Contents

Preface xiii

- 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis 1 Sjoerd Harder
- 1.1 Introduction 1
- 1.2 s-Block Organometallics 1
- 1.2.1 Short History 1
- 1.2.2 Synthesis of Group 1 Organometallics 2
- 1.2.3 Synthesis of Group 2 Organometallics 4
- 1.2.4 Bonding and Structures of s-Block Organometallics 8
- 1.2.5 Dynamics of s-Block Organometallics in Solution 13
- 1.2.6 Low-Valent s-Block Chemistry 16
- 1.3 s-Block Organometallics in Catalysis 17
- 1.3.1 Working Principles in Lewis Acid Catalysis *17*
- 1.3.2 Working Principles in s-Block Organometallic Catalysis 19
- 1.3.3 Substrate Activation by s-Block Metals 21
- 1.3.4 Future of Early Main Group Metal Catalysis 23 List of Abbreviations 24 References 24
- 2 Polymerization of Alkenes and Polar Monomers by Early Main Group Metal Complexes 31 Sioerd Harder

Introduction

- 2.1 Introduction *31*
- 2.2 Alkene Polymerization 32
- 2.2.1 Styrene Polymerization *33*
- 2.2.2 Polymerization of Modified Styrene 40
- 2.2.3 Polymerization of Butadiene or Isoprene 43
- 2.3 Polymerization of Polar Monomers 45
- 2.3.1 Polymerization of Lactides 45
- 2.3.2 Copolymerization of Epoxides and CO_2 50
- 2.4 Conclusions 53 List of Abbreviations 54 References 54

viii Contents

3 Intramolecular Hydroamination of Alkenes 59 Sebastian Bestaen and Peter W. Roesky

- 3.1 Introduction 59
- 3.2 Hydroamination 60
- 3.2.1 Scope 62
- 3.3 s-Block Metal Catalysis 64
- 3.3.1 General Remarks 64
- 3.3.2 Mechanistic Aspects 65
- 3.3.3 Group 1-Based Catalysis 68
- 3.3.3.1 Concerted Reaction 68
- 3.3.3.2 Radical-Mediated Intramolecular Hydroamination 71
- 3.3.3.3 Reactions of N-Arylhydrazones and Ketoximes 72
- 3.3.4 Group 2 Metal-Mediated Catalysis 74
- 3.3.5 Group 2-Mediated Asymmetric Cyclohydroamination 83
- 3.3.6 Lewis Acidic Metal Cation Catalysis 84
- 3.3.7 Miscellaneous 85
- 3.4 Outlook 86 Acknowledgments 87 List of Abbreviations 87 References 88

4 Molecular s-Block Catalysts for Alkene Hydrophosphination and Related Reactions 93

- Yann Sarazin and Jean-François Carpentier
- 4.1 Introduction 93
- 4.2 General Considerations 95
- 4.3 Hydrophosphination of Alkenes 96
- 4.3.1 Precatalysts with Nitrogen-Based Ligands 97
- 4.3.2 Precatalysts with Oxygen-Based Ligands 110
- 4.4 Hydrophosphination of Carbodiimides *112*
- 4.5 Miscellaneous Reactions 114
- 4.5.1 Hydrophosphinylation of Alkenes and Enones 114
- 4.5.2 Hydrophosphonylation of Aldehydes and Ketones 116
- 4.6 Summary and Conclusions 117 List of Abbreviations 118 References 118

5 H—N and H—P Bond Addition to Alkynes and Heterocumulenes 123 Sven Krieck and Matthias Westerhausen

- 5.1 Introduction *123*
- 5.2 Hydroamination *124*
- 5.2.1 Hydroamination with Secondary Amines 125
- 5.2.2 Hydroamination with Primary Amines 128

Contents ix

- 5.2.3 Proposed Mechanisms for the Hydroamination of Butadiynes 130
- 5.3 Hydrophosphanylation (Hydrophosphination) 134
- 5.4 Hydrophosphorylation and Hydrophosphonylation *138*
- 5.5 Summary and Conclusions 143
- 5.6 Acknowledgments 146
- 5.7 Abbreviations 146 References 146
- 6 Early Main Group Metal-Catalyzed Hydrosilylation of Unsaturated Bonds 151 Sioerd Harder

6.1 Introduction 151

- 6.2 Historical Development *151*
- 6.3 Nonprecious Metal Hydrosilylation Catalysts 153
- 6.4 C=C Bond Hydrosilylation with s-Block Metal Catalysts 155
- 6.5 C=O Bond Hydrosilylation with s-Block Metal Catalysts *161*
- 6.6 C=N Bond Hydrosilylation with s-Block Metal Catalysts *167*
- 6.7 Conclusions 170
 - References 171

7 Early Main Group Metal Catalyzed Hydrogenation 175

- Heiko Bauer and Sjoerd Harder
- 7.1 Introduction 175
- 7.2 Hydrogenation of C=C Double Bonds *178*
- 7.3 Hydrogenation of C=N Double Bonds 187
- 7.4 Hydrogenation of C=O Double Bonds 191
- 7.5 Summary and Perspectives 194
 - References 197
- 8 Alkali and Alkaline Earth Element-Catalyzed Hydroboration Reactions 201

Aaron D. Sadow

- 8.1 Introduction and Overview 201
- 8.2 Thermodynamic Considerations 203
- 8.2.1 Hydroboration, Hydrosilylation, and Hydrogenation 203
- 8.2.2 Thermochemistry of Metal–Oxygen Bonds and Element–Hydrogen Bonds 205
- 8.3 Group 1-Catalyzed Hydroboration Reactions 207
- 8.3.1 Overview 207
- 8.3.2 Base-Catalyzed Hydroborations 207
- 8.3.3 Alkali Metal Hydridoborate and Aluminate-Catalyzed Hydroboration *210*
- 8.4 Group 2-Catalyzed Hydroboration Reactions 214
- 8.4.1 Overview 214
- 8.4.2 β-Diketiminate Magnesium-Catalyzed Hydroborations 215
- 8.4.3 Tris(4,4-dimethyl-2-oxazolinyl)phenylborato Magnesium-Catalyzed Hydroboration of Ester and Amides *217*

x Contents

8.4.4 8.4.5 8.5	Magnesium Triphenylborate-Catalyzed Hydroboration 221 Supported Catalysts for Hydroboration 221 Summary and Conclusions 222 References 222
9	Dehydrocoupling and Other Cross-couplings 225 Merle Arrowsmith
9.1	Introduction 225
9.2	Early Main Group-Catalyzed Cross-DHC of Amines and Boranes 228
9.2.1	Early Stoichiometric Studies with s-Block Elements 228
9.2.2	s-Block-Catalyzed Cross-dehydrogenative Synthesis of Diaminoboranes 229
9.2.3	s-Block-Catalyzed DHC of DMAB 231
9.2.4	Calcium-Catalyzed Dehydrocoupling of <i>tert</i> -Butylamine Borane 235
9.2.5	s-Block-Catalyzed DHC of Amines and Monohydroboranes 235
9.3	s-Block-Catalyzed Cross-DHC of Amines and Silanes 238
9.3.1	Influence of Precatalysts and Substrates on Reactivity and Selectivity 238
9.3.2	Mechanistic and Computational Analysis 240
9.3.3	Application to the Synthesis of Oligo- and Polysilazanes 242
9.4	Other s-Block-Catalyzed Cross-DHC Reactions 243
9.4.1	Alkali Metal-Catalyzed DHC of Si—H and O—H Bonds 243
9.4.2	s-Block-Catalyzed DHC of Si—H and C—H Bonds 243
9.5	Early Main Group-Mediated Nondehydrogenative Cross-couplings 244
9.6	Conclusion and Outlook 245 References 246
10	Enantioselective Catalysis with s-Block Organometallics 251 Philipp Steaper and Sigerd Harder
10.1	Introduction 251
10.2	Lithium-Based Catalysts 252
10.2.1	Lithium Catalysts Based on Neutral Chiral Ligands 252
10.2.2	Lithium Catalysts Based on Monoanionic Chiral Ligands 255
10.2.3	Lithium Catalysts Based on Dianionic Chiral Ligands 257
10.3	Potassium-Based Catalysts 259
10.3.1	Potassium Catalysts Based on Monoanionic Chiral Ligands 260
10.4	Magnesium-Based Catalysts 262
10.4.1	Magnesium Catalysts Based on Monoanionic Chiral Ligands 263
10.4.2	Magnesium Catalysts Based on Dianionic Chiral Ligands 266
10.5	Calcium-Based Catalysts 269
10.5.1	Calcium Catalysts Based on Monoanionic Chiral Ligands 269
10.5.2	Calcium Catalysts Based on Dianionic Chiral Ligands 273
10.6	Conclusion and Outlook 275
	List of Abbreviations 275
	References 276

