation,
and the electronic properties of oligomers, when plotted against the number of
repeat units, converge toward those of the corresponding polymers [68–70]. On
the other hand, solution-processed polymers give more homogeneous films over
large areas, whereas small molecules tend to form crystalline domains, which
may not only cause undesired light scattering but also obstruct charge transport
because of the presence of grain boundaries [71]. The advantage of polymers
does not lie so much in their electronic characteristics, but in their ability to
establish controlled morphologies in pure or blended form. It should again be
stressed that film formation from solution, in particular during printing, is a
complex kinetic process including issues of nucleation [72], phase formation
[73], wetting of substrate surfaces, and rheology [74]. All of these can be much
better regulated for polymers.

Use of small molecules and oligomers, commonly believed to be structurally
better defined than conjugated polymers, does not exclude difficulties arising
from imperfect synthesis and impurities [75]. The case of organic FETs is
instructive. Indeed, the pioneering work of Garnier, Fichou, Horowitz, and
coworkers [76–80] on organic FETs might have gained more impact if their
oligothiophene semiconductors had been made by controlled coupling of
thiophenes rather than by oxidative oligomerization. The dimer (3) and tetramer
(4) (see Scheme 1.4) they used were synthesized from thiophene by lithiation
and cupric chloride-mediated oxidative coupling [81]. Further oligomerization
was then achieved by oxidative coupling with ferric chloride [82]. It was then
already well known that higher oligomers of thiophene tend to couple at both
the α- and β-positions [83].
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Scheme 1.4 Dimer and tetramer of thiophene and pentacene (5). Source: Adapted from
Müllen et al. 2013 [19] and Kagan and Arora 1983 [81].

Pentacene (5), the prototype of an organic semiconductor, was deposited under
vacuum in view of its low solubility. Nevertheless, samples were often contam-
inated by dihydroderivatives or related quinones arising from the reaction with
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oxygen and defining an urgent need for purification through repetitive cleaning
steps [84–89].

The field of conjugated polymers and their structurally related small molecules
has sometimes perceived prospects for technological and/or scientific break-
throughs, which in the end could not be fulfilled. The decline of the synthetic
metals was not only due to the above-mentioned stability problem but also
due to the fact that the propaganda claim of “replacing copper” had been
somewhat exaggerated [90–95]. Likewise, organic electronic devices should
not be advanced with the idea of surpassing silicon-based systems, but rather
by emphasizing the advantages of organic materials and the new opportunities
derived therefrom. Not only the physical functions but also the favorite materials
have changed with time, and the attracted attention has often been a matter of
fashion. This can best be seen from the hype about carbon materials with 0-, 1-,
and 2-dimensional structures [96–105]. What has not changed during all these
ups and downs is the need for robust and trustworthy synthesis and fabrication
processes.

1.2 Polymer Synthesis

The issues of polymer precision and purity could not be explained better than by
a quote from Hermann Mark dating back to the year 1948: “Because high poly-
mers are difficult to purify and identify, the expressions purity and identity should
be used with great care.” He then went on to list, apart from structural inhomo-
geneities, the impurities caused by remnants of solvents, catalysts, and, not to
forget, smaller oligomers [106]. Although conjugated polymers could mostly not
be considered as “high” polymers, the problems there could be even more severe
than for commodity polymers without electronic function. This is because even
traces of impurities, while being less detrimental to mechanical properties, could
seriously influence the physics of charge carriers and excitons [107].

How can a linear, monocyclic, or polycyclic π-system be “activated” for
reactions? If thiophene (6) donates an electron to an acceptor under formation
of its corresponding radical cation 7 (see Scheme 1.5), it needs electrostatic
stabilization.
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Scheme 1.5 Resonance structures of a thiophene radical cation [108].
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This can occur through interaction with a negatively charged counterion
that, in a chemical oxidation, comes from the reagent or, in an electrochemical
oxidation, from the supporting electrolyte. Other electron-rich (nucleophilic)
partners can stabilize the radical cation as well, and one such partner is the
neutral molecule.

A π-dimer 8 is initially formed, which under certain conditions will precipitate
from solution, deposit at the electrode, and because of its arising electrical con-
ductivity continue to grow to form stacks of discs (see Scheme 1.6). There, the
stoichiometry, if R depicts the starting π-molecule and C the counter-anion, cor-
responds to R2C. The conductivity of so-called radical cation salts originates from
the mixed-valence state with one positive charge per two molecules [109–117]
and is illustrated in Scheme 1.6 for the case of fluoranthene. There, the R2C for-
mula stands for the stoichiometry prevailing in the crystal.
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–
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Scheme 1.6 Formation of a radical cation salt illustrated by the interaction between
fluoranthene and hexafluoro arsenate. Source: Enkelmann 1982 [109]. Reproduced with
permission of John Wiley & Sons.

This scheme holds true only for π-systems such as polycyclic aromatic
hydrocarbons (PAHs) with extended π-delocalization [109]. If the spin density
is, however, highly localized at a single carbon center, the formation of 𝜎-bonded
dimers is preferred, which may subsequently lose their positive charge by loss of
two protons (see Scheme 1.7). The initial 𝜎-bond formation becomes the starting
point of polymerization. The mechanism of growth, however, can be quite
complex because oxidation of monomers and oligomers, 𝜎-bond formation,
and deprotonation steps can overlap [118]. This oxidative polymerization has
been most commonly applied to electron-rich monomers such as pyrroles (9),
thiophenes (6), or carbazoles (10) and also to small aromatic compounds such
as benzene (11) or naphthalene (12) (see Scheme 1.8).

The reaction is experimentally simple, starts from an unfunctionalized
monomer, and, depending on its redox potential, employs cheap oxidants such
as iodine, copper salts, or ferric salts, the latter accompanied by Lewis acids
such as aluminum chloride. Not surprisingly, when one considers the underlying
reaction mechanisms, the structural precision of the polymers is poor [119].
Thus, monomers can be coupled in a non-regiospecific fashion and coupling
products such as 13 in Scheme 1.9 can undergo further oxidative processes under
fusion of the monomeric building blocks to larger disc-type π-units [119–122].

Coming back to the two central issues, that is, electronic design and synthetic
realization, a good case could be made for the benzene-based PPP. To begin with,
the conjugative interaction between the benzene moieties, i.e. across the inter-
ring bonds, is relatively weak, and this leads to a large electronic band gap, which
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Scheme 1.7 Radical cation stabilization, dimer formation, and oxidative polymerization
starting from thiophene. Source: Enkelmann 1982 [109]. Reproduced with permission of
John Wiley & Sons.
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Scheme 1.8 Commonly applied monomers for oxidative polymerization. Source: Müllen et al.
2013 [19]. Reproduced with permission of Royal Society of Chemistry.
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Scheme 1.9 Oxidative coupling of benzene and possible side reaction. Source: Kovacic and
Jones 1987 [119] and Kovacic and Kyriakis 1962 [120]. Reproduced with permission of
American Chemical Society.

results in light absorption and emission occurring at short wavelengths, so that
PPPs are blue light emitters. Quite logically, lowering of the band gap can be
brought about by increasing the π-bond order of interring bonds. This is pos-
sible by transforming the terminal para-carbon into a sp3-center according to
Scheme 1.10.

