Contents

Preface *xiii*

3.1 Introduction 69

About the Author *xi*

	Acknowledgments xv
	List of Abbreviations xvii
1	An Introduction to Noble Metal-Based Composite
	Nanomaterials 1
1.1	Materials at Nanometer Scales 1
1.2	Emergence of Composite Nanomaterials 3
1.3	General Concepts in Wet Chemistry Synthesis of Composite
	Nanomaterials 6
1.4	Characterizations of Composite Nanomaterials 11
1.5	The Scope of This Book 14
1.6	The Road Ahead 18
	References 19
2	Ethanol-Mediated Phase Transfer of Metal lons and
	Nanoparticles 35
2.1	Introduction 35
2.2	Early Studies in Phase Transfer of Noble Metal Nanoparticles 36
2.3	Brust–Schiffrin Method 38
2.4	Phase Transfer Through Ligand Exchange 41
2.5	Phase Transfer Through Electrostatic Interaction 45
2.6	Phase Transfer of Nanoparticles from Organic to Aqueous Phase 47
2.7	Ethanol-Mediated Phase Transfer 48
2.7.1	Ethanol-Mediated Phase Transfer of Metal Ions 48
2.7.2	Ethanol-Mediated Phase Transfer of Metal Nanoparticles 53
2.8	Recent Advances in Phase Transfer 57
2.9	Summary 60
	References 60
3	Nanocomposites Consisting of Chalcogenide Semiconductors
	and Gold 69

vi	Contents	
	3.2	Phosphine-Free Synthesis of Metal Selenide Nanocrystals 70
	3.3	Deposition of Au on Chalcogenide Semiconductor Nanocrystals 72
	3.3.1	Contributions from the Banin Group 72
	3.3.2	Contributions from the Other Research Groups 81
	3.3.3	Nanocomposites Consisting of Chalcogenide Semiconductors and
		Gold by Self-assembly 88
	3.3.4	Case Studies Associated with Nanocomposites Consisting of
		Chalcogenide Semiconductors and Gold 91
	3.3.4.1	PbTe-Au 91
	3.3.4.2	Cu_2S -Au 93
	3.3.4.3	Bi_2S_3 -Au 94
	3.3.4.4	SnS-Au 94
	3.3.4.5	ZnSe-Au 96
	3.3.4.6	Cu ₂ ZnSnS ₄ -Au (CZTS-Au) 97
	3.3.4.7	Mapping of Photogenerated Electron and Hole Separation in Single
		Semiconductor–Metal Nanocomposites 100
	3.4	Growth of Chalcogenide Semiconductors on Gold Nanoparticles 102
	3.5	Semiconducting Metal Sulfide–Gold Nanocomposites upon
		Ethanol-Mediated Phase Transfer 110
	3.5.1	Ag ₂ S–Au 111
	3.5.1.1	Formation of Monodisperse Ag ₂ S Nanocrystals in Toluene at Room
		Temperature 111
	3.5.1.2	Structural Evolutions of Ag ₂ S Nanocrystals 112
	3.5.1.3	Growth Mechanism of Ag ₂ S Nanocrystals 113
	3.5.1.4	Influence of Temperature and Ag/S Molar Ratios on the Growth of
		Ag ₂ S Nanocrystals 115
	3.5.1.5	Synthesis of Dimeric Ag ₂ S–Au Nanocomposites 116
	3.5.2	HgS-Au 119
	3.5.3	Semiconducting Metal Sulfide–Gold Nanocomposites 121
	3.5.3.1	CdS-Au 122
	3.5.3.2	Metal Sulfide–Au 125
	3.5.3.3	PbS–Ag/Au Nanocomposites 127
	3.6	Semiconductor–Gold Nanocomposites by a Two-phase Strategy 132
	3.7	Special Gold-Related Nanocomposites 132
	3.8	Semiconductor–Gold Nanocomposites for Efficient Three-component
		Coupling of Aldehyde, Amine, and Alkyne in Water 135
	3.9	Summary 137
		References 138
	4	Nanocomposites Consisting of Chalcogenide Semiconductors
		and Other Noble Metals 149
	4.1	Introduction 149
	4.2	Semiconductor–Silver Nanocomposites 150
	4.3	Semiconductor–Platinum Nanocomposites 158
	4.4	Nanocomposites Consisting of Semiconductors and Other

Noble Metals 171

4.5

Semiconductor–Dual Metal Nanocomposites 176

4.6	Summary 186 References 186
5	Nanocomposites Consisting of Silver Sulfide and Noble Metals 193
5.1	Introduction 193
5.2	Aqueous Synthesis of Ag ₂ S Nanocrystals 194
5.3	Binary Ag ₂ S–Noble Metal Nanocomposites 196
5.4	Multiple Ag ₂ S–Noble Metal Nanocomposites 200
5.5	Electrocatalytic Property of Pt-Containing Ag_2S -Noble Metal Nanocomposites for Methanol Oxidation Reaction and Oxygen Reduction Reaction 203
5.6	Electrocatalytic Property of Pt-Containing Ag ₂ S–Noble Metal Nanocomposites for Formic Acid Oxidation Reaction 209
5.7	Summary 211
5.7	References 212
6	Nanocomposites Consisting of Chalcogenide Semiconductors and Noble Metals by Structural Transformations 217
6.1	Introduction 217
6.2	Inside-Out Diffusion of Ag in Core–Shell Nanoparticles with Ag Residing in the Core or Internal Shell Regions 218
6.3	Nanocomposites Consisting of Ag ₂ S and Hollow Noble Metal Nanoparticles 222
6.4	Nanocomposites Consisting of Ag ₂ S and Bimetallic Au–Pt Cage-Bell Structures 226
6.5	Ternary Nanocomposites Consisting of Ag ₂ S, Au, and Hollow Pt Nanoparticles 227
6.6	Electrochemical Properties of the Binary and Ternary Nanocomposites and Their Core–Shell Precursors 229
6.7	Nanocomposites Consisting of Ag ₂ S and Palladium Nanoparticles and Their Electrochemical Properties 232
6.8	Nanocomposites Consisting of Ag ₂ Se and Hollow Platinum Nanoparticles 235
6.9	Nanocomposites Consisting of CuS and Platinum Nanoparticles 238
6.10	Strategies for Further Enhancing the Catalytic Performance of
	Pt-Containing Noble Metal-Based Nanocomposites in
	Electrochemical Reactions 240
6.11	Summary 242 References 242
7	Core–Shell-Structured Cadmium Selenide–Platinum
	Nanocomposites 249
7.1	Introduction 249
7.2	Reversible Phase Transfer of Semiconductor and Noble Metal

Nanoparticles 250

viii	Contents

-	
7.2.1	Ligand Exchange-Based Phase Transfer of Semiconductor and Noble Metal Nanoparticles from Organic Medium to Aqueous Phase 251
7.2.2	Electrostatic Interaction-Based Reversible Phase Transfer of Semiconductor and Noble Metal Nanoparticles between Organic Medium and Aqueous Phase 257
7.3	CdSe–Pt Nanocomposites with Core–Shell Constructions 258
7.3.1	Characterizations of CdSe Nanocrystals and Core–Shell-Structured CdSe–Pt Nanocomposites 259
7.3.2	The Compressive Strain Effect of CdSe Core on the Pt Shell 262
7.3.3	Electrochemical Activity of Core–Shell-Structured CdSe–Pt Nanocomposites for Oxygen Reduction and Methanol Oxidation Reactions 264
7.4	Further Efforts in Core–Shell-Structured Semiconductor–Noble Nanocomposites 269
7.5	Summary 271 References 272
8	Pt-Containing Ag ₂ S–Noble Metal Nanocomposites for Direct Methanol Fuel Cells Operated at High Fuel
	Concentrations 277
8.1	Introduction 277
8.2	Ternary Au@Ag ₂ S–Pt Nanocomposites as Selective Electrocatalysts at DMFC Anode $$
8.3	Core–Shell–Shell Au@Ag ₂ S@Pt Nanocomposites as Selective Electrocatalysts at DMFC Anode 281
8.4	Cage-Bell-Structured Pt–Ru Nanoparticles as Selective Electrocatalysts at DMFC Cathode 283
8.5	Core-Shell-Structured Au@Pd Nanoparticles with Thin Pd Shells as Selective Electrocatalysts at DMFC Cathode 286
8.6	A Prototype of the Membraneless Direct Methanol Fuel Cell 289
8.7	A Selective Electrocatalyst-Based Direct Methanol Fuel Cell (DMFC)
	Operated at High Concentration of Methanol 289
8.8	Summary 295
	References 295
9	Nanocomposites Consisting of Metal Oxides and Noble Metals 301
9.1	Introduction 301
9.2	Gold-Based Nanocomposites for CO Oxidation at Low Temperature 302
9.3	Early Studies in Metal Oxide–Noble Metal Nanocomposites 304
9.4	Dumbbell-Like Metal Oxide–Noble Metal Nanocomposites 311
9.5	High-Order Nanocomposites 327
9.6	${ m RuO_2-Au}$ Nanocomposites as Electrode Materials for Supercapacitors 335
9.6.1	RuO_2/C Nanocomposites 336
	2/ I

9.6.2	RuO ₂ -Au/C Nanocomposites 336
9.6.3	Electrochemical Properties of RuO ₂ /C and RuO ₂ –Au/C Nanocomposites 339
9.7	Hollow-Structured MO_x -Ru O_2 (M = Co, Cu, Fe, Ni, CuNi)
	Nanocomposites as Highly Efficient Electrodes for
9.8	Supercapacitors 342 CuO-Pd Nanocomposites with Atomic Dispersion of Pd for Catalytic Removal of Benzene 358
9.8.1	Bimetallic Cu–Pd Nanoalloys with Different Pd/Cu Molar Ratios 360
9.8.2	Calcination of Bimetallic Cu–Pd Nanoalloys Supported on γ-Al ₂ O ₃ Substrates 361
9.8.3	Reducibility of γ -Al ₂ O ₃ -Supported Cu–Pd Nanoalloys after Calcination 365
9.8.4	Catalytic Activities of γ -Al $_2$ O $_3$ -Supported Cu $-$ Pd Nanoalloys after Calcination for Benzene Oxidation 366
9.9	Strategies for Determining the Influence of Noble Metals on the Catalytic Performance of Nanocomposites 368
9.10	Summary 371 References 372
10	Scientific Issues Derived from Noble Metal-Based
	Nanocomposites 383
10.1	Introduction 383
10.2	Diffusion of Gold from the Inner Core to the Surface of Ag ₂ S Nanocrystals 384
10.3	Coalescence of Au and Ag ₂ S Nanocrystals at Room Temperature 391
10.3.1	Observation of Coalescence of Au and Ag ₂ S Nanocrystals 391
10.3.2	Mechanism Responsible for the Coalescence of Au and Ag ₂ S Nanocrystals 393
10.3.3	Removal of Au from Quantum Dot-Au Hybrids 395
10.3.4	Extraction of Au from Au-Containing Alloy Nanoparticles 397
10.4	Synthesis of PbSe–Au Nanocomposites with Different Morphologies 401
10.4.1	Synthesis of PbSe Seeds 402
10.4.2	Synthesis of PbSe–Au Nanocomposites 403
10.4.3	Mechanism for the Nucleation and Growth of Au on PbSe Nanocrystals 406
10.5	Fine Ag_2S –Pt Nanocomposites Supported on Carbon Substrates for Methanol Oxidation Reaction 408
10.6	Summary 413 References 414
11	Conclusion and Perspectives 419
11.1	Creating a Favorable Solvent Environment for the Growth of Noble Metal-Based Nanocomposites 419
11.2	Synthesis of Composite Nanosystems and Understanding Their Underlying Chemistry 420

x Contents

- 11.3 Exploring the Catalytic Properties of the Noble Metal-Based Nanocomposites for Energy Conversion and Storage 420
- 11.4 Investigating Other Scientific-Related Issues 421
 References 421

Index 423