Contents

Foreword xvii

1 Skin Structure and Biology 1
Wei-Meng Woo

1.1 Introduction 1
1.2 Skin Structure 2
1.2.1 Overview of Skin Tissue Organization 2
1.2.1.1 Thick Skin and Thin Skin 2
1.2.2 Epidermis 3
1.2.2.1 Stratum Basale 5
1.2.2.2 Stratum Spinosum 5
1.2.2.3 Stratum Granulosum 6
1.2.2.4 Stratum Lucidum 6
1.2.2.5 Stratum Corneum 6
1.2.3 Dermis 6
1.2.4 Hypodermis 7
1.2.5 Skin Appendages 8
1.3 Skin Biology 9
1.3.1 Homeostasis: Epidermal Self-renewal 9
1.3.2 Formation of a Water Barrier 10
1.3.3 Getting Across the Water Barrier 11

References 12

2 Wound Healing and Its Imaging 15
Jiah Shin Chin, Leigh Madden, Sing Yian Chew, Anthony R.J. Phillips and David L. Becker

2.1 Hemostasis and Essential Inflammation 15
2.2 Re-epithelialization 18
2.3 Granulation Tissue Formation 19
2.4 Scar Tissue Formation 20
2.5 Imaging of Wound Healing 21
2.6 Macroscopic Digital Imaging for Wound Size 22
2.7 Hyperspectral and Multispectral Imaging 22
2.8 Near-Infrared Spectroscopy 23
2.9 Raman Imaging 23
Contents

2.10 Confocal Microscopy 24
2.11 Multiphoton Imaging and Second Harmonics 24
References 27

3 Common Skin Diseases: Chronic Inflammatory and Autoimmune Disorders 35
Navin Kumar Verma, Maurice Adrianus Monique van Steensel, Praseetha Prasannan, Zhi Sheng Poh, Alan D. Irvine and Hazel H. Oon
3.1 Introduction 35
3.2 Psoriasis 36
3.2.1 Definition and Prevalence 36
3.2.2 Clinical Features, Pathogenesis, and Pathophysiology 37
3.2.3 Diagnosis 39
3.2.4 Therapy 40
3.3 Atopic Dermatitis (AD) 40
3.3.1 Definition and Prevalence 40
3.3.2 Clinical Features, Pathogenesis, and Pathophysiology 41
3.3.3 Diagnosis 42
3.3.4 Therapy 43
3.4 Scleroderma 43
3.4.1 Definition and Prevalence 43
3.4.2 Clinical Features, Pathogenesis, and Pathophysiology 44
3.4.3 Diagnosis 44
3.4.4 Therapy 45
3.5 Dermatomyositis (DM) 45
3.5.1 Definition and Prevalence 45
3.5.2 Clinical Features, Pathogenesis, and Pathophysiology 46
3.5.3 Diagnosis 46
3.5.4 Therapy 47
3.6 Cutaneous Lupus Erythematosus (CLE) 47
3.6.1 Definition and Prevalence 47
3.6.2 Clinical Features, Pathogenesis, and Pathophysiology 47
3.6.3 Diagnosis 48
3.6.4 Treatment 49
3.7 Generalized Vitiligo (GV) 49
3.7.1 Definition and Prevalence 49
3.7.2 Clinical Features, Pathogenesis, and Pathophysiology 49
3.7.3 Diagnosis 50
3.7.4 Treatment 51
3.8 Concluding Remarks 51
Acknowledgments 51
References 52

4 Common Skin Diseases: Autoimmune Blistering Disorders 61
Navin Kumar Verma, Shermaine Wan Yu Low, Hazel H. Oon, Dermot Kelleher and Maurice Adrianus Monique van Steensel
4.1 Introduction 61
4.2 Pemphigus 62
6 Preclinical Models for Drug Screening and Target Validation

Ivo J.H.M. de Vos, Julia Verbist and Maurice A.M. van Steensel

6.1 Introduction 105
6.2 Ex Vivo Models of Human Skin 105
6.2.1 Introduction 105
6.2.2 Ex Vivo Models of Skin Barrier Function and Dermal Absorption 107
6.2.3 Ex Vivo Models of Cutaneous Wound Healing 107
6.2.4 Ex Vivo Hair Follicle Culture 108
6.3 In Vitro Models of Human Skin 108
6.3.1 Introduction 108
6.3.2 Two-Dimensional Cell Culture Models 109
6.3.3 Three-Dimensional Reconstructed Human Skin Models 109
6.3.3.1 Reconstituted Human Epidermis Models 110
6.3.3.2 Reconstituted Human Dermis Models 111
6.3.3.3 Reconstituted Skin Equivalent Models 111
6.3.3.4 Organoids 112
6.4 In Vivo Animal Models 112
6.4.1 Caenorhabditis elegans 112
6.4.1.1 Introduction 112
6.4.1.2 Anatomy and Physiology of the Roundworm Epidermis 112
6.4.1.3 The Use of Caenorhabditis elegans to Study Cutaneous Wound Healing 113
6.4.2 Drosophila melanogaster 113
6.4.2.1 Introduction 113
6.4.2.2 Anatomy and Physiology of the Fruit Fly Epidermis 114
6.4.2.3 Studying Cutaneous Wound Healing Using Fruit Flies 114
6.4.2.4 Insights in Cutaneous Innate Immunity from Drosophila melanogaster 115
6.4.2.5 Fruit Fly Models of Bullous Dermatoses 115
6.4.2.6 Fruit Fly Models of Skin Cancer 115
6.4.3 Danio rerio 116
6.4.3.1 Introduction 116
6.4.3.2 Anatomy and Physiology of Zebrafish Skin 116
6.4.3.3 Zebrafish Models to Study Pigmentation and Melanoma 117
6.4.3.4 Studying Cutaneous Wound Healing Using Danio rerio 117
6.4.3.5 Zebrafish as Platform for Drug Development 117
6.4.3.6 Zebrafish Models of Genodermatoses 118
6.4.4 Mus musculus 118
6.4.4.1 Introduction 118
6.4.4.2 Anatomy and Physiology of Murine Skin 119
6.4.4.3 Murine Models for Studying Cutaneous Wound Healing 120
6.4.4.4 Murine Models of Psoriasis 120
6.4.4.5 Mouse Models of Autoimmune Bullous Dermatoses 120
6.4.4.6 Studying Melanoma Using Mouse Models 121
6.4.4.7 Mouse and Rat Models of Alopecia Areata 121
6.4.4.8 Insights in Acne Pathogenesis and Comedolysis from Mouse Models 122
6.4.5 Cavia porcellus 122
6.4.5.1 Introduction 122
6.4.5.2 Anatomy and Physiology of Guinea Pig Skin 123
6.4.5.3 Studying Dermatophytoses Using Guinea Pigs 123
6.4.5.4 Guinea Pig Models of Epidermal Permeability Topical Irritant Testing 123
6.4.5.5 Studying Burn Wounds Using Guinea Pigs 123
6.4.5.6 Guinea Pig Models for Pigmentation Studies 124
6.4.6 Oryctolagus cuniculus 124
6.4.6.1 Introduction 124
6.4.6.2 Anatomy and Physiology of Leporine Skin 124
6.4.6.3 Rabbit Models of Acne Venenata and Contact Dermatitis 125
6.4.6.4 Rabbit Models of Cutaneous Wound Healing and Scarring 125
6.4.6.5 Rabbit Models for Genodermatoses 126
6.4.7 Canis lupus familiaris 126
6.4.7.1 Introduction 126
6.4.7.2 Anatomy and Physiology of Dog Skin 126
6.4.7.3 Dog Models of Atopic Dermatitis 126
6.4.7.4 Dog Models of Autoimmune Disorders 127
6.4.7.5 Studying Follicular Hyperkeratosis and Keratolysis in Dogs 127
6.4.7.6 Dog Models of Mucosal Melanoma 127
6.4.7.7 Bullous Dermatoses in Dogs 128
6.4.8 Sus scrofa domesticus 128
6.4.8.1 Introduction 128
6.4.8.2 Anatomy and Physiology of Pig Skin 128
6.4.8.3 Porcine Models of Cutaneous Wound Healing 129
6.4.8.4 Pig Models of Cutaneous Permeability 129
References 129

7 Skin Tissue Engineering with Nanostructured Materials 147
Zahra Davoudi and Qun Wang
7.1 Introduction 147
7.2 Nanostructured Materials for Skin Tissue Engineering 148
7.2.1 Natural Biomaterials for Skin Tissue Engineering 148
7.2.1.1 Collagen, CS, and Blend of Two 148
7.2.1.2 Fibronectin and Hyaluronic Acid (HA) 149
Contents

7.2.2 Synthetic Polymers for Skin Tissue Engineering 152
7.2.2.1 PLA, PGA, and Polyurethane Homopolymers 152
7.2.2.2 PLGA Copolymers and Blenders 153
7.2.3 Blend of Natural and Synthetic Materials 153
7.3 Fabrication Techniques 154
7.3.1 Self-Assembly and Phase Separation 154
7.3.2 Electrospinning 156
7.4 Clinical Application of Tissue Engineered Skin 157
7.4.1 Skin Grafts 157
7.4.2 Stem Cell Application in Skin Tissue Engineering 159
7.5 Summary 162
References 163

8 Topical and Transdermal Delivery with Chemical Enhancers and Nanoparticles 169
Chandrashekhar Voshavar, Praveen Kumar Vemula and Srujan Marepally
8.1 Introduction 169
8.2 Anatomy of Skin/Skin Structure 170
8.3 Skin Permeation Routes 171
8.4 Chemical Enhancers (CEs) or Skin Penetration Enhancers 172
8.4.1 Characteristics of an Ideal Chemical Enhancer 173
8.4.2 Classification of Chemical Enhancers 173
8.4.2.1 Water 173
8.4.2.2 Alcohols, Fatty Alcohols, and Glycols 175
8.4.2.3 Amides/Azones and Derivatives 175
8.4.2.4 Esters 176
8.4.2.5 Sulfoxides and Similar Chemicals 177
8.4.2.6 Ureas 177
8.4.2.7 Fatty Acids 178
8.4.2.8 Essential Oils (EOs), Terpenes, and Terpenoids 179
8.4.2.9 Surfactants 180
8.4.2.10 Pyrrolidones and Derivatives 181
8.4.2.11 Phospholipids 182
8.4.2.12 Cyclodextrins 182
8.5 Transdermal Delivery Using Nanoparticles 182
8.5.1 Lipid Based Nanoparticles 184
8.5.2 Polymer Based Nanoparticles 185
8.5.2.1 Nanoparticles Based on Biodegradable Synthetic Polymers 186
8.5.2.2 Nanoparticles Based on Biodegradable Synthetic Polymers 187
8.5.2.3 Cationic Hybrid Polymeric Nanoparticles for Nucleic Acid Delivery 188
8.5.2.4 Mechanism of Polymeric Nanoparticles Skin Permeation 189
8.6 Peptides for Skin Permeation 189
8.7 Peptide–Nucleic Acid Nanoconjugates 190
8.8 Spherical Nucleic Acids 191
8.9 Conclusion 191
References 192
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Needle-Free Jet Injectors for Dermal and Transdermal Delivery of Actives</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Michele Schlich, Rosita Primavera, Francesco Lai, Chiara Sinico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Paolo Decuzzi</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>201</td>
</tr>
<tr>
<td>9.2</td>
<td>Components and Functioning Principle</td>
<td>203</td>
</tr>
<tr>
<td>9.3</td>
<td>Modulating the Depth of Active Delivery</td>
<td>203</td>
</tr>
<tr>
<td>9.4</td>
<td>Clinical and Preclinical Use of Needle-Free Jet Injectors for Systemic Drug Delivery</td>
<td>206</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Vaccines</td>
<td>206</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Insulin</td>
<td>208</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Growth Hormone</td>
<td>210</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Triptans</td>
<td>211</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Others</td>
<td>211</td>
</tr>
<tr>
<td>9.5</td>
<td>Clinical and Preclinical Use of Needle-Free Jet Injectors for Local Drug Delivery</td>
<td>212</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Local Anesthetics</td>
<td>212</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Others</td>
<td>213</td>
</tr>
<tr>
<td>9.6</td>
<td>Future Perspectives: Jet Injection for Nano-/Microparticles</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>216</td>
</tr>
<tr>
<td>10</td>
<td>Microneedles for Transdermal Drug Delivery</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Eman M. Migdadi and Ryan F. Donnelly</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>10.2</td>
<td>Microneedles</td>
<td>223</td>
</tr>
<tr>
<td>10.2.1</td>
<td>MN Delivery Strategies</td>
<td>225</td>
</tr>
<tr>
<td>10.2.1.1</td>
<td>Solid MNs</td>
<td>225</td>
</tr>
<tr>
<td>10.2.1.2</td>
<td>Coated MNs</td>
<td>226</td>
</tr>
<tr>
<td>10.2.1.3</td>
<td>Hollow MNs</td>
<td>227</td>
</tr>
<tr>
<td>10.2.1.4</td>
<td>Dissolving MNs</td>
<td>228</td>
</tr>
<tr>
<td>10.2.1.5</td>
<td>Hydrogel-Forming MNs</td>
<td>230</td>
</tr>
<tr>
<td>10.2.2</td>
<td>MN Fabrication Methods</td>
<td>232</td>
</tr>
<tr>
<td>10.2.3</td>
<td>MNs and Vaccine Delivery</td>
<td>235</td>
</tr>
<tr>
<td>10.2.4</td>
<td>MNs for Patient Drug Monitoring</td>
<td>237</td>
</tr>
<tr>
<td>10.2.5</td>
<td>MN Skin Insertion and Recovery Process</td>
<td>239</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Pain Perception and Skin Adverse Reactions of MN Application</td>
<td>242</td>
</tr>
<tr>
<td>10.2.7</td>
<td>MN Products</td>
<td>243</td>
</tr>
<tr>
<td>10.2.8</td>
<td>Combination of MNs with Other Techniques</td>
<td>245</td>
</tr>
<tr>
<td>10.2.9</td>
<td>MN-Assisted Microparticle and Nanoparticle Permeation</td>
<td>245</td>
</tr>
<tr>
<td>10.3</td>
<td>Microneedles in Management of Skin Disorders</td>
<td>247</td>
</tr>
<tr>
<td>10.4</td>
<td>Future Considerations for MN Technology</td>
<td>249</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusion</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>251</td>
</tr>
<tr>
<td>11</td>
<td>Ultrasound-Enhanced Transdermal Drug Delivery</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>James Jing Kwan and Sunali Bhatnagar</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>11.2</td>
<td>Principles in Ultrasound</td>
<td>271</td>
</tr>
</tbody>
</table>
11.2.1 Acoustic Waves 271
11.2.2 Ultrasound Transducers and Instrumentation 272
11.2.3 Propagation of Ultrasound 274
11.2.4 Ultrasound Phenomena 274
11.2.4.1 Mechanical Effects 274
11.2.4.2 Thermal Effects 275
11.2.4.3 Acoustic Cavitation 275
11.2.5 Mechanisms of Action 276
11.3 State of the Art in Ultrasound-Enhanced Transdermal Drug Delivery 277
11.3.1 Modes of Delivery 277
11.3.1.1 Ultrasound Pretreatment 277
11.3.1.2 Co-application of Ultrasound and Drug 278
11.3.2 Drug Dosage Medium 279
11.3.3 Ultrasound-Assisted Drug Delivery: Drug Formulations and Safety Concerns 280
11.3.3.1 Drug Formulations 280
11.3.3.2 Safety Concerns 282
11.3.4 Applications of Ultrasound-Enhanced Transdermal Delivery 283
11.3.4.1 Immunization Using Ultrasound 283
11.4 Conclusions 284

References 284

12 Iontophoresis Enhanced Transdermal Drug Delivery 291
Xiayu Ning, Razina Z. Seeni and Chenjie Xu
12.1 Introduction 291
12.1.1 Hyperhidrosis 292
12.1.2 Delivery of Anesthetics for Pain Management 292
12.1.3 Diagnosis of Cystic Fibrosis 292
12.1.4 Glucose Monitoring 293
12.1.5 Growing Interest 293
12.2 Enhancing Transdermal Drug Delivery Using Iontophoresis Alone 294
12.2.1 Iontophoretic Transdermal Delivery of Small Molecules 297
12.2.2 Iontophoretic Transdermal Delivery of Macromolecules 297
12.3 Enhancing Transdermal Drug Delivery Using Combination of Iontophoresis and Other Approaches 300
12.3.1 Iontophoresis with Chemical Enhancers 300
12.3.2 Iontophoresis with Microneedles 302
12.3.3 Iontophoresis and Nanoparticles 303
12.4 Summary and Outlook 304
References 304

13 Ultrasound Imaging in Dermatology 309
Jihun Kim, Sangyeon Youn and Jae Youn Hwang
13.1 Introduction 309
13.2 The Physics of Ultrasound 309
13.3 Ultrasonic Transducers 313
Contents