11 Early Main Group Metal Lewis Acid Catalysis 279

- 11.1 Introduction 279
- 11.1.1 Lewis Acidity of s-Block Metal Cations 280
- 11.1.2 Interactions with More than One Lewis Base 281
- 11.1.3 Counter Anions 282
- 11.1.4 Solvation 283
- 11.1.5 Solubility and Aggregation 283
- 11.1.6 Water Tolerance 284
- 11.1.7 Relative Lewis Acid Activity of Alkaline and Alkaline Earth Metals 285
- 11.1.8 Hidden Brønsted Acid 287
- 11.2 Polarized Carbon–Heteroatom Double Bonds 287
- 11.2.1 Carboxylates: Anhydrides and Carbonates 288
- 11.2.2 Aldehydes, Ketones, and Formates 289
- 11.2.3 α,β-Unsaturated Carbonyl Compounds 291
- 11.2.4 Imines and Enamines 292
- 11.2.5 Mannich Reactions 294
- 11.2.6 Oxidation and Reduction 294
- 11.2.7 Donor–Acceptor Cyclopropanes 294
- 11.2.8 Diels-Alder Reaction and Cycloaddition 295
- 11.3 Activation of Polarized Single Bonds 296
- 11.3.1 Opening of Three-Membered Heterocycles 296
- 11.3.2 Leaving Groups 297
- 11.3.3 Ca²⁺-Catalyzed Dehydroxylation as a Special Case 299
- 11.4 Activation of Unpolarized Double Bonds 305
- 11.5 Summary and Conclusions 307 References 307
- **12 Enantioselective Group 2 Metal Lewis Acid Catalysis** 311 Yasuhiro Yamashita, Tetsu Tsubogo, and Shū Kobayashi
- 12.1 Introduction 311
- 12.2 Catalytic Enantioselective Reactions Using Chiral Magnesium Complexes 313
- 12.2.1 Chiral Magnesium-Catalyzed Diels–Alder and 1,3-Dipolar Cycloaddition Reactions *313*
- 12.2.2 Chiral Magnesium-Catalyzed 1,4-Addition Reactions 315
- 12.2.3 Chiral Magnesium-Catalyzed Addition Reactions to Carbonyl Compounds *318*
- 12.2.4 Chiral Magnesium-Catalyzed Addition Reactions with Imines 319
- 12.2.5 Chiral Magnesium-Catalyzed Ring-Opening Reactions of Epoxide and Aziridine *321*
- 12.2.6 Chiral Magnesium-Catalyzed α-Functionalization Reactions of Carbonyl Compounds 323
- 12.2.7 Various Chiral Magnesium-Catalyzed Reactions 324
- 12.3 Catalytic Enantioselective Reactions Using Chiral Calcium Complexes 324

Marian Rauser, Sebastian Schröder, and Meike Niggemann

xii Contents

- 12.3.1 Chiral Calcium-Catalyzed Addition Reactions to Carbonyl Compounds 324
- 12.3.2 Chiral Calcium-Catalyzed 1,4-Addition Reactions 326
- 12.3.3 Chiral Calcium-Catalyzed Addition Reactions with Imines 331
- 12.3.4 Chiral Calcium-Catalyzed α-Functionalization Reactions with Carbonyl Compounds 333
- 12.3.5 Chiral Calcium-Catalyzed Cycloaddition Reactions 334
- 12.3.6 Chiral Calcium-Catalyzed Hydroamination Reactions 334
- 12.3.7 Chiral Calcium-Catalyzed Epoxidation Reactions 336
- 12.3.8 Chiral Calcium-Catalyzed Aziridine Ring-Opening Reaction 337
- 12.4 Catalytic Enantioselective Reactions Using Chiral Strontium Complexes 337
- 12.4.1 Chiral Strontium-Catalyzed 1,4-Addition Reactions 337
- 12.4.2 Chiral Strontium-Catalyzed Addition Reactions with Imines 338
- 12.4.3 Chiral Strontium-Catalyzed Oxime Formation 339
- 12.5 Catalytic Enantioselective Reactions Using Chiral Barium Complexes 339
- 12.5.1 Chiral Barium-Catalyzed Addition Reactions to Carbonyl Compounds and Imines 339
- 12.5.2 Chiral Barium-Catalyzed 1,4-Addition Reactions 340
- 12.5.3 Chiral Barium-Catalyzed Diels-Alder Reactions 341
- 12.6 Summary and Outlook *341* References *342*
- 13 Miscellaneous Reactions 347 Michael S. Hill
- 13.1 Introduction 347
- 13.2 Privileged Substrates and s-Block Reactivity 347
- 13.3 Reactivity with Multiply Bonded Substrates 351
- 13.3.1 Tishchenko Dimerization of Aldehydes 351
- 13.3.2 Trimerization of Organic Isocyanates 352
- 13.3.3 Hydroalkoxylation of Alkynyl Alcohols 353
- 13.3.4 Catalytic Isomerization and C–C Coupling with Terminal Alkynes *354*
- 13.3.5 Activation and Deoxygenation of C—O Multiple Bonds 358
- 13.4 Single-Electron Transfer Steps in s-Block-Centered Catalysis 361
- 13.5 "Beyond" Hydrofunctionalization and Dehydrocoupling *363*
- 13.6 Conclusions and Conjecture 365 References 367

Index 373