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1.1  Introduction

Silicon nucleophiles represent a class of important organometallic species for 
silicon–carbon, silicon–silicon, and silicon–boron bond formation reactions in 
synthetic chemistry [1]. Conventionally, the generation of silicon nucleophiles is 
accomplished by reactions of chlorosilanes with alkali metal (K, Na, Li), reactions 
of hydrosilanes with alkali metal hydride, cleavage of the silicon–silicon bond in 
disilanes or the silicon–boron bond in silylboron reagents by organometallic 
carbon nucleophiles, and transmetallation from other silicon-metal compounds  
[2]. However, these stoichiometric methods have significant limitations such as 
low functional‐group compatibility due to the high reactivity of hard silyl anions 
with an alkali metal countercation. In this context, silicon‐based organocuprates 
are widely used as soft silyl anion equivalents for silicon–carbon bond formation 
reactions, even though this method requires stoichiometric organometallic 
compounds and copper salt [3]. Recently, catalytic nucleophilic silylation reac-
tions have attracted considerable attention because of their mild reaction condi-
tions and unique selectivity and reactivity. This chapter mainly focuses on two 
types of activation modes for catalytic generation of silicon nucleophiles 
(Figure  1.1). First, transmetalation between silicon compounds containing a 
Si─X bond (X = Si, B, and Zn) and metal catalysts generates nucleophilic silyl 
metal intermediates (Figure  1.1a). Second, a catalytic amount of Lewis bases 
(Nu) activates the silicon–boron bond of silylboron reagents to form nucleo-
philic silyl species (Figure 1.1b). This chapter provides the recent advancements 
in the catalytic generation of silicon nucleophiles through these activation path-
ways and their applications in organic synthesis.
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1  Catalytic Generation of Silicon Nucleophiles2

1.2  Silicon Nucleophiles with Copper Catalysts

1.2.1  Copper‐Catalyzed Nucleophilic Silylation with Disilanes

1.2.1.1  Silylation of α,β‐Unsaturated Carbonyl Compounds
In 1998, the first example of copper‐catalyzed nucleophilic 1,4‐silylation of 
α,β‐unsaturated carbonyl compounds with disilanes was reported by Ito et al. 
(Scheme 1.1) [4]. The reaction of cyclohexanone with a disilane in the presence 
of a copper salt and Bu3P as a ligand proceeded to give the corresponding 1,4‐
silyl addition product in high yield. The silylation presumably goes through the 
σ‐bond metathesis between a copper salt and a disilane to form the silylcopper 
intermediate, followed by its 1,4‐addition to cyclohexanone. The copper catalyst 
is regenerated by the reaction between the resultant copper enolate and silyl 
triflate, which is formed at the first stage of this cycle. This mild protocol can be 
applied to a variety of substrates such as α,β‐unsaturated cyclic and linear ketones 
and aldehydes to form the β‐silyl carbonyl compounds in high yields.

X = Si, B, Zn

(a) (b)

MY

Transmetallation Coordination

Silicon
nucleophiles Silicon

nucleophiles

B
Nu

Nu
– XY

+ +

SiX

SiM

SiB

Si

Figure 1.1  Representative pathways for catalytic generation of silicon nucleophiles.  
(a) Metal‐catalyzed method. (b) Lewis base‐catalyzed method.
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Scheme 1.1  Copper‐catalyzed silylation of α,β‐unsaturated carbonyl compounds with a 
disilane.
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1.2  Silicon Nucleophiles with Copper Catalysts 3

1.2.1.2  Silylation of Alkylidene Malonates
Scheidt and coworkers reported the copper‐catalyzed nucleophilic silylation of 
alkylidene malonates with disilanes in 2004 (Scheme 1.2) [5]. They found pyri-
dine to be an effective ligand rather than phosphines for this reaction.

1.2.1.3  Silylation of Allylic Carbamates
In 2012, Ito et al. developed the copper‐catalyzed allylic substitution with silicon 
nucleophiles (Scheme  1.3) [6]. This is the first example of a copper‐catalyzed 
reaction between a disilane and allylic carbonates to produce allylsilanes, which 
are particularly useful reagents for stereoselective allylation of aldehydes in the 
presence of Lewis acids [7]. The regioselectivity of this reaction depends on the 
structure of substrates, suggesting that this reaction would proceed through the 
formation of a π‐allyl copper(III) intermediate.
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Scheme 1.2  Copper‐catalyzed silylation of alkylidene malonates with a disilane.
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Scheme 1.3  Copper‐catalyzed silylation of allylic carbamates with a disilane.
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1  Catalytic Generation of Silicon Nucleophiles4

1.2.2  Copper‐Catalyzed Nucleophilic Silylation with Silylboronate

1.2.2.1  Silicon–Boron Bond Activation with Copper Alkoxide
Although disilanes are powerful sources for the generation of silicon nucleophiles 
as described, recent attention has focused on exploring the unique reactivity of 
silylboronates [8]. The difference in Lewis acidity between silicon and boron of 
silylboronates is exploited for facile boron–metal exchange at the silicon atom to 
generate silicon nucleophiles. The silicon–boron bond activation by σ‐bond 
metathesis with copper alkoxide catalysts has become a general technique to 
access copper‐stabilized silicon nucleophiles due to its mild reaction conditions 
(Figure 1.2) [8].

1.2.2.2  Silylation of α,β‐Unsaturated Carbonyl Compounds
In 2010, the first example of copper‐catalyzed nucleophilic silylation of 
α,β‐unsaturated carbonyl compounds with silylboronates was reported by 
Hoveyda and a coworker (Scheme 1.4) [9]. They found that the copper‐based 
chiral N‐heterocyclic carbene (NHC) complex, generated in situ from the 
reaction of the corresponding silver‐based carbene precursor with CuCl and 
Na(O‐t‐Bu), efficiently catalyzed conjugate silyl addition to cyclohexenone to 
form chiral β‐silyl ketone in high yield with excellent enantioselectivity. Acyclic 
unsaturated ketones and cyclic dienones also undergo the enantioselective silyl 
conjugate addition with good to high enantioselectivity. Later, they also developed 
regio‐ and enantioselective conjugate silyl additions of acyclic and cyclic dienones 
and dienoates with a chiral NHC/copper complex catalyst [10].

Soon after, Riant and coworkers reported the copper‐catalyzed asymmetric 
silylative aldol reaction between α,β‐unsaturated carbonyl compounds and 
aromatic aldehydes (Scheme 1.5) [11]. The in situ–generated silylcopper inter
mediate reacts with methacryloxazolidinones to form the β‐silylcopper enolate, 
followed by a diastereoselective aldol reaction to give the products bearing a 
chiral quaternary carbon center with excellent stereoselectivity.

In 2011, Córdova and coworkers reported that a copper‐catalyzed silylation 
method can be combined with a chiral amine cocatalyst for iminium activation, 
as exemplified by the catalytic enantioselective silyl addition to α,β‐unsaturated 
aldehydes (Scheme 1.6) [12].

The known copper‐catalyzed silylation methods are generally sensitive to 
moisture and need to be carried out under an inert atmosphere. However, in 
2012, Santos and a coworker discovered that the conjugative silylation of car-
bonyl compounds in water under air was efficiently catalyzed by a copper salt 
and 4‐picoline (Scheme 1.7) [13]. Both copper and pyridine are required in this 
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Figure 1.2  Activation of silicon–boron bond by σ‐bond metathesis with a copper alkoxide.
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Scheme 1.4  Copper‐catalyzed enantioselective conjugate silyl addition with a silylboronate.
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Scheme 1.5  Copper‐catalyzed silylative aldol reaction with a silylboronate.
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Scheme 1.6  Enantioselective silylation of α,β‐unsaturated aldehydes by a copper/chiral amine 
cooperative catalyst.
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1  Catalytic Generation of Silicon Nucleophiles6

reaction. The role of the pyridine is proposed to deprotonate a nucleophilic water 
molecule to form an sp3‐hybridized silylboronate, followed by transmetalation 
with copper to generate a silylcopper active species.

The incorporation of silicon atoms into amino acids and peptides has attracted 
significant attention due to the large number of applications in chemical biology, 
and even as therapeutic agents [14]. The known methods for the preparation of 
silicon‐containing amino acids have some limitations such as functional‐group 
incompatibility due to the use of highly reactive carbon nucleophiles [15]. In 
2015, Piersanti and coworkers developed the mild copper‐based catalytic method 
for the regioselective silyl addition of dehydroalanine derivatives (Scheme 1.8) 
[16]. This transformation would serve as a useful platform for the preparation of 
silicon‐containing peptide mimetics.

para‐Quinone methides are useful intermediates for the synthesis of highly 
functionalized phenol derivatives. In 2015, Tortosa and coworkers found that the 
copper‐catalyzed silylation–aromatization sequence of para‐quinone methides 
afforded mono‐ and dibenzylic alkylsilanes in high yields (Scheme 1.9) [17]. The 
products, which react with electrophiles such as aldehydes, can be used as stable 
dibenzylic carbanion equivalents.
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Scheme 1.7  Copper‐catalyzed silylation of α,β‐unsaturated carbonyl compounds in water at 
room temperature.
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Scheme 1.8  Copper‐catalyzed silylation of dehydroalanine derivatives for the synthesis of 
silicon‐containing peptides.
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Scheme 1.9  Copper‐catalyzed silylation of para‐quinone methides.
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1.2.2.3  Catalytic Allylic Silylation
In 2010, the first example of copper‐catalyzed allylic silylation with a silylboronate 
was reported by Oestreich and a coworker (Scheme 1.10) [18]. The reaction of 
allyl chlorides with a silylboronate in the presence of the copper catalyst and a 
stoichiometric amount of NaOMe in THF afforded the corresponding allylsilanes 
with excellent γ‐selectivity. The regioselectivity of this transformation was 
significantly influenced by the nature of leaving groups; γ‐selectivity for halides 
and phosphates and α‐selectivity for oxygen leaving groups such as carbonates, 
carbamates, and carboxylates. Explanations for the effects of the leaving groups 
on the regioselectivity have remained unclear.

Afterwards, the same group reported the enantioselective allylic silylation 
using a chiral NHC/copper complex catalyst, providing synthetically useful chi-
ral allylsilanes (Scheme 1.11) [19]. The six‐membered NHC ligand, which was 
originally introduced by McQuade and a coworker [20], efficiently promoted the 
reaction with high enantioselectivity.

At almost the same time, Shintani and coworkers also reported the 
copper‐catalyzed enantioselective allylic substitution of allyl phosphates with a 
silylboronate to provide chiral allylsilanes (Scheme 1.12) [21]. The use of a chiral 
NHC ligand bearing an alcohol functional group is a key to achieving high 
enantioselectivity of this reaction. Notably, this powerful catalytic system can be 
applied to the synthesis of chiral allylsilanes having a tetra‐substituted carbon 
center with excellent regio- and enantioselectivity by employing γ,γ‐disubsti-
tuted allyl phosphates as substrates.

In 2015, Oestreich and coworkers found that McQuade’s NHC/copper‐
catalyzed allylic silylation of racemic cyclic allyl phosphates underwent a 
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Scheme 1.10  Copper‐catalyzed non‐enantioselective allylic silylation.
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Scheme 1.11  Chiral NHC/copper‐catalyzed enantioselective allylic silylation reported by 
Oestreich and coworkers.
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1  Catalytic Generation of Silicon Nucleophiles8

direct  enantioconvergent transformation [22], where the enantiomeric allylic 
phosphates converged to the same enantiomer product by two distinctive SN2′ 
pathways with opposite diastereofacial selectivity (Scheme 1.13) [23].

For synthetic efficiency, it would be much more desirable to generate allylsilanes 
from allyl alcohols as allylic group precursors. In 2013, Li and coworkers reported 
that the allylic silylation of Morita–Baylis–Hillman alcohols with a silylboronate 
in the presence of the Cu(OTf)2/pyridine catalyst in methanol proceeded 
smoothly to provide the corresponding allylsilanes in good yields with excellent 
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salt
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Me
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N N

HO
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–

+
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γ

Scheme 1.12  Chiral NHC/copper‐catalyzed enantioselective allylic silylation reported by 
Shintani and coworkers.
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Scheme 1.13  Direct enantioconvergent transformation in the copper‐catalyzed allylic 
silylation of cyclic allyl phosphates.
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1.2  Silicon Nucleophiles with Copper Catalysts 9

regioselectivity (Scheme 1.14) [24]. They proposed that the hydroxyl group of the 
substrate could be activated by the in situ–generated TfOH–pyridine complex 
through a hydrogen‐bonding interaction. However, no experimental evidence 
for this activation mechanism were described.

1.2.2.4  Catalytic Silylation of Imines
Due to the considerable interest in silicon‐containing peptides and amino acids, 
a copper‐catalyzed addition of silicon nucleophiles to imines is an important 
transformation to form α‐aminosilanes bearing sensitive functional groups. In 
2011, the first example of copper‐catalyzed nucleophilic silylation of imines with 
a silylboronate was reported by Oestreich and coworkers (Scheme 1.15) [25]. A 
series of aldimines and ketimines were reacted with a silylboronate in the 
presence of CuCN as a catalyst precursor and a catalytic amount of NaOMe to 
afford the corresponding racemic α‐aminosilanes in good to high yields.

An enantioselective addition of silicon nucleophiles to aldimines was also 
developed by Oestreich and coworkers in 2014 (Scheme 1.16a) [26]. They found 
that the NHC/copper complex efficiently catalyzed the enantioselective silylation 
of aromatic and aliphatic aldimines with good to high enantioselectivity. At the 
almost same time, Mita et al. as well as He independently reported a similar copper‐
catalyzed method for the enantioselective addition of silicon nucleophiles to 
aldimines (Scheme 1.16b,c). The Mita and Sato group found that a copper/chiral 
diamine complex–catalyzed silylation of N‐tert‐butylsulfonylimines provided the 
optically active α‐aminosilanes with high enantioselectivity (Scheme 1.16b) [27]. 
The He group used the C1‐symmetric chiral NHC ligand for this transformation, 
providing good yields and high enantioselectivity (Scheme 1.16c) [28].

1.2.2.5  Catalytic Silylation of Aldehydes
α‐Hydroxylsilanes, useful intermediates in synthesis, have been used for several 
stereocontrolled rearrangements to access structurally complex molecules. 
Thus, the development of efficient synthetic methods for α‐hydroxylsilanes has 
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Scheme 1.14  Copper‐catalyzed direct allylic silylation of allyl alcohols.
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Scheme 1.15  Copper‐catalyzed nucleophilic silylation of imines.
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1  Catalytic Generation of Silicon Nucleophiles10

received increased attention in recent years. In 2011, the first example of copper‐
catalyzed nucleophilic silylation of aldehydes with a silylboronate was reported 
by Kleeberg et  al. (Scheme  1.17) [29]. Both aromatic and aliphatic aldehydes 
reacted with a silylboronate to give the corresponding racemic α‐hydroxylsilanes 
in high yields. The mechanism of this transformation was investigated in detail 
by stoichiometric and catalytic experiments as well as NMR spectroscopic 
measurements.
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Scheme 1.16  Copper‐catalyzed enantioselective nucleophilic silylation of aldimines. 
(a) Oestreich, (b) Mita and Sato, (c) He.

SiPh

1.2 equiv

B(pin)

5.5 mol% CuCN
10 mol% NaOMe

MeOH (4.0 equiv)
THF, 0 °C

+

83% yield

O

MeO

OH

MeO

SiMe2Ph

Scheme 1.17  Copper‐catalyzed nucleophilic silylation of aldehydes.
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In 2013, Riant and coworkers reported the first enantioselective nucleophilic 
silylation of aldehydes by employing a newly developed copper/DTBM‐
SEGPHOS complex catalyst (Scheme 1.18) [30]. A series of aromatic and aliphatic 
aldehydes were converted into the corresponding chiral α‐hydroxylsilanes in 
good yields with excellent enantioselectivity.

1.2.2.6  Catalytic Synthesis of Acylsilanes
Acylsilanes are stable compounds in which a silyl fragment is directly attached 
to  a carbonyl group. Recently, the use of acylsilanes in organic synthesis has 
attracted significant attention due to the discovery of valuable new transformations 
[31]. Therefore, the development of efficient, direct synthetic methods for 
acylsilanes is highly desirable. In 2013, Riant and coworkers reported the copper‐
catalyzed silylation of anhydrides with a silylboronate to form the corresponding 
acylsilanes in high yields (Scheme 1.19) [32]. Notably, this process can be carried 
out in a one‐pot procedure starting from easily available carboxylic acids.

1.2.2.7  Silylative Carboxylation with CO2

Carbon dioxide (CO2) is a nontoxic, abundant, and renewable carbon source. 
Therefore, the utilization of CO2 in carbon–carbon bond‐forming reaction is 
one of the most important subjects in organic synthesis. In 2012, Fujihara et al. 
developed the copper‐catalyzed silacarboxylation of internal alkynes with CO2 
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5 mol% Cu cat.

MeOH (4.0 equiv)
THF, r.t.

+

95% yield
95% ee

O
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2
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Cu(MeCN)2

P
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*
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Scheme 1.18  Copper‐catalyzed enantioselective nucleophilic silylation of aldehydes.
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Scheme 1.19  Copper‐catalyzed nucleophilic silylation of anhydrides to form acylsilanes.
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1  Catalytic Generation of Silicon Nucleophiles12

to give the silalactone derivatives (Scheme 1.20) [33]. The reaction presumably 
goes through the silylcupration of alkynes to form the silylated alkenylcopper 
intermediate, followed by the reaction with CO2 to afford the copper carboxylate 
species. Then, intramolecular cyclization provides the phenylcopper complex by 
extrusion of the silalactone product. The catalyst is recovered by the σ‐bond 
metathesis between the phenylcopper and a silylboronate.

The same group also reported the copper‐catalyzed regiodivergent 
silacarboxylation of allenes with CO2 (Scheme 1.21) [34]. The regioselectivity of 
the reaction is reversed by the proper choice of ligand; carboxylated vinylsilanes 
are obtained with rac‐Me‐Duphos as the ligand, whereas the use of PCy3 provides 
carboxylated allylsilanes with high selectivity. The origin of the regioselectivity 

Me SiPh

1.2 equiv

B(pin)
CO2 (1 atm), octane, 100 °C

+

1.25 mol% [CuCl(PCy3)]2
11 mol% Na(O-t-Bu)

85% yield

SiMe2

O
O

Me

Plausible mechanism

LCu SiMe2Ph

Ph Me

LCu

MePh

SiMe2Ph

CO2
MePh

SiMe2Ph
O

O
LCu

MePh

Si
O

O

LCu

Me
Me

Ph
SiMe2

O
O

Me

LCu Ph
PhMe2Si B(pin)

(pin)B Ph

Silylcupration Nucleophilic
attack

Cyclization

Intramolecular
transmetalation

Scheme 1.20  Copper‐catalyzed silacarboxylation of alkynes.

SiPh

1.0 equiv

B(pin)

+
CO2 (1 atm)
THF, 70 °C

5 mol%
CuCl/PCy3
15 mol%
NaOAc

CO2 (1 atm)
Hexane, 70 °C

5 mol%
Cu(OAc)2•H2O

5 mol%
rac-Me-Duphos

CO2H

SiMe2Ph

CO2H

SiMe2Ph

76% yield 94% yield

Vinylsilane selective Allylsilane selective

Scheme 1.21  Copper‐catalyzed regiodivergent silacarboxylation of allenes.
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1.2  Silicon Nucleophiles with Copper Catalysts 13

might be attributed to the difference in relative steric bulk of the copper/
phosphine complex and a silyl group.

1.2.2.8  CO2 Reduction via Silylation
In 2011, Kleeberg et al. studied the reaction of the [1,3‐bis(diisopropylphenyl)
imidazole‐2‐ylidene(IPr)]copper–silyl complex with CO2 to form CO in detail 
experimentally (Scheme 1.22) [35]. The (IPr)copper-silyl complex reacted with 
CO2 to provide the silanecarboxylic acid complex, followed by the formation of 
CO and a (IPr)Cu–O–SiMe2Ph linkage. This complex reacts with a silylboronate, 
regenerating the silyl complex and producing the (pin)B–O–SiMe2Ph. It is also 
possible that the silanecarboxylic acid complex undergoes transmetalation with 
a silylboronate to form the silyl complex as well as decomposition byproducts, 
which were detected in the reaction mixture.

1.2.2.9  Silyl Substitution of Alkyl Electrophiles
Reactions for the carbon–silicon bond formation through a substitution of 
unactivated alkyl electrophiles with silicon nucleophiles have been practically 
unexplored until very recently. In 2016, the first example of copper‐catalyzed 
nucleophilic silylation of alkyl triflates with a silylboronate was reported by 
Oestreich and a coworker (Scheme  1.23) [36]. Notably, this silylation is a 
stereospecific process, providing chiral silanes from the optically active substrates 
in a stereoinversion manner [37].

Afterwards, Oestreich’s group extended their method to alkyl iodides 
(Scheme 1.24) [38]. Interestingly, in this case, the carbon–silicon bond‐forming 
process proceeded through a radical mechanism. The catalytic cycle was 
investigated computationally in detail, leading to a full mechanistic picture 
that  includes a single‐electron‐transfer (SET) process between the silylcopper 
intermediate and alkyl iodide to generate an alkyl radical intermediate, followed 
by a radical coupling to form the silylation product. They also demonstrated the 
silylative radical cyclization of alkenyl iodides to give the corresponding cyclic 
silylation compounds with high setereoselectivity.

(IPr)CuSiMe2Ph
CO2

O

O

SiMe2Ph
(IPr)Cu

(IPr)CuOSiMe2Ph

CO
PhMe2SiB(pin)

(pin)BOSiMe2Ph

PhMe2SiB(pin) (IPr)CuSiMe2Ph

O

O

SiMe2Ph
(pin)B

(pin)BOSiMe2Ph

O

O

SiMe2Ph
PhMe2Si4CO

+

(pin)BOB(pin)

Decomposition

(IPr)Cu(O-t-Bu) + PhMe2SiB(pin)

(pin)B(O-t-Bu)

Catalytic cycle

Scheme 1.22  CO2 reduction with a silylboronate.
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1  Catalytic Generation of Silicon Nucleophiles14

1.2.2.10  Decarboxylative Silylation
In addition to the carbon–silicon bond‐forming cross‐coupling of alkyl triflates and 
halides, Oestreich and a coworker disclosed the copper‐catalyzed decarboxylative 
radical silylation of aliphatic carboxylic acid derivatives (Scheme 1.25) [39]. The 
reaction of aliphatic N‐hydroxyphthalimide (NHPI) esters with a silylboronate 

Na(O-t-Bu) (1.5 equiv)
THF, 0 °C r.t., 2 h

Na(O-t-Bu) (1.5 equiv)
THF, 0 °C r.t., 2 h

Na(O-t-Bu) (1.5 equiv)
THF, 0 °C r.t., 2 h

+
5 mol% CuCN

OTf
OTs SiMe2Ph

OTs

68% yield

SiPh

2.5 equiv

B(pin)+
10 mol% CuCl

73% yield
97% ee, 98% es

CN

OTf

Ph CN

SiMe2Ph

Ph

99% ee

SiPh

1.5 equiv

B(pin)

SiPh

2.5 equiv

B(pin)+
10 mol% CuCN

41% yield
93% ee, 94% es

CO2Me

OTf

Ph CN

SiMe2Ph

Ph

99% ee

Scheme 1.23  Stereospecific copper‐catalyzed silyl substitution of alkyl triflates.

LCu

Si B + RO RO B

LCu Si
Transmetalation SET

LCu Si

+

Proposed mechanism

Radical
coupling

Si = SiMe2Ph

SiPh

1.5 equiv

B(pin)
Li(O-t-Bu) (1.5 equiv)
THF/DMF (9 : 1), r.t.

+

10 mol% CuSCN
10 mol% dtbpy

83% yield

SiPh

1.5 equiv

B(pin)+

79% yield
d.r. >98 : 2

I

Me

Ph SiMe2Ph

Me

Ph

OO

I

Li(O-t-Bu) (1.5 equiv)
THF/DMF (9 : 1), r.t.

10 mol% CuSCN
10 mol% dtbpy

O O

SiMe2Ph
H

H

I

Me

Ph I
Me

Ph Me

Ph Si

LCu

Catalyst
regeneration

Scheme 1.24  Copper‐catalyzed silyl substitution of alkyl iodides via a radical mechanism.
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1.2  Silicon Nucleophiles with Copper Catalysts 15

produced primary, secondary, and tertiary alkylsilanes in good to high yields. The 
radical‐trapping and racemization experiments were consistent with a radical 
mechanism. They proposed the catalytic cycle involving an SET process from the 
silylcopper complex to the electron‐accepting NHPI ester, followed by the radical 
coupling to give the silylation product, as shown in Scheme 1.25.

1.2.2.11  Silylative Cyclization
A silylation of carbon–carbon double bond with concomitant carbon–carbon 
bond formation would be highly beneficial for the efficient construction of 
structurally complex alkylsilanes. Tian and coworkers developed the copper‐
catalyzed enantioselective silylative cyclization with a silicon nucleophile to form 
three consecutive chiral carbon centers in one step (Scheme  1.26) [40]. This 
tandem reaction presumably goes through the regio‐ and enantioselective 
addition of a silylcopper intermediate to the allene and subsequent enantioselective 
1,4‐addition of a cyclohexadienone moiety to give the bicyclic silylation product 
with excellent stereoselectivity.

1.2.2.12  Silylative Allylation of Ketones
The addition of transition‐metal species across allenes is a useful strategy for in 
situ generation of allylic nucleophiles. In 2015, Fujihara and Tsuji’s group 
reported that the copper‐catalyzed silylative allylation of ketones with allenes 
and silylboronates through in situ–generated β‐silylated allylcopper intermediate 
(Scheme  1.27) [41]. Various ketones and allenes were converted into the 
corresponding homoallylic tertiary alcohols containing internal vinylsilane 
moieties in high yields.

LCu

Si B + RO RO B

LCu Si
Transmetalation SET

LCu Si

O

O
N

O

O
O

O
N

O

O

+

O

O
N

O

O

+ SiPh

2.5 equiv

B(pin)

10 mol% CuTC
10 mol% dtbpy/Cy3P

NaOEt (1.0 equiv)
THF/NMP (9 : 1), r.t.

SiMe2Ph

91% yield

Proposed mechanism

LCu Si + CO2 N

O

O

+

Generation of radical species

Si

Radical coupling

Si = SiMe2Ph

Scheme 1.25  Copper‐catalyzed decarboxylative silylation of NHPI esters.
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1  Catalytic Generation of Silicon Nucleophiles16

1.2.2.13  Silylation of Alkynes
A regioselective addition of silicon nucleophiles across alkynes provides an 
efficient synthetic route to various vinylsilanes. In 1986, a pioneering study on 
the silylation of alkynes with silicon nucleophiles was reported by Nozaki et al. 
(Scheme 1.28) [42]. They discovered that the reaction of terminal alkynes with 
PhMe2SiBEt3Li in the presence of a catalytic amount of CuCN and methanol as a 
proton source produced the corresponding β‐vinylsilanes with moderate to high 
regioselectivity.

More than 20 years after the report of Nozaki et  al., Loh and coworkers 
discovered that the monophosphine/copper complex–catalyzed regioselective 
protosilylation of terminal alkynes proceeded to form α‐vinylsilanes 
(Scheme  1.29) [43]. The choice of the ligand significantly influenced the 

Ph

O

Me
+Cy SiPh

1.2 equiv

B(pin)

1.1 equiv

+

6 mol% CuCl
6 mol% P(p-MeOC6H4)3

10 mol% C11H23CO2K
Toluene, r.t., 18 h

OH

Ph
Me

Cy

SiMe2Ph

87% yield

Scheme 1.27  Copper‐catalyzed silylative allylation of ketones and allenes.

10 mol% CuCN
PhMe2SiBEt3Li (2 equiv)

MeOH (5.0 equiv), THF
R

α

α

β β
R

SiMe2Ph R = C10H21, 89% yield,

CH2CH2OBn, 91% yield,
α/β = 32 : 68
CH2OH, 95% yield,
α/β = 0 : 100
SiMe3, 66% yield,
α/β = 0 : 100

R

SiMe2Ph

+
α/β = 39 : 61

Scheme 1.28  Pioneering study on copper‐catalyzed protosilylation of alkynes.

O

O
Me SiPh

1.1 equiv

B(pin)+

10 mol% CuCl
12 mol% (S)-P-Phos

15 mol% Na(O-t-Bu)
MeOH (2.0 equiv)
THF, r.t., 11 h

O

O

H

Me

SiMe2Ph

O

O
Me

CuL
PhMe2Si

Via alkenylcopper intermediate
N

N

PPh2

PPh2MeO

OMe

OMe

MeO
(S)-P-Phos =

93% yield
97% ee
d.r. 14 : 1

Scheme 1.26  Copper‐catalyzed silylative cyclization of allenes.
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1.2  Silicon Nucleophiles with Copper Catalysts 17

regioselectivity in this reaction. It was found that the use of a bulky monophosphine 
ligand such as JohnPhos provided a high degree of Markovnikov selectivity.

In 2013, Hoveyda and coworkers reported that the NHC/copper complex–
catalyzed protosilylation of terminal alkynes proceeded to form β‐vinylsilanes 
with excellent regioselectivity (Scheme  1.30) [44]. Exclusive generation of the 
β‐isomer, regardless of the electronic properties of the alkyne substituent, sug-
gests that the regioselectivity can be controlled by steric factors, where the rela-
tively larger dimethylphenylsilyl group is placed at the terminal carbon.

Later, Oestreich and coworkers reported a general method for the β‐selective 
silylation without adding a ligand (Scheme  1.31) [45]. After fine‐tuning the 
reaction parameters such as a copper precatalyst, base, and solvent, they found 

10 mol% CuCl
10 mol% JohnPhos

11 mol% Na(O-t-Bu)
MeOH (2.0 equiv)
THF, 0 °C, 24 h

SiMe2Ph

SiPh

1.1 equiv

B(pin)
Me

+

P(t-Bu)2

JohnPhos =

Me

80% yield, α/β = 99 : 1

α

α

β

Scheme 1.29  Monophosphine/copper complex–catalyzed regioselective protosilylation of 
alkynes.

1 mol% CuCl
4 mol% Na(O-t-Bu)

MeOH (1.5 equiv)
THF, r.t., 12 h

SiMe2Ph
SiPh

1.05 equiv

B(pin)+

N N
Mes Mes

Cl

1 mol% imidazolium salt

Imidazolium salt =

94% yield, β/α = >98 : 2

α
β

β

Scheme 1.30  NHC/copper complex–catalyzed regioselective protosilylation of alkynes.

5 mol% CuBr•SMe2
Cs2CO3 (1.5 equiv)

MeOH (2.0 equiv)
DCE, 0 °C r.t.

R
SiPh

1.5 equiv

B(pin)+

SiMe2Ph

85% yield, β/α = 88 : 12

89% yield, β/α = 99 : 1

SiMe2Ph

or
α

β

β

β

Scheme 1.31  Ligand‐free copper‐catalyzed protosilylation of alkynes.

c01.indd   17 19-09-2019   07:50:14



1  Catalytic Generation of Silicon Nucleophiles18

that the use of CuBr · SMe2, Cs2CO3 and dichloroethane as a solvent afforded the 
desired β‐selective silylation products in high yields with excellent regioselectivity. 
Both aromatic and aliphatic terminal alkynes were converted into the products 
with high β‐selectivity.

In 2014, new protocols for the silylation of alkynes in water were independently 
reported by Santos and Lipshutz’ groups (Scheme 1.32) [46, 47]. Santos and a 
coworker found that the silylation of activated alkynes with a silylboronate in 
the presence of CuSO4 and 4‐picoline as a ligand in water proceeded smoothly 
to  give the corresponding silyl conjugate addition products in high yields 
(Scheme 1.32a) [46]. Lipshutz’s group discovered that the use of the commercially 
available surfactant TPG‐750‐M served as the reaction medium and efficiently 
promoted the copper‐catalyzed conjugate silylation of alkynes in water 
(Scheme 1.32b) [47].

Cooperative catalysts can promote complex, challenging transformations that 
could not be realized by a single catalyst operation. Riant and coworkers 
developed a tunable and stereoselective dual copper/palladium catalytic system 
for the silylative allylation of activated alkynes in 2014 (Scheme 1.33) [48]. This 
reaction presumably proceeds through the silylcupration of alkynes, followed by 
transmetalation between the alkenylcopper species and the π‐allylpalladium 
intermediate to form trisubstituted alkenylsilanes. Notably, fine‐tuning the 
reaction conditions allows selective access to both Z and E isomers.

The precise control of the regioselectivity in copper‐catalyzed silylation of 
alkynes still remains a challenging subject. In 2015, Carretero and coworkers 
developed the regiodivergent silylation of internal alkynes with a traceless  

C5H11

O

H SiPh

1.5 equiv

B(pin)+

1 mol% CuSO4
5 mol% 4-picoline

H2O, r.t., 2 h

OC5H11

PhMe2Si

97% yield
E/Z = 5 : 95

Ph

O

OMe SiPh

1.5 equiv

B(pin)+

1 mol% CuOAc
1 mol% PPh3

TPGS-750-M (0.75 M)
2 wt% in H2O
r.t., 30 min >95% yield

E/Z= 5 : >95

O

OMe

Ph

PhMe2Si

O

O

O

O

O
O

Men

n = ca. 16
3

TPGS-750-M =

H

(a)

(b)

Scheme 1.32  Copper‐catalyzed protosilylation of alkynes in water at room temperature. 
(a) Santos, (b) Lipshutz.
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1.2  Silicon Nucleophiles with Copper Catalysts 19

2‐pyridylsulfonyl group as a directing group (Scheme  1.34) [49]. Either 
regioisomer could be obtained without modification of the starting substrates 
by virtue of an in situ base‐promoted alkyne to allene equilibration which takes 
place prior to the addition of a silylcopper intermediate. In addition, this 
directing group could be removed after the silylation by the addition of carbon 
nucleophiles. 

1.2.2.14  Propargylic Substitution
A γ‐selective propargylic substitution is an efficient synthetic route to multi‐
substituted allenes. In 2011, the first copper‐catalyzed propargylic substitution 

Ph OCO2Me

Ph

CO2Me

+

5 mol% CuCl, 10 mol% K(O-t-Bu)
PhMe2SiB(pin) (1.5 equiv)
1 mol% Pd(OAc)2, 23.5 mol% PPh3

CH2Cl2, 45 °C

CH2Cl2, 45 °C

5 mol% [(IMes)Cu(DBM)],
10 mol% K(O-t-Bu)
PhMe2SiB(pin) (1.5 equiv)
5 mol% Pd(OAc)2,

SiMe2PhPh

CO2MePh

PhPhMe2Si

MeO2C Ph

82% yield
Z/E = 94 : 6

60% yield
Z/E = 8 : 92

Z

E

Scheme 1.33  Copper/palladium cooperative catalytic system for silylative allylation of 
alkynes.
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10 mol% CuCl
11 mol% PCy3
12 mol% Na(O-t-Bu)

PhMe2Si–B(pin)(1.1 equiv)
MeOH (2.0 equiv)
Toluene, r.t., 3 h

SO2Py

Me
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PhMe2Si

NBu4H2PO4

77% yield, α/β = 97 : 3

65% yield, α/β = 93 : 7

SO2Py

Me

PhMe2Si

Me

Same as above

Me

SO2Py

Me

In situ-generated
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α

αβ

β

α

β

Scheme 1.34  Regiodivergent copper‐catalyzed protosilylation of alkynes.
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1  Catalytic Generation of Silicon Nucleophiles20

with silicon nucleophiles was reported by Oestreich and coworkers (Scheme 1.35) 
[50]. The reaction of a variety of propargylic chlorides in the presence of CuCN 
and NaOMe with a silylboronate afforded the corresponding allenylsilanes with 
excellent γ‐selectivity. Notably, the central‐to‐axial chirality transfer was also 
observed in the silylation of the α‐chiral propargylic phosphates to give the chiral 
allenylsilanes with high stereospecificity.

1.2.3  Copper‐Catalyzed Nucleophilic Silylation with Silylzincs

In 2004, Oestreich and Weiner first introduced soft bis(triorganosilyl)zinc 
species, such as (PhMe2Si)2Zn, which can be used as a source for the generation 
of silicon nucleophiles in copper‐catalyzed reactions [51]. In this context, 
Oestreich and coworkers developed a copper‐catalyzed conjugate addition, 
silylation of allylic and propargylic electrophiles with (PhMe2Si)2Zn reagent 
(Scheme 1.36) [52–54].

5 mol% CuCN
PhMe2SiB(pin) (1.2 equiv)

NaOMe (2.0 equiv)
THF, –78 °C

Ph
Clα

α

α
γ

γ/α = >99 : 1

γ

γ

γ
α

Ph
OP(O)(OEt)2

Me

or

Ph

SiMe2Ph

Ph

SiMe2Ph

Me

H

94% yield, γ/α = >99 : 1

or

71% yield, 92% ee
>99% ee

Scheme 1.35  Stereospecific γ‐selective propargylic silyl substitution.

5 mol% CuI
(PhMe2Si)2Zn (1.0 equiv)

THF, 0 °C, 1 h
Me

Me Me

OAc

Me

Me Me

SiMe2Ph83% yield
E/Z = 99 : 1

O

5 mol% CuCN
(PhMe2Si)2Zn (1.0 equiv)

THF, –78 °C, 2 h
O

PhMe2Si

90% yield

Ph
α

γ

γ
α

γ/α = >99 : 1

OP(O)(OEt)2

Me

Ph

SiMe2Ph

Me

H

91% yield, >99% ee>99% ee

5 mol% CuCN
(PhMe2Si)2Zn (1.0 equiv)

THF/Et2O, –78 °C, 5 h

Scheme 1.36  Copper‐catalyzed nucleophilic silylation with (PhMe2Si)2Zn reagent.
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1.3  Silicon Nucleophiles with Rhodium Catalysts

1.3.1  Rhodium‐Catalyzed Nucleophilic Silylation with Disilanes

In 2006, the first example of catalytic generation of nucleophilic rhodium–
silicon species with disilanes and its application to catalytic silylation of aryl 
and alkenyl cyanides was reported by Tobisu et  al. (Scheme  1.37) [55]. The 
reaction mechanism was proposed to proceed via the silylmetalation of a cyano 
group by a silylrhodium species, which can be generated through reaction of 
rhodium chloride with a disilane, followed by the carbon–carbon bond‐
cleavage process.

1.3.2  Rhodium‐Catalyzed Nucleophilic Silylation with 
Silylboronates

1.3.2.1  Conjugate Silylation
In 2006, the first example of rhodium‐catalyzed conjugate silylation with a 
silylboronate was reported by Oestreich and coworkers (Scheme 1.38) [56]. The 
reaction of α,β‐unsaturated carbonyl compounds with a silylboronate in the 
presence of a rhodium catalyst and Et3N provided the 1,4‐addition products in 
good to high yields. The same group also discovered that the use of (S)‐BINAP as 
a chiral ligand in this reaction resulted in the formation of chiral silanes with 
excellent enantioselectivity [56–60]. This reaction presumably goes through the 
formation of a silylrhodium species and subsequent 1,4‐silyl addition to α,β‐
unsaturated carbonyl compounds. The synthetic utility of this protocol was 

CN

Me3SiSiMe3

2.0 equiv

+
5 mol% [RhCl(cod)]2

Ethylcyclohexane,
130 °C, 15 h

SiMe3

87% yield

CN

73% yield

SiMe3

or or

CN

Me3SiSiMe3

2.0 equiv

+
5 mol% [RhCl(cod)]2

Ethylcyclohexane,
130 °C, 15 h

SiMe3

87% yield

CN

73% yield

SiMe3

or or

Scheme 1.37  Rhodium‐catalyzed silylation of aryl and alkenyl cyanides.
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1  Catalytic Generation of Silicon Nucleophiles22

successfully demonstrated by the synthesis of the C7–C16 fragment of (+)‐
Neopeltolide [59].

1.3.2.2  Coupling between Propargylic Carbonates to Form Allenylsilanes
In 2009, Sawamura and coworkers reported that the rhodium‐catalyzed coupling 
reaction between propargylic carbonates and a silylboronate provided the 
corresponding allenylsilanes in high yields (Scheme 1.39) [61]. The reaction of an 
optically active substrate proceeded with excellent chirality transfer to form an 
axially chiral allenylsilane.

1.4  Silicon Nucleophiles with Nickel Catalysts

1.4.1  Nickel‐Catalyzed Nucleophilic Silylation with Alkyl 
Electrophiles

The first metal‐catalyzed cross‐coupling reactions of unactivated secondary and 
tertiary alkyl electrophiles to form carbon–silicon bonds was reported by Fu and 
coworkers (Scheme  1.40) [62]. In the presence of a nickel/pybox catalyst, the 
cross‐coupling reactions between secondary and tertiary alkyl bromides and a 
silylzinc reagent afforded a variety of alkyl silicon compounds. Stereochemical 

5 mol% [((S)-BINAP)Rh(cod)]ClO4
5 mol% (S)-BINAP
PhMe2SiB(pin)(2.5 equiv)

Et3N (1.0 equiv)
1,4-Dioxane/H2O (10 : 1), 50 °C

O O

PhMe2Si

70% yield, 97% ee

PPh3

PPh3

(S)-BINAP

Other selected examples

45% yield, 96% ee 58% yield, >99% ee
[(R)-BINAP was used]

65% yield, >99% ee
[(R)-BINAP was used]

60% yield, >99% ee
[(R)-BINAP was used]

O

PhMe2Si

OEt

OPhMe2Si

Cl

O

OPhMe2Si CF3

N

OPhMe2Si

O

O

Scheme 1.38  Rhodium‐catalyzed conjugate silylation with a silylboronate.

