Contents

n		┏_		
Р	rei	га	ce	XΙ

1	Kinetic and Thermodynamic Considerations for Photocatalyst Design 1 Frank E. Osterloh
1.1	Introduction 1
1.2	Mechanistic Aspects of Photochemical Reaction Systems 2
1.3	Common Parameters of Photochemical Reaction Systems 10
1.4	Differences Between Photocatalytic and Photosynthetic Reaction
	Systems 13
1.5	Conclusion 17
	Acknowledgment 18
	References 18
2	Design of Reliable Studies on Photocatalysis: Logic, Concepts,
	and Methods 29
	Bunsho Ohtani
2.1	Photocatalysis 29
2.2	Reliability in Scientific Studies 30
2.2.1	Reliability in Science 30
2.2.2	Truth in Science: Unambiguousness Text 30
2.2.3	Logic in Scientific Studies 30
2.2.4	Examples of Propositions 31
2.2.5	Counter (Contrary) Evidence: Killer Card 32
2.2.6	Reliability in Scientific Studies 34
2.3	Methods in Photocatalysis Studies 34
2.3.1	Bandgap Determination by Tauc Plots 34
2.3.2	Action Spectrum Analysis 36
2.3.3	Light Intensity-Dependent Analysis 39
2.3.4	Photocatalytic Activity Evaluation 41

vi	Contents	
	2.3.5	Correlation Between Photocatalytic Activity and Physical/Structural Properties 44
	2.4	Design of Reliable Studies on Photocatalysis 46
		References 46
	3	In Situ Spectroscopy for Mechanistic Studies in Semiconductor Photocatalysis 51 Jan P. Hofmann
	3.1	Introduction 51
	3.2	Challenges in In Situ and <i>Operando</i> Characterization in Photocatalysis 52
	3.3	Overview of Methods and Examples from the Literature 54
	3.3.1	(Transient) UV/Vis/NIR Electronic Spectroscopies 57
	3.3.2	Vibrational Spectroscopies 59
	3.3.2.1	Infrared Spectroscopy 59
	3.3.2.2	Raman Spectroscopy and Microscopy 63
	3.3.2.3	Nonlinear Spectroscopies: Second-harmonic Generation and Sum Frequency Generation Spectroscopies 64
	3.3.3	Electron Paramagnetic Resonance 65
	3.3.4	(Synchrotron) X-ray Spectroscopies 66
	3.3.4.1	Photoelectron Spectroscopy 66
	3.3.4.2	X-ray Absorption Spectroscopy (XAS, XANES, and EXAFS) 68
	3.4	Outlook and Future Perspectives 68 References 69
	4	Principles and Limitations of Photoelectrochemical Fuel Generation 77 Bastian Mei and Kasper Wenderich
	4.1	Introduction 77
	4.2	Photoelectrochemical Energy Storage 78
	4.2.1	Thermodynamic Requirements and Driving Forces 78
	4.2.2	Basics of Semiconductors and the Semiconductor/Electrolyte Interface 80
	4.2.3	Semiconductor/Electrolyte Interface Under Illumination 84
	4.2.4	Devices and Efficiencies 86
	4.2.4.1	Device Configurations 86
	4.2.4.2	Device Figures of Merit and System Efficiencies 87
	4.2.4.3	Theoretical Limitations of PEC Solar Fuel Production 90
	4.2.4.4	Theoretical Limitations of PEC Solar Fuel Production – Beyond Water Splitting 93
	4.2.5	Surface Modification 94
	4.2.5.1	Integration of Electrocatalysts 95
	4.2.5.2	Stability of PEC Device – Protection Layers/Surface Coatings 96
	4.2.6	Short Summary 97 References 98