13.3.1 Piezoelectric Materials 314
13.3.1.1 PZT Ceramics 316
13.3.1.2 Piezoelectric Single Crystals 316
13.3.1.3 Relaxor-Based Single Crystals 316
13.3.2 Matching Layer 317
13.3.3 Backing Layer 317
13.3.4 Single-Element Ultrasound Transducers 318
13.3.5 Array Ultrasound Transducers 318
13.4 Ultrasound Imaging Systems for Skin Diagnosis 320
13.4.1 Ultrasound Imaging with Single-Element Ultrasound Transducers 321
13.4.1.1 Scanning Methods for Ultrasound Imaging Based on Single-Element Ultrasound Transducers 322
13.4.1.2 High-Frequency Ultrasound Imaging of the Skin Using Advanced Techniques 323
13.4.2 Ultrasound Imaging with Array Ultrasound Transducers 326
13.5 Applications of Ultrasound Imaging in Dermatology 330
13.5.1 Ultrasound Imaging of Skin Cancer 330
13.5.2 Ultrasound Imaging of Inflammatory and Infectious Skin Diseases 332
13.5.3 Ultrasound Imaging for Other Skin Applications 334
13.6 Conclusions 334
Acknowledgments 335
References 335

14 Quantitative Magnetic Resonance Imaging of the Skin: In Vitro and In Vivo Applications 341
Bernard Querleux, Geneviève Guillot, Jean-Christophe Ginéfri, Marie Poirier-Quinot and Luc Darrasse
14.1 Introduction 341
14.2 Clinical Magnetic Resonance Imaging of the Skin 342
14.2.1 Hardware Challenges for Skin Imaging 342
14.2.1.1 Introduction: Challenges for High-Resolution MR Imaging 342
14.2.2 State of the Art of Clinical MR Applications of Healthy and Diseased Skin 348
14.2.3 MR Imaging of the Skin on the Face 349
14.2.4 Water States in Skin by Quantitative MR Imaging 350
14.3 Quantitative MR Imaging of the Skin In Vitro 351
14.3.1 Opportunities with Preclinical MR Systems 351
14.3.2 State of the Art of In Vitro MR Applications 352
14.3.3 Quantification of Water States in Reconstructed Skin 354
14.3.3.1 Introduction 354
14.3.3.2 Basics of MT 354
14.3.3.3 MR Protocol on Reconstructed Skin Samples 355
14.3.3.4 Water States in Reconstructed Skin Samples 356
14.4 Conclusion and Perspectives 359
References 360
High-Resolution Optical Coherence Tomography (OCT) for Skin Imaging

Xiaojun Yu, Xianghong Wang, Lulu Wang, Razina Z. Seeni and Linbo Liu

15.1 Introduction 371
15.2 HR-OCT Systems for Skin Imaging 373
15.2.1 TD-OCT Systems 373
15.2.1.1 Conventional TD-OCT 373
15.2.1.2 High-Definition (HD)-OCT 374
15.2.2 FD-OCT Systems 375
15.2.2.1 Full-Field (FF)-OCT 375
15.2.2.2 Micro-OCT (μOCT) 376
15.2.3 PS-OCT 381
15.3 Skin Imaging with HR-OCT 382
15.3.1 Normal Skin Imaging Applications 382
15.3.2 Skin Imaging in Clinical Practice 387
15.3.3 Skin Imaging for Laboratory Research 388
15.3.3.1 Characterization of In Situ Microneedle Real-Time Swelling in Skin 388
15.3.3.2 OCT-Based Forensic Subsurface Fingerprint Detection 392
15.4 Discussions 398
15.5 Conclusion 400
Acknowledgments 400
References 400

Photoacoustic Imaging of Skin

Emelina Vienneau, Tri Vu and Junjie Yao

16.1 Introduction 411
16.2 Photoacoustic Imaging Technology 412
16.3 Applications to Skin Imaging 414
16.3.1 Skin Cancers 414
16.3.1.1 Melanoma Detection and Diagnosis 414
16.3.1.2 Circulating Tumor Cell Detection 416
16.3.1.3 Detection of Non-Melanoma Skin Cancers 417
16.3.2 Tumor Environment Analysis 418
16.3.2.1 Angiogenesis 418
16.3.2.2 Oxygen Saturation 420
16.3.2.3 Blood Flow and Metabolic Rate of Oxygen (MRO₂) 421
16.3.3 Detection of Noncancerous Skin Diseases 422
16.3.3.1 Port Wine Stain 422
16.3.3.2 Psoriasis 422
16.3.3.3 Other Pigmented Lesions 422
16.3.4 Burn Injury Assessment and Monitoring of Healing 423
16.3.5 Monitoring Glucose Levels 425
16.3.6 Other Molecular Applications in Skin Imaging 426
16.4 Outlook 428
References 429