An alternative way is partial oxidation or reduction furnishing singly or
multiply charged derivatives as described in Scheme 1.10 [123]. In both cases,
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Scheme 1.10 The quinoid structure of PPP enforced by doping or by terminal sp3-centers.
Source: Sengodu and Deshmukh 2015 [123]. Reproduced with permission of Royal Society of
Chemistry.

loss of aromaticity of the benzenoid units would also increase kinetic insta-
bility. There is, indeed, a typical problem of conjugated polymers and also of
small organic π-systems: low electronic band gaps and, correspondingly, small
HOMO–LUMO gaps, while leading to useful electronic properties such as long
wavelength absorption, often suffer from unavoidable decomposition reactions
with, for example, water or oxygen. Understandably, the end products of such
reactions could lead to undesirable electronic and optical effects.

Conjugated polymers have been introduced into the literature, which, due
to their small number of repeating units, could, at best, be coined oligomers
[1, 124–126], and this points toward the initial synthetic task of polymer synthe-
sis to achieve a high enough molecular weight – although the question of what
is high enough must still be discussed. The rigidity of a conjugated backbone
fails to produce much free enthalpy upon solvation. As a result, already small
oligomers precipitate from solution and thus escape further growth. Alkyl
chains, by making conjugated polymers softer and improving solubility, can
indeed enhance the achievable molecular weights. Further, although this feature
anticipates a key theme of polymer processing, alkyl substitution can assist
the formation of supramolecular order, which has even led to the catchy term
“side-chain engineering.” The downside of making alkyl substituted polymers,
next to causing more synthetic steps and diluting the active π-components,
is that the steric hindrance of substituents may slow down the coupling of
the monomeric units or, in more severe cases, cause increased torsion about
interring bonds and thus hinder the desired π-conjugation. The nature and
placement of the substituents will thus play a pivotal role [4, 127].

Avoiding the problem of insolubility of PPP by way of alkylation or alkoxylation
of the benzene monomer at 2,5-positions did lead to well-soluble polymers such
as 14 with high molecular weight. However, because of the increasing nonpla-
narity of the benzene subunits, the extended conjugation was severely compro-
mised (see Scheme 1.11) [127, 129, 130].

It has for long been known that halobenzenes such as 15, upon treatment with
copper powder, can couple to biphenyl (16) under formation of copper halide
salts (Ullmann coupling) (see Scheme 1.12) [131].

Already then, concepts such as insertion of metal into the carbon–halogen
bond and oxidation of the resulting intermediate have been considered in
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Scheme 1.11 Compromised extended conjugation due to increased nonplanarity. Source:
Li et al. 2010 [128]. Reproduced with permission of American Chemical Society.
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Scheme 1.12 Biphenyl synthesis by Ullmann coupling. Source: Ullmann and Bielecki 1901
[131]. Reproduced with permission of John Wiley & Sons.

mechanistic discussions. It thus appeared plausible to also use organometallic
derivatives of halobenzenes such as magnesium (Grignard) reagents [132, 133]
because removal of electrons from the resulting electron-rich benzene species
would then allow the coupling of intermediate radicals, again, under extrusion
of metal salts. Scheme 1.13 shows how the in situ generated Grignard reagent
18 of 4-bromotoluene (17) can be used for biphenyl synthesis (see Scheme 1.13)
[135].

Br +

17

MgBr

18

THF,

reflux

THF = tetrahydrofuran

2TlBr, THF,
benzene, reflux

– 2Tl, 2MgBr2

2 2Mg 2

Scheme 1.13 4,4′-Dimethyl-1,1′-biphenyl synthesis using a Grignard reagent [134].

A major achievement was the use of zero-valent nickel metal instead of copper
powder as introduced by Yamamoto et al. [136]. This protocol required, however,
the chelation of the metal (in Scheme 1.14 through 1,5-cyclooctadiene) to keep it
in solution. Independent of the role of the metal, it then appeared straightforward
to proceed from monofunctional to a bifunctional 1,4-dihalobenzene monomer
19 and undertake a repetitive coupling toward the desired formation of “poly-
mers” [133, 137].

BrBr nNi
PPh3+

19

–NiBr2, COD

COD = cyclooctadiene

n

Scheme 1.14 Yamamoto coupling of 1,4-dibromobenzene with chelated zero-valent nickel
[136].
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Leaving to one side the critical issue of the solubility of PPP, the trouble with this
procedure is that such repetitive bond formations are accompanied by side reac-
tions, often involving the solvent, with loss of functional groups to form mono-
halobenzene (21) [133, 138, 139]. This interrupts further polymer growth because
a monohalo rather than a dihalo building unit would act as an end-capper as
shown in Scheme 1.15.

Hal Hal Hal Hal NiHal
n-2

+

Hal

n-2

2120

H

H

n

–NiHal2

NiCl2(dppe), SH

– HalS

dppe = 1,2-bis(dipheny1phosphino)ethane
SH = solvent
HalS = halogenated solvent

Scheme 1.15 Polymerization of 1,4-dihalobenzene with end-capping by monohalobenzene
[133].

What makes this side reaction even more severe is a characteristic feature
of such step-growth polycondensation reactions, which are described by the
Carothers equation [140]. When plotting the degree of polymerization XN as a
function of conversion p, it appears that polymers can only form toward the end
of the reaction, i.e. by the coupling of initial oligomers, and this requires perfect
stoichiometries. This is shown in Figure 1.1 where the Carothers equation for a
bimolecular AA-BB-polymerization is used to display the influence of different
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Figure 1.1 Plot of the degree of polymerization XN as a function of the conversion p with
different molar ratios of the monomers r.
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stoichiometries on the degree of polymerization. The molar ratio of the two
monomer units is expressed by r, that is, the relative concentrations of the AA-
and BB-monomers.

In gaining better control over such chemistry, two steps have reached tremen-
dous importance: (i) transformation of halobenzenes into stable and purifiable
boronate (23) or tin derivatives (22), which could then be subjected to coupling
with halobenzene components in (ii) a transition-metal-catalyzed process (see
Scheme 1.16) [33, 40, 141, 142]. The concept of catalysis must be emphasized as it
stands in contrast to the above nickel-mediated coupling of halobenzenes, which
requires stoichiometric amounts of metal. These synthetic protocols have been
developed within the field of synthetic organic chemistry and have justly been
awarded with the Noble Prize for Suzuki, Negishi, and Heck in 2010 [142–151].
Although these reactions, mostly referred to as name reactions, would certainly
deserve more attention here in view of their broad synthetic scope and mecha-
nistic implications, it is important that they have then been adjusted to the needs
of polymer chemistry [129, 130, 152]. This achievement has revolutionized the
synthesis of conjugated polymers and helped to put materials chemistry on a
sounder basis. An additional advantage is that one can now, rather than react-
ing bifunctional AA- and BB-type components (such as diboronate and diahalo
monomers), allow polymerization starting from (only) the corresponding bifunc-
tionalized AB-building block 24 [153–155].

Hal Hal

Sn Sn
R1

R1

R1

R1

R1R1

R2B BR2

R2B Hal

AA-monomers

AB-monomer

22

23

24

R1 : C4H9 R2 : (OH)2′
O

O

Scheme 1.16 Bifunctional tin and boronate reagents and a corresponding AB-monomer for
cross-coupling reactions [108].

Further, although statistical incorporation of different dihalo monomers in a
Yamamoto coupling can be achieved, it now becomes possible to create a strictly
alternating sequence of building blocks in, for example, donor–acceptor (D–A)
polymers (see Scheme 1.17) [156–160]. The access to defined D–A-polymers
allowed fabrication of semiconductor materials with hole-transporting and
electron-transporting properties [160]. A critical issue, that is the availability of
the pure, functionalized building blocks, will be discussed later.
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Scheme 1.17 Selected donor and acceptor building blocks for donor–acceptor polymers.
Source: Müllen et al. 2013 [19]. Reproduced with permission of Royal Society of Chemistry.

It then makes a difference, of course, whether the donor or acceptor unit is used
as the halo component. These improved coupling protocols do not guarantee high
molecular weights because side reactions can still occur such as loss of the tin
or boronate functions or electron transfer processes between reagents leading
to homocoupling [161]. The latter furnish deviations from a strictly alternating
sequence of building blocks in D–A-polymers [162–164].

The synthesis of polythiophenes has played an important role in the devel-
opment of conjugated polymer synthesis wherein the regioregular formation of
head-to-tail polymers from 3-alkylthiophenes (see Scheme 1.18) presented a par-
ticular challenge that was solved by McCullough and Lowe [61]. According to
Scheme 1.18, 3-alkylthiophene 25 was first subjected to bromination to yield
26, followed by lithiation of the other α-position. Transmetallation of 27 pro-
vided the bifunctional AB-type monomer 28, which was then polymerized to
yield poly-3-alkylthiophene with a regioregularity of 91% [61].

The synthesis of polythiophenes has found an interesting variant discovered
independently by McCullough and coworkers [165, 166] and Yokozawa and
coworkers [167, 168], namely a polymerization rather than polycondensation
according to Scheme 1.19. One implication of such a mechanism, which cannot
be described in detail herein, is that it furnishes a living end as is obvious from
structure 30.

Thus, it now becomes possible to synthesize a copolymer which, for example,
combines a rigid rodlike conjugated segment with a flexible, coil-type one [170–
172]. An important consequence of this molecular design is that the coil can assist
in the assembly of the conjugated unit [173]. It should also be mentioned that
Yokozawa disclosed the possibility of a polymerization mechanism in the Suzuki
synthesis of PPPs [174, 175].

Polyphenylenes as shown in Scheme 1.20 have then been widely synthesized
employing either Yamamoto or Suzuki and Stille coupling reactions [128, 176,
177].
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Scheme 1.18 Synthesis of AB-thiophene monomer 28 to yield regioregular
poly-3-alkylthiophenes. Source: McCullough and Lowe 1992 [61]. Reproduced with permission
of Royal Society of Chemistry.

S

R

BrClMg

Ni(dppp)Cl2

R = n-hexyl

dppp = diphosphin-1,3-bis(diphenylphosphino)propane

L = dppp ligand

SBr
Ni

Cl+

L
L SBr

Ni
L

S
Br

29

L

S Ni
Br

L
L

S

R

Br
30

29

R

R R

R

Scheme 1.19 Mechanism of chain growth polymerization proposed by Yokozawa. Source:
Cheng et al. 2009 [169]. Reproduced with permission of American Chemical Society.

n n

2,5-substituted PPP

R

R

R R

n

Poly-2,7-fluorene

N

R

n

Poly-2,7-carbazole

R = alkyl

PPP

3114

Scheme 1.20 Different poly-para-phenylene structures. Source: Müllen et al. 2013 [19].
Reproduced with permission of Royal Society of Chemistry.



1.2 Polymer Synthesis 15

R1

B(OR)2
R1

(RO)2B

Hal

Hal
O

O

R2

R2
R1

R1

O

O

R2

R2

n

R1

R1

HO

OH

R2

R2

n

R1

R1
R2

R2

R3

R3

+

32 33

R1 : H, C6H13 R2 :
, C10H21 R3 : H

Pd(0)

LiAlH4
BF3

n n

n

R1

R1

Scheme 1.21 Synthetic route toward LPPP. Source: Scherf and Müllen 1991 [178]. Reproduced
with permission of John Wiley & Sons.

A special case of PPPs is presented by the ladder poly-1,4-phenylenes LPPPs
31 shown in Scheme 1.21. There, neighboring benzene rings are connected by
methylene bridges so that the whole π-system is forced into a plane, thus favor-
ing conjugation. Solubilizing alkyl substituents can be attached to the bridging
carbons and no longer cause torsion between benzenes as occurring in alkyl sub-
stituted PPPs 14. LPPPs have played a useful role as blue emitters in LEDs [179].

LPPPs highlight the opportunities of more sophisticated synthesis of conju-
gated polymers, but also the potential drawbacks. This is readily understandable
from the synthetic protocol in which a functionalized PPP 32 must be trans-
formed into the ladder structure 33 by polymer-analogous ring closures [178].
Failure to do this quantitatively will leave defects with twisted benzene rings, and
we shall come back to the synthesis of ladder structures by improved methods
later. There is yet another feature that again documents the close connection of
physical properties and perfection of synthesis. The emission of the blue emitting
LPPP is a little bit too greenish for a blue LED and can be somewhat hypsochromi-
cally shifted by going to step-ladder PPPs. There, planarized moieties such as
fluorene (34) or indenofluorene (36) are coupled via single bonds to establish
step-ladder polymers 35 and 37 [180–185]. Understandably, the bridging units
can be more smoothly closed for a monomer rather than for a polymer allowing
purification before polymerization (see Scheme 1.22).

This is also a good opportunity to consider the availability of the monomeric
buildings blocks as starting materials of polymer synthesis. First, it should be
mentioned that coupling of unsaturated monomers can also be achieved in a
catalytic process by way of CH-activation, thus avoiding the initial formation of
halogen-functionalized building blocks [187–191]. Dihalobenzenes are commer-
cially available, whereas the benzene precursors of LPPPs require special synthe-
sis. Often, regioselectivity is a critical issue in the syntheses of dihalo building
blocks. Although 3,6-dibromocarbazole (39) is readily accessible by bromination
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Scheme 1.22 Fluorene (34) and indenofluorene (36) polycondensation after regioselective
bromination. Source: Setayesh et al. 2000 [184] and Bernius et al. 2000 [186]. Reproduced with
permission of American Chemical Society.
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Scheme 1.23 Regioselective monomer synthesis as demonstrated for 3,6-dibromocarbazoles
and 2,7-dibromocarbazoles. Source: Majchrzak et al. 2016 [192] and Dierschke et al. 2003 [193].
Reproduced with permission of Royal Society of Chemistry.

of carbazole (38) [192], the 2,7 regioisomer 41 requires a more expeditious route
starting from a biphenyl precursor 40 (see Scheme 1.23) [193].

Using pyrene (43) as a monomeric building block of conjugated polymers is
very attractive in view of its unique optical properties, but synthetically more
complicated. Pyrene undergoes halogenation in the 1,3,6,8-positions [194]
rendering access to a pure dihalo isomer difficult. A synthetic trick employs a
Friedel–Crafts alkylation yielding the 2-tert-butylpyrene (45). The latter serves
as a useful intermediate by blocking the 1 and 3 positions [195, 196]. Monomer
46 then furnishes a high-molecular-weight poly-1,3-pyrene as a blue emitter
(see Scheme 1.24) [195].
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benzothiadiazole (48) to achieve an alternating D–A-polymer. Source: Zhang et al. 2007 [202]
and Hinkel et al. 2015 [203]. Reproduced with permission of American Chemical Society.

Stannyl and boronate derivatives can be obtained from the corresponding halo
compounds, but sometimes from the hydrocarbons directly. Thus, the diboronate
42 can be made from pyrene in an iridium-catalyzed reaction [197].

Purification of all monomers is a mandatory step. It is, for example, rec-
ommended to crystallize boronate reagents [198], and in the case of the
D–A-polymer 49 has furnished an “inverse” Suzuki coupling by the use
of cyclopentadithiophene 47 [199–202] and of a crystalline derivative of
diboronate 48 (see Scheme 1.25) [202–207].

There are other sources of trouble in providing monomers for conjugated poly-
mer synthesis. One readily understands that 9,9-dialkyfluorenes are obtained
from fluorenes with CH2-bridges by deprotonation and subsequent alkylation
(see Scheme 1.26) [208]. The intermediate monoalkyl species, which is difficult
to remove before polymerization [176], but even the complete dialkyl analog 51
can undergo oxidative decomposition, thus producing a carbonyl group. The
resulting fluorenone 52, which can then not be removed from the polymer chain
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Scheme 1.26 Alkylation of fluorene (50) and poly-2,7-fluorene containing a fluorenone
defect. Source: Adapted from Perumattam et al. 1994 [208] and Romaner et al. 2003 [209].
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Scheme 1.27 1,4-Bis(phenyldichloromethyl)benzene (54) yielding
poly-1,4-phenylene-1,2-diphenylvinylene (55). Source: Hörhold et al. 1977 [213]. Reproduced
with permission of John Wiley & Sons.

53, is a chromophor in its own right and severely changes the emission behavior
by giving rise to additional bands at longer wavelengths [209].

PPPs and PPEs exist as rigid rods that qualify them to assemble to lamella-type
aggregates via side-by-side packing of the chains [5, 8, 50, 177, 210–212]. In
contrast, the flexible vinylene groups of PPV, which exist in both cis- and
trans-configurations, impart a lower tendency toward packing and even give rise
to coiled conformations. A characteristic case is the diphenyl derivative of a PPV
(55) introduced by Hörhold et al. (see Scheme 1.27) [213].

This polymer is soluble even without attached alkyl chains, which can be
assigned to the twisted conformation of the chain. The latter is less favorable for
tight packing.

There are three conceptually different ways of PPV synthesis (see Scheme 1.28):
(i) suitably functionalized benzene and olefin derivatives are coupled under
𝜎-bond formation in a manner analogous to PPP synthesis [214], (ii) 1,4-xylenes
are subjected to chemical transformations furnishing both electrophilic and
nucleophilic reagents prone to a connective double bond formation [215], and
(iii) xylene derivatives such as 56 are treated with base. After 1,6-elimination, a
quinoid intermediate such as 57 is formed, which polymerizes to 60 containing
saturated vinylidene units. These are then subjected to polymer-analogous
1,2-eliminations to establish the desired vinylene groups and thus the PPV [216].

Depending on temperature, solvent, concentration, and additives, the poly-
merization can proceed by a radical or anionic mechanism: the anionic pathway,
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which prevails in the presence of large amounts of base, is described by the reac-
tion from 57 to 58. The molecular weight of the resulting precursor polymer 60 is
often low. The radical pathway comprises the formation of the diradical interme-
diate 59 from 57. This diradical undergoes polymerization and yields polymers
with relatively high molecular weight. Polymerization of 56 often affords prod-
ucts with a bimodal polymer weight distribution, which can be explained by the
presence of both mechanisms [217–219].

The latter protocol implies a so-called precursor route. This method deserves
special attention here because it has played an important role in the evolution of
polymer synthesis and is, again, perfectly suited to highlight the issue of structural
perfection. Casting a thin solid polymer film from solution is often hampered
by insufficient insolubility of the material. It has already been pointed out, on
the other hand, that after deposition, one may prefer insolubility, for example,
for depositing a further layer without redissolving the first one. The precursor
60 comprises saturated bridges, is flexible and soluble, but can re-establish the
desired (insoluble) conjugated polymer PPV. This looks good on paper, but is not
trivial. The elimination in film form by either a base-induced or thermally stimu-
lated process must proceed quantitatively and should not obstruct the film or the
substrate underneath. Thus, PPV has originally been synthesized via the so-called
Wessling–Zimmermann route (see Scheme 1.29) [220].
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This procedure starts from 62, which gives rise to the precursor polymer 63.
If the elimination of 63 is not quantitative, saturated units are left, which inter-
rupt π-conjugation. What is more problematic is that elimination in the pres-
ence of water can lead to substitution rather than elimination of the sulfonium
substituent (see Scheme 1.30). This forms alcohols that can give rise to ketone
impurities [221–223]. The latter act as traps for excitons, which will, of course,
obstruct efficient light emission.