5	Photocatalysis – The Heterogeneous Catalysis
	Perspective 101
	Pawel Naliwajko and Jennifer Strunk
5.1	Introduction 101
5.1.1	General Function of Classical Heterogeneous Catalysts 102
5.1.2	Comparison of Classical Catalysis and Photocatalysis 103
5.2	Examples of Relevant Catalytic Properties of Photocatalysts 109
5.2.1	Consideration of Active Sites 109
5.2.2	Nanosized Gold in Alcohol Oxidation 109
5.2.3	Vanadium Oxide (Sub)monolayer Catalysts in Photocatalytic Alcohol
	Oxidation 113
5.3	Conclusions 117
	References 118
6	Insights into Photocatalysis from Computational
	Chemistry 127
	Stephen Rhatigan and Michael Nolan
6.1	Introduction 127
6.2	Computational Descriptors 128
6.2.1	Light Absorption 128
6.2.2	Charge Carrier Separation 130
6.2.3	Surface Reactivity 134
6.3	Examples of Computational Studies of Photocatalyst Materials 138
6.3.1	Metal Oxides 138
6.3.2	Noble Metal Loading 139
6.3.3	Metal Chalcogenides and Metal Phosphides 142
6.3.4	Hetero- and Nanostructuring 144
6.3.5	Charge Localization Models 146
6.4	Conclusion 147
	References 149
7	Selected Aspects of Photoreactor Engineering 155
	Dirk Ziegenbalg
7.1	Fundamentals of Photochemical Reaction Engineering 155
7.2	Radiation Field and Rate of Reaction 160
7.3	Light Sources 166
7.4	Particularities of Different Types of Photocatalysts 173
7.5	Types of Photoreactors 176
7.6	Conclusions and Outlook 181
	Symbols and Abbreviations 182
	References 184
8	Defects in Photocatalysis 187
	Greta Haselmann and Dominik Eder
8.1	Introduction 187
8.1.1	Definition and Thermodynamics 187

viii	Contents

8.1.2	Classification 188
8.1.2.1	Dimensionality 188
8.1.2.2	Location: Surface, Subsurface, and Bulk 189
8.1.3	Concepts in Defect Chemistry 190
8.1.3.1	Charge Neutrality 190
8.1.3.2	Intrinsic and Extrinsic Defect Pairs 190
8.1.3.3	Nonstoichiometry vs. Substoichiometry 190
8.1.3.4	Kröger-Vink Notation and Defect Diagrams 191
8.1.3.5	Diffusion and Segregation 192
8.1.4	How Are Defects Created? 192
8.1.4.1	Intrinsic Defects 192
8.1.4.2	Extrinsic Defects 193
8.1.5	Characterization of Defects 194
8.1.5.1	Quantification 196
8.1.5.2	In Situ 196
8.1.6	Effect of Defects on Material Properties 197
8.1.6.1	Structural Changes/Physical Structure 197
8.1.6.2	Electronic Changes/Electronic Structure 197
8.2	Influence of Defects on the Photocatalytic Performance 199
8.2.1	Location of the Defect 200
8.2.1.1	Bulk: Charge Carrier Generation and Migration 200
8.2.1.2	Surface: Adsorption Sites and Charge Transfer 202
8.2.1.3	Optimized Treatment Conditions and Surface-to-bulk Ratio 204
8.2.1.4	Subsurface Defects in Photocatalysis 206
8.2.2	Deep vs. Shallow Trap States 206
8.2.3	Strain-Induced Photocatalysis 207
8.2.4	Dynamic Defects 208
8.2.5	Defects of Higher Dimensionalities in Photocatalysis 208
8.2.5.1	Black TiO ₂ 210
8.3	Concluding Remarks 213
	References 213
9	Dhatacarrier Loce Dathways in Motal Ovido Absorber Materials
9	Photocarrier Loss Pathways in Metal Oxide Absorber Materials for Photocatalysis Explored with Time-Resolved
	Spectroscopy: The Case of BiVO ₄ 221
	Rainer Eichberger and Sönke Müller
9.1	Introduction 221
9.1	Photodynamics of BiVO ₄ – Carrier Trapping and Polaron
9.2	Formation 224
9.3	Conclusions 238
9.5	References 238
10	Metal-free Photocatalysts 245
-	Josefine P. Hundt, Marco Weers, Vanessa Lührs, Dereje H. Taffa, and Michael
	Wark
10.1	Introduction 245
10.2	Graphitic Carbon Nitrides 246

10.2.1	Structure and Properties of g-C ₃ N ₄ 246
10.2.2	Application as Photocatalytic Active Material 249
10.2.2.1	Photocatalytic Hydrogen Production 249
10.2.2.2	Photocatalysis-Assisted Organic Synthesis 250
10.2.2.3	Photocatalytic Reduction of CO ₂ 252
10.2.2.4	Photocatalytic Degradation of (Organic) Pollutants 254
10.3	Covalent Organic Frameworks 254
10.4	Conjugated Polymers 257
10.4.1	Synthesis Strategies of Nanostructured Conducting Polymers 258
10.4.2	Application as a Photocatalytic Active Material 260
10.4.2.1	Hydrogen Evolution 261
10.4.2.2	Pollutant Degradation 261
10.5	Conclusions 263
	Acknowledgments 264
	References 264
11	Photocatalytic Water Splitting: Fundamentals and Current
	Concepts 269 Kazuhiro Takanabe
11.1	
11.1	Solar Energy Conversion 269 Photocatalyst: Fundamental Concept 270
11.2	Reporting Protocol 272
11.3	Photon Absorption 276
11.4	Exciton Separation 276
11.5	Carrier Transport 277
11.7	Electrocatalysis 279
11.7	Mass Transfer: Electrolyte 280
11.9	Suppression of Back Reaction 280
11.10	Photocatalytic Overall Water Splitting: State of the Art 281
11.11	Concluding Remarks 283
11.11	References 284
	207
12	Photocatalytic CO ₂ Reduction and Beyond 287
	Minoo Tasbihi, Michael Schwarze, and Reinhard Schomäcker
12.1	Introduction 287
12.2	Photocatalytic Reactions Utilizing CO ₂ 290
12.2.1	Photocatalytic Reduction of CO ₂ by CH ₄ (Dry Reforming) 292
12.2.2	Photocatalytic Reduction of CO ₂ by CH ₄ and H ₂ O (Steam
	Reforming) 296
12.2.3	Other Photocatalytic Reactions with CO ₂ 298
12.3	Summary 298
	References 299
13	Photocatalytic NO _x Abatement 303
	Jonathan Z. Bloh
13.1	Introduction 303
13.2	Rasic Principle 304

х	Contents		
	13.3	Reaction Pathway 305	
	13.3.1	Intermediates, Selectivity 307	
	13.4	Reaction Kinetics 308	
	13.4.1	Guidelines for Accurate Performance Determination 310	
	13.5	Strategies to Improve the Performance 312	
	13.5.1	Strategies to Improve the Photocatalytic Activity 312	
	13.5.2	Strategies to Improve the Spectral Response 314	
	13.5.3	Strategies to Improve the Selectivity 317	
	13.5.4	Summary of Material Developments 319	
	13.6	Strategies to Incorporate the Catalysts into Building Materials 319	
	13.7	Results from Field Tests and Simulations 321	
		References 323	
	14	Photoactive Nanomaterials: Applications in Wastewater	
		Treatment and Their Environmental Fate 331	
		Jang S. Chang and Meng N. Chong	
	14.1	Introduction 331	
	14.2	Photoactive Semiconductor Nanomaterials and Their Applications in	
	1401	Wastewater Treatment 332	
	14.2.1	Nano-TiO ₂ 332	
	14.2.2	Nano-ZnO 334	
	14.2.3	Nano-Fe ₂ O ₃ 336	
	14.2.4	Nano-WO ₃ 337	
	14.3	Environmental Fate and Behavior of Photoactive Nanomaterials in	
	1421	Wastewater Treatment Processes 338	
	14.3.1	Prevalence, Occurrence, and Routes of Nanomaterials into the	
	1422	Environment 338	
	14.3.2	Fate and Transformation Processes of Nanomaterials 339	
	14.3.2.1	Aggregation and Agglomeration 339 Photochemical Transformation 342	
		Redox Reactions 342	
	14.3.2.4	Adsorption of Macromolecules 343	
	14.3.2.5	Biotransformation 344	
	14.4	Environmental Effects of Nanomaterials Toward Wastewater Treatment	
	145	Processes 344	
	14.5	Conclusion 345	
		References 346	

Index 351