10 mol% [Rh(cod)2][BF4]
Et3N (2.5 equiv)

DMF/CH3CN, 25 °C,12 h

SiPh

1.5 equiv

B(pin)+
Bu

OCO2Me

Me

97% ee

α γ

γ/α = >99 : 1

αγ
Bu

SiMe2Ph

Me

H

77% yield, 95% ee

Scheme 1.39  Rhodium‐catalyzed stereospecific silylation of propargylic carbonates.
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and radical‐trap experiments are consistent with a radical mechanism involving 
a homolytic pathway for carbon–bromine bond cleavage.

1.5  Silicon Nucleophiles with Lewis Base Catalysts

1.5.1  N‐Heterocyclic Carbene‐Catalyzed Nucleophilic 1,4‐Silylation

In 2011, Hoveyda and a coworker first discovered that NHCs, in the absence of a 
metal salt, activate the silicon–boron bond of a silylboronate to generate silicon 
nucleophiles (Scheme  1.41) [63]. The reaction of α,β‐unsaturated carbonyl 

Selected examples

61% yield 76% yield 54% yield 74% yield

5 mol% NiBr2 • diglyme
6.6 mol% ligand

KOEt (1.3 equiv)
i-Pr2O/DMA, –20 °C

SiPh
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compounds with a silylboronate in the presence of catalytic amount of a 
imidazolium salt and 1,8‐diazabicyclo(5.4.0)undec‐7‐ene (DBU) afforded the 
conjugate silyl addition products in high yields. Their in situ NMR studies 
suggested the formation of a NHC → B–Si ate complex in the reaction mixture. 
They also developed the enantioselective version of this process with a chiral 
NHC catalyst.

1.5.2  Alkoxide Base–Catalyzed 1,2‐Silaboration

Alkoxide bases also activate the silicon–boron bond of a silylboronate to generate 
silicon nucleophiles. In 2012, the first alkoxide base–catalyzed reaction of a 
silylboronate was reported by Ito et al. (Scheme 1.42) [64]. In the presence of 
10  mol% K(O‐t‐Bu), silylboration of aromatic alkenes with a silylboronate 
proceeded with excellent regioselectivity. Their in situ NMR studies revealed the 
formation of a t‐BuO→B–Si ate complex in the reaction mixture. A related 
silylative cyclopropanation reaction of allyl phosphates with a stoichiometric 
amount of the alkoxide base was also reported by Shinatani et al. in 2014 [65].

1.5.3  Phosphine‐Catalyzed 1,2‐Silaboration

In 2015, Ohmiya and coworkers reported that trialkylphosphine‐catalyzed 
anti‐selective silaboration of alkynoates with a silylboronate produced β‐boryl‐α‐
silyl acrylates in high yields (Scheme  1.43) [66]. They proposed the reaction 
mechanism that includes the conjugate addition of Bu3P to the alkynoate to form 
a zwitterionic allenolate intermediate, followed by nucleophilic silyl transfer 
from the activated silylboronate to give the ylide intermediates. Next, the 
nucleophilic attack of the ylide carbon to the boron atom bound to the enolate 
oxygen provides the cyclic borate and the subsequent elimination of Bu3P 
associated with the boron–oxygen bond cleavage affords the anti‐silaboration 
product.
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Scheme 1.42  Alkoxide base–catalyzed silaboration of aromatic alkenes.
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1.6  Closing Remarks

A number of transition‐metal‐catalyzed reactions with in situ–generated silicon 
nucleophiles have been reported as alternative synthetic pathways for the 
preparation of a sensitive functional group containing sterically hindered silicon 
compounds. Different transition metals have specific reactivities in these silicon–
carbon bond formation reactions. In particular, the combination of a copper 
catalyst and a silylboronate has been widely used for the catalytic generation of a 
soft silicon nucleophile, a silylcopper intermediate, which reacts with a broad 
range of electrophiles to form the corresponding silylation products with high 
selectivity. In addition to metal‐catalyzed methods, less toxic metal‐free protocols 
such as NHC‐ or alkoxide base–catalyzed nucleophilic silylations have also been 
developed in recent years. These significant achievements discussed in this 
chapter will find a wide range of applications in organic synthesis, pharmaceutical 
drug discovery, and materials science.
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NMP	 N‐methyl‐2‐pyrrolidone
cod	 1,5‐cyclooctadiene
NHC	 N‐heterocyclic carbene
DBU	 1,8‐diazabicyclo(5.4.0)undec‐7‐ene
dppf	 1,1′‐bis(diphenylphosphino)ferrocene
TBAT	 tetrabutylammonium difluorotriphenylsilicate
IMes	� 1,3‐dimesitylimidazol‐2‐ylidene, 1,3‐bis(2,4,6‐trimethylphenyl)‐

imidazolium, 1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene
SIMes	 1,3‐bis(2,4,6‐trimethylphenyl)‐4,5‐dihydroimidazol‐2‐ylidene
Cbz	 benzyloxycarbonyl
Mes	 mesityl
TMS	 trimethylsilyl
dtbpy	 4,4′‐di‐tert‐butyl‐2,2′‐dipyridyl
Bn	 benzyl
dppbz	 1,2‐bis(diphenylphosphino)benzene
Py	 pyridine
Tol	 p‐tolyl
DBM	 dibenzoylmethane
diglyme	1‐methoxy‐2‐(2‐methoxyethoxy)ethane
TC	 thiophene‐2‐carboxylate
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