Interestingly, this route has been optimized, but even the so-called Gilch route
(shown in Scheme 1.28) has been shown by impressive studies performed in
industry to produce a whole zoo of side products [224, 225] (see Scheme 1.31).
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Scheme 1.31 Side products in the Gilch polymerization depending on the mode of
connection of the monomers. Source: Becker et al. 1999 [224]. Reproduced with permission of
American Chemical Society.
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It is clear that the precursor protocols define a rich playground for exercises
in precision synthesis. It might therefore be instructive to revisit PPP and
PA synthesis (see Scheme 1.32). Various benzene derivatives have been
synthesized and subjected to the synthesis of a PPP precursor polymer. A
recent and particularly successful case uses the kinked disubstituted 1,4-syn-
dimethoxycyclohexadienylene monomer 65, which is obtained by nucleophilic
attack of an organometal reagent upon benzoquinone [226]. This reaction is not
stereoselective and anti-1,4-bis(4-halophenyl)-1,4-dimethoxycyclohexadiene
(as one configurational isomer) can also be formed. To achieve pure syn- or
anti-product, separation by column chromatography or recrystallization is quite
demanding [227, 228].

This kinked structure 65 has originally been used to make cycles such as 68,
which could then be transformed into aromatic macrocycles (see Scheme 1.33)
after reductive removal of the methoxy groups and re-formation of the benzene
rings [227, 229, 230].

What allows ring formation is also instrumental in avoiding the tight packing
of the linear polymer 67 in the solid and in affording solubility. Forming the target
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Scheme 1.33 syn-1,4-Bis(4-halophenyl)-1,4-dimethoxycyclohexadienes leading to
cyclo[n]phenylene (69). Source: Jasti et al. 2008 [227]. Reproduced with permission of
American Chemical Society.
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PPP polymer by reductive elimination does not make sense because it would
afford insoluble materials. Also, treating a film of 67 with a reducing agent causes
problem because of limited diffusion of the reagent. It was therefore critical that
the elimination starting from 67 could be achieved in a thermal rearomatization
process providing a perfect PPP.

Coming back to the synthesis of ladder polymers as a critical case of
polymer-analogous reactions, 1,4-dibromo-2,5-divinyl benzene (70) was used
to achieve 72 by Suzuki cross-coupling (see Scheme 1.34). The ring-closing
metathesis reaction of 71 was optimized, and analysis of the resulting ladder
polymer showed that less than 1% of the vinyl groups had not reacted and,
instead, produced defects by interrupting the ladder-type backbone. This
small amount of defects has also been confirmed by analysis through scanning
tunneling microscopy (STM) [231], but still influences the observed length of
exciton delocalization.

N
BPinPinB

Br

Br N

n

R = n-dodecyl

BPin =

RR RR

O

O
B

N

RR

N

RR

n/2

70 71

+n n
Pd(PPh3)4

Grubbs’ second
generation catalyst

Scheme 1.34 Ring-closing metathesis reaction to achieve a ladder-type polymer with a small
degree of defects. Source: Lee et al. 2016 [231]. Reproduced with permission of Royal Society
of Chemistry.

Thermally stimulated transformations without the involvement of additional
reagents and the metathesis reaction have also proven their value in precursor
routes toward PA. The “Durham” route introduced by Feast and coworker [232]
utilized a ring-opening metathesis from 72 to polymer 73, followed by thermally
induced extrusion of benzenes 74 from 73 (see Scheme 1.35). The perfection of
this process follows from the stability of the extruded benzene building block.
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Scheme 1.35 PA through the Durham route [232].
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Somewhat related, PA formation from 75 relied on a skeletal rearrangement of
76, although the explosive nature of its benzvalene subunits made its application
less favorable (see Scheme 1.36) [233–235].
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Scheme 1.36 Ring-opening metathesis polymerization of benzvalene and rearrangement of
the intermediate polymer 76 to polyacetylene [233].

To complete the possibilities of PA formation, a recent and particularly original
way to obtain PA should be mentioned. It is based on unzipping of a ladderene
precursor polymer 78 through sonication (see Scheme 1.37). This is obtained by
ring-opening metathesis polymerization of the ladderene 77 and then unzipped
to yield the PA copolymer 79 [236].
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Scheme 1.37 Ring-opening metathesis polymerization of ladderene 77 and its unzipping
through sonication to polyacetylene copolymer 79. Source: Chen et al. 2017 [236].
Reproduced with permission of American Association for the Advancement of Science.

1.3 Molecular Structure, Supramolecular Structure,
and Interfaces

Although in the previous sections we have mostly been dealing with overarching
principles and general guidelines of polymer synthesis, the following one will
focus more on reviewing detailed literature examples. Before that, an introduc-
tory comment on how we depict polymer structures seems appropriate. This is
normally done by a molecular formula comprising the repeat unit and its average
number, which then also reflects the molecular weight. Inspection of this formula
tells us a lot about the nature of the polymer in terms of the above design criteria.
Experience would readily tell us, for example, whether we are dealing with a
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p- or n-type material or in which wavelength domain the polymers absorb light.
In principle, this description also holds for “infinite” structures, but becomes
less compelling for increasingly complex π-systems such as carbon nanotubes
(CNTs) or holey graphenes, where a “repeat unit” cannot be defined easily if at all.

Regarding the molecular weight of polymers and thus high values of n, first of
all, these hold promise for more robust and more homogeneous films upon depo-
sition. Beyond the mechanical aspect, higher molecular weights are expected to
favor charge carrier transport for, both, molecular and supramolecular reasons,
i.e. transport along a molecular chain and between chains in a given morphology
[176, 237].

The length of a polymer chain can differ significantly from batch to batch, even
if seemingly identical experimental conditions have been established [238]. This
stresses the need for efficient methods of purification and a short overview over
the appropriate approaches is necessary. Further, as the quality of polymer syn-
thesis cannot be decoupled from the power of the analytical methods, these must
be covered as well.

In general, the length of a polymer is described by Mn (the number-average
molecular weight), Mw (the weight-average molecular weight), and the ratio
between weight- and number-average molecular weight, which is called disper-
sity DM [239]. To achieve small values of DM, several protocols can be followed
such as precipitation from solution [240], Soxhlet extraction [241], and prepar-
ative [242] and recycling gel permeation chromatography (GPC) [243–247].
Purification by precipitation from solution does not only influence the average
molecular weight, but also the dispersity, because small oligomers often do
not precipitate as opposed to polymers. This method has severe limitations as
higher polymers cannot be further separated [226, 240]. Additional separation
of higher molecular weights can be achieved by Soxhlet extraction where the
solid polymer is washed with different (“matching” or “mismatching”) solvents,
thus furnishing molecular weight fractions with smaller dispersity [240].

Within preparative GPC, the polymer solution is eluted through a column filled
with a porous gel. Separation of the polymers is based on different hydrodynamic
volumes. Polymers with smaller hydrodynamic volumes enter the pores so that
fractions with higher hydrodynamic volumes elute more readily and fractiona-
tion becomes possible [240]. Further, if the eluted fractions are reinjected onto
the column in a so-called recycling GPC, the desired fractions can be separated,
whereas the undesired fractions are subjected to another passage [243–247].

Analytical techniques are needed to assess the success of the fractionation
method. The importance of solution and solid-state NMR spectroscopy has
already been emphasized for a detailed structural analysis. Given that a polymer
possesses defined end group(s), one can relate the intensity of the corresponding
NMR signals to that of the repeat units, thus obtaining information on n [248].
Clearly, such a method becomes less reliable with higher molecular weights. The
same holds true for matrix-assisted laser desorption/ionization time of flight
(MALDI-TOF) mass spectrometry. One may be able to identify the nature and
number of repeat units, but higher molecular weights will escape detection as
they will no longer desorb. This method is thus mostly restricted to oligomers
[249–251].
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If a polymer solution is irradiated by a laser beam, the intensity of the scattered
light at different scattering angles yields direct information on the molecular
weight and the size of the scattered moiety. As the intensity of the forward
scattered light correlates with the particle size, one limitation of the static light
scattering is that the scattering intensity increases with the third power of the
particle size, so that small particles cannot be detected in the presence of large
ones. Static light scattering therefore requires a small DM. In cases where small
particles in the presence of large ones should be investigated, it is recommended
to utilize dynamic light scattering to resolve the contribution of the small sizes.
Also, the detection of large particle sizes and the corresponding molecular
weights has upper limits, as for large particles, the necessary access to scattering
angles close to zero is not straightforward. Nevertheless, this method has the
advantage that it does not require calibration [252, 253]. This does not hold true
for GPC. The problem there is that the rigid-rod-conjugated polymers have a
different hydrodynamic volume than the random-coil polymers normally used
for calibration. Toward a semiquantitative analysis, standard polymers with a
rigid-rod character would be required. The latter are, however, often available
only for lower molecular weights, making an extrapolation toward higher chain
lengths less reliable [254].

Returning to the electronic properties of different molecular weights of
conjugated polymers, studies by Kline et al. [255, 256] become relevant who
investigated the charge carrier mobilities for different chain lengths of regioreg-
ular poly-3-hexylthiophene (P3HT). The polymer was synthesized following the
McCullough route (as shown in Scheme 1.18) and compared with commercially
available regioregular P3HT. The commercially available one showed a large
dispersity and was subjected to Soxhlet extraction yielding three fractions
(<10 kDa, ≈10 kDa, and >30 kDa) with a dispersity ranging from 1.3 to 1.9
and a regioregularity >95%. The molecular weight of the polymer made by the
McCullough route was monitored over time and showed a dispersity ranging
from 1.1 to 1.5 and a regioregularity >98%. In FET devices fabricated under
identical conditions, the differently made polymer samples gave the same trend
of increasing charge carrier mobility with increasing molecular weight, but no
saturation effect could be achieved [255].

In a related work, different fractions (<4 kDa, ≈10 kDa, >30 kDa) of P3HT
were cast to films using different solvents and different annealing protocols.
Low-molecular-weight polymers appeared to be more sensitive to processing
conditions, most probably because of more profound morphology changes.
Indeed, the charge carrier mobilities differed by a factor of 100. Even under
optimized processing conditions, however, low-molecular-weight polymers
could not reach the charge carrier mobilities of their high-molecular-weight
congeners [256].

Related works on poly-3-alkylthiophene lead to the conclusion that Mn values
of about 20–30 kDa and a DM of 1.2–1.8 were preferable to achieve robust devices
with a high charge carrier mobility [257–259], but it was speculated that even
much higher charge carrier mobilities could be achieved by longer, defect-free
chains [255].
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Similar conclusions could be drawn from FETs using the widely known PPV
2 (shown in Scheme 1.3) as a semiconductor whereby polymer fractions with
100 kDa, 1, and 2.8 MDa were cast from toluene followed by annealing of the
films [260].

Astonishingly enough, the syntheses of many polymers have been reported in
the literature without the terminal functions ever being specified. This is care-
less because functional groups at the chain ends may interact with charges or
excitons or undergo decomposition reactions. End-capping is therefore indispen-
sible as a final synthetic step. Of course, this can become complicated if different
functional groups are involved. Thus, a repetitive Suzuki coupling, if no dehalo-
genation and deboronation has occurred, will result in both kinds of end groups,
which will then have to be “deactivated” by reaction with an excess of the corre-
sponding reagent. In any event, a strong plea is made herein to specify the end
groups within the molecular formula.

Next to problems of undesirable decomposition, defined end groups are rele-
vant for controlling (i) the interaction between polymers and functional nanopar-
ticles in a device [261] and (ii) surface properties of polymer films [262]. Liu inves-
tigated the interaction between CdSe nanorods and regioregular P3HT equipped
with terminal amino functions. The polymer was synthesized through a modified
McCullough polymerization [165, 263, 264] followed by in situ end functional-
ization with an organotin reagent bearing a cyano group (80). Reduction with
LiAlH4 resulted in the desired end-functionalized polymer 81. The precursor
polymer shown in Scheme 1.38 with undefined bromo and hydrogen end groups
and the polymer with defined amino termini were both applied in film formation
with CdSe nanocrystals. Different composites were introduced into photovoltaic
devices furnishing power conversion efficiencies sensitively depending on the
end functionalization [261].
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Scheme 1.38 Random hydrogen and bromo end groups and defined amino termini of
poly-3-hexylthiophene. Source: Liu et al. 2004 [261]. Reproduced with permission of American
Chemical Society.

Svensson described a protocol for precise end-capping via Suzuki cross-
coupling. The termination of the polymerization was realized by adding first
bromobenzene and second an excess of phenylboronic acid to the reaction
as shown in Scheme 1.39 [265]. The photovoltaic devices fabricated from 82
showed impressive power conversion efficiencies and this can also be attributed
to the defined end groups. This concept of end-capping was followed in many
successive polymerizations by the groups of Inganäs, Andersson, and coworkers
[265–267].
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Koldemir applied a Stille coupling for the D–A-polymer shown in Scheme 1.40
with defined tolyl end groups 83 for comparison with a polymer not possessing
defined end-capping 84 and both D–A-polymers were used to fabricate FETs.
Films were deposited under a variety of conditions to make sure that the results
were independent of processing parameters. The charge carrier mobilities
appeared to be an order of magnitude higher if FET devices were built from the
tolyl end-capped polymer [262].

Although end groups and their decomposition can produce impurities, there
are other sources of impurities not directly related to the polymer itself. Estab-
lished methods such as NMR spectroscopy or GPC can be employed to detect
contaminations from (catalyst) ligands or oligomers [268]. A troublesome issue
is inorganic residues, for example, from metal catalysts, which asks for efficient
methods to remove and detect them.

It has, indeed, been reported that palladium concentrations of 0.07 wt%
can influence the performance of organic photovoltaic (OPV) cells [269]. First
attempts at, indirectly, checking for metal impurities by time-resolved microwave
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conductivity measurements showed unsatisfactory results [270]. Nikiforov et al.
presented a direct and quantitative method utilizing synchroton-based X-ray
fluorescence and thus arrived at a limit of the metal concentration not com-
promising device performance [271]. Abdou et al. [272] used P3HT made by
oxidative coupling with ferric chloride and studied the role of iron(III) salts in
the performance of thin film FETs after several fractionation steps via Soxhlet
extraction. The purification techniques were quite tedious including 2 days
of Soxhlet extraction with methanol, 5 days of acetone Soxhlet extraction,
and treatment with aqueous ammonia. The whole process was monitored by
measurements of the electrical conductivity [272].

Metal residues other than iron, for example, Na, Mg, or Ca, can also influence
the performance of FETs or OPVs and thus need to be removed. The efficiency
of several purification protocols for P3HT synthesized via a chain growth poly-
merization with a nickel complex as catalyst (according to Scheme 1.14) were
investigated [61, 169]. ICP-MS (inductively coupled plasma mass spectrometry)
was used to determine the amount of Ni, Fe, K, Mg, Ca, Cu, Na, and Zn after
(i) no purification, (ii) classical Soxhlet extraction, and treatment with (iii)
dimethylglyoxime/15-crown-5 or (iv) ethylenediamine/15-crown-5. Chelating
agents such as ethylenediamine and crown ethers turned out to be indispensable
to obtain polymer samples with high power conversion efficiency in OPVs and
low hysteresis together with a high on/off current ratio in FETs [107].

It has been emphasized that the solvent is the key factor in controlling the
film-forming process and the deposition kinetics. Figure 1.2 illustrates that no
structural orientation is to be expected in the case of fast evaporation of the
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Figure 1.2 Schematic description of solvent-assisted film formation of polymer chains and
fullerene. Source: Grand and Reynolds 2015 [273] and Kouijzer et al. 2013 [274]. Reproduced
with permission of American Chemical Society.
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solvent, whereas slower evaporation can allow for a preaggregation and even
incorporation of fullerene acceptors in the formed aggregates. More detailed
descriptions of such deposition kinetics will be given later in this book. It should
not be overlooked, however, that the solvent can also contain contaminants such
as hydrogen chloride in chlorobenzene [275], stabilizing agents such as ethanol
in chloroform [276], or butylated hydroxytoluene in tetrahydrofuran [277]. One
problematic impurity is water, which is often not easy to remove [278–280].
Moreover, there is evidence [279, 281–284] of a water–oxygen complex, which
acts as a dangerous trap for electrons. Needless to say that at the end of the
deposition, there should be no residual solvent left, although small molecules
such as 1,8-disubstituted octanes are often added to favor nanophase separation
of different components in the fabrication of solar cells [285–287].

The emphasis of this book is on solution processing of conjugated polymers
and the impact of the resulting film structures upon device function (see
Figure 1.2). This process, as has been outlined above, is governed by a com-
plex interplay of intermolecular and interfacial forces and requires extensive
experimental optimization. At this point, one must admit a key problem in
the use of conjugated polymers: although we have accumulated empirical rules
for intramolecular control of structure and function, the “design” of desired
supramolecular structures and the avoidance of unwanted packing modes are
still in their infancy. Although we are not going to anticipate these discussions
here, one important question remains: can we build functions into the macro-
molecular structures, which allow a rational construction of packing modes?
This concept, also supported by simulation of polymer assemblies, is attracting
increasing attention [288]. Indeed, we have indirectly touched upon relevant
factors when targeting high solubility of polymers: any irregularity of structure
such as cis–trans isomerization of double bonds, bending of aromatic building
blocks, branched alkyl chains, irregular placement of alkyl substituents, or
co-incorporation of 1,4- and 1,3-phenylene units help to avoid ordered packing
and improve solubility [289, 290]. Conversely, any structural regularity, size
and shape of the repeating units, regular placement of substituents, as well
as alkyl group interdigitation between macromolecules will favor the built-up
of supramolecular order [291–293]. The molecular design could also include
substituents enabling noncovalent interactions such as Coulomb forces or
hydrogen bonds, but there again, their precise location is essential [292–296].

Supramolecular motifs such as lamellae of chains or columns of discs (see
Figure 1.3) have already been mentioned above where order favors high charge
carrier mobility and local defects can act as scattering sites. Insofar, the whole
device function is defect-controlled even if no structural analysis such as X-ray
diffractometry would be able to detect it [301]. The device function must also
include consideration of packing motifs with the outside world. Thus, the
molecular π-system inside a supramolecular array can produce either a face-on
or edge-on arrangement with different implications for the hopping of charges
and the reorganization energy of molecules involved. This arrangement can
depend on the molecule and its alkyl substitution pattern [1], but also on the
nature of either electrode or substrate surface [302].
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Figure 1.3 Schematic illustration of lamellar packing of chains and columns of discs [297–300].

Further, avoiding contact resistance between electrodes and organic semicon-
ductors or removing polar impurities on the insulator surface is critical for device
performance, but can only be addressed with chemical techniques [303, 304].
Treatment of electrodes with aromatic thiols, for example, appeared to reduce
the contact resistance of a thin film transistor produced from pentacene
[305]. Hydrophobization of the SiO2 layer becomes possible by hydrophobic
self-assembled monolayers (SAMs) [306–308]. Their role is to remove residual
surface water from the gate dielectric [306].

1.4 Beyond Solution Synthesis

The synthesis of PA by blowing a stream of acetylene over a thin film of silicon oil
containing the catalyst nicely documents the fact that conjugated polymers must
not necessarily be executed in (homogeneous) solution. This was possible due
to the discovery of catalysts that work at moderate temperatures and pressure
[309, 310].

More recently, dihaloarenes have been immobilized on metal surfaces and
their polymerization been thermally mediated under STM control. This can
even lead to polymer structures not available by conventional solution synthesis
(see Scheme 1.41) [301–306].
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Scheme 1.41 10,10′-Dibromo-9,9′-bianthryl precursor monomer to achieve a defined
graphene nanoribbon (GNR). Source: Cai et al. 2010 [306]. Reproduced with permission of
Springer Nature.
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Scheme 1.42 Fullerene, armchair carbon nanotube (85), and zigzag carbon nanotube (86).

The world of carbon-based electronic materials nicely documents that the tool-
box of synthetic chemistry is extremely diverse and even includes reactions under
extreme conditions such as high temperature or pressure (see Scheme 1.42) [307].

Fullerenes are mostly obtained by arc and combustion methods [308, 311].
Solution chemistry comes again into play again when chromatographic purifi-
cation or modification by cycloaddition reactions are performed [312]. The same
is true for CNTs. They are generally obtained by arc discharge, laser ablation,
chemical vapor deposition (CVD), and high-pressure carbon monoxide dispro-
portionation, but often come together with large amounts of amorphous car-
bon. The pronounced tendency of CNTs toward aggregation defines the need for
debundling by, for example, wrapping them up in a shell of polymers [313–316].
Mixtures of metallic and semiconducting CNTs also require separation, which
can be achieved either by chromatography or by making use of their different
reactivities [317–319].

A related case is that of graphene, a one-atom-thick monolayer (see
Scheme 1.43). Stimulated by the pioneering research of Geim, Novoselov,
and coworkers [103, 320–322], it is often described as a wonder material.
Indeed, the world of 1D conjugated polymers must warmly welcome 2D
graphene with its unique band structure and remarkable electronic [322],
magnetic [323], and mechanical [324] properties. Although these superlatives
create a rich playground for theory and physics, the multitude of chemical
challenges should not be ignored. Interestingly, graphenes can be obtained by
many different methods. Among those, the two following ones highlight a funda-
mental difference: exfoliation from graphite stands for a top-down and chemical
synthesis for a bottom-up approach [103]. Regarding the first protocol, how
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Scheme 1.43 Fundamentally different ways to obtain graphene.

can one strictly peel off layer by layer from graphite? A mechanical assistance
may be described as not requiring much chemistry, but an electrochemical
exfoliation raises many mechanistic and experimental questions. Thus, one
must consider the intercalation of electrolytes in-between the layers and the
oxidative formation of radicals from electrolyte anions [325]. The latter can
either chemically attack the carbon network or form gas bubbles, both processes
weakening the adhesion between graphene layers. The solvent is also critical,
for example, to prevent reaggregation of separate sheets after exfoliation [325].
The exfoliation can also be driven by harsher chemical oxidation, yielding yellow
dispersions of graphene oxide (GO). The diverse oxygen functions must then be
removed by chemical or thermal reduction to reestablish the targeted graphene.
This technique has been appealing to many research groups because GO could
be purchased and easily deposited into films [326–329]. GO can, indeed, be
regarded as a processable precursor material for graphene. However, as described
for the case of PPV, quantitative transformation of the precursor is essential,
and GO treatment is far from meeting this requirement. There are remaining
oxygen functions and, more severe, reduction is accompanied by loss of carbon
fragments yielding a defect-rich material [103]. The bottom-up approach can
utilize CVD where, for example, C2-fragments from various sources are fused on
copper surfaces. Alternatively, PAHs, which can be viewed as molecular cutouts
from the graphene lattice, can be made larger and larger [301]. The advantage
of the controlled synthesis is not so much the graphene fabrication, but that of
providing access to new semiconductors such as graphene nanoribbons (GNRs),
as shown in Scheme 1.41. GNRs represent a kind of intermediate π-system
between conjugated polymers and graphene [304]. They have assumed special
importance because of a characteristic feature of graphene: although it displays
extremely high charge carrier mobilities, certainly a desirable property in a
transistor, it possesses a vanishing band gap. As a consequence, the current in
the device will never be “off.” One way of opening the band gap and enabling
an “on–off behavior” is a geometric confinement in the π-system such as that
provided in a GNR [302]. They have therefore been sought, for example, by
lithographic techniques and by unzipping of CNTs, but these methods lack the
structural precision to achieve control over the aspect ratio of the ribbons and, in
particular, their edge structure [301, 302, 306, 330–332]. GNRs, as a new family
of semiconductors with distinct advantages over classical conjugated polymers,
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are thus another convincing case to support the role of synthesis for advancing
electronic materials [19].

1.5 Conclusions

Toward the end, the reader may – or not – agree to our claim that precision syn-
thesis is an indispensible tool in providing structurally defined, soluble, and pure
conjugated polymers for device fabrication. As always, arguments should not be
overstretched because in an interdisciplinary field like polymer electronics, syn-
thesis cannot be looked at as self-sufficient. It is rather the starting point of a
whole series of events. There is also a trivial need of practicality: not only must
the monomer be available without multistep synthesis but also must the synthesis
be simple and straightforward enough to provide samples in sufficient quantities.
Otherwise, optimizing deposition techniques and testing devices under various
circumstances would remain unreliable. Of course, when building devices, one
cannot set aside the issue of performance. Although conceptual novelty in organic
electronics could be fueled by, both, chemistry and physics, chasing records in
performance should not become the main motivation and belongs more to engi-
neering. Even more so, as metrics alone such as the charge carrier mobility of an
FET sometimes appear as the only criterion without ever including the issues of
shelf-life and operational stability. This again emphasizes the need for sufficient
quantities in tedious device optimization. Perhaps one might best discriminate
between “synthesis” and “preparation” in which the former includes the creative
search for novel structures and methods and the latter includes more routine
aspects such as scaling up and securing reproducibility. Tuning the solubility
could be part of such a more technical approach whereby already the use of a
halogenated solvent might appear as prohibitive. Further, if conjugated polymers
and solution processing should be elements of a low-end electronics, costs must
play an essential role.

We might come back to the beginning in iterating that conjugated polymers
offer an unbelievable breadth of structural and functional opportunities. Admit-
tedly, the material basis of the field has seen trends and fashions, but always
has there been a close interplay between targeted physical function and the
availability of a material. The rise and decline of the search for organic NLO (non-
linear optical) chromophores might serve as an instructive example [333–335].
Although herein we have mostly concentrated on the three most common cases
of (opto)electronic devices, new concepts such as memory and spintronics
devices or single-molecule electronics will undoubtedly continue to define new
challenges for polymer synthesis.

There is the danger of researchers focusing their attention too much on
oligomers and polymers as active components of devices. Although elec-
trodes and substrates have already been mentioned as additional ingredients,
approaches toward sensing or medical diagnostics require additional measures
regarding encapsulation, self-healing, and biocompatibility. May this chapter
and this book help the reader enjoy the undiminished vivacity of his or her
field – but to never set aside chemistry.
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