Contents

Preface xiii

- 1 Upgrading of Biomass via Catalytic Fast Pyrolysis (CFP) 1 Charles A. Mullen
- 1.1 Introduction 1
- 1.1.1 Catalytic Pyrolysis Over Zeolites 4
- 1.1.1.1 Catalytic Pyrolysis Over HZSM-5 4
- 1.1.1.2 Deactivation of HZSM-5 During CFP 9
- 1.1.1.3 Modification of ZSM-5 with Metals 13
- 1.1.1.4 Modifications of ZSM-5 Pore Structure 18
- 1.1.2 CFP with Metal Oxide Catalysts 20
- 1.1.3 CFP to Produce Fine Chemicals 24
- 1.1.4 Outlook and Conclusions 26 References 27

2 The Upgrading of Bio-Oil via Hydrodeoxygenation 35

Adetoyese O. Oyedun, Madhumita Patel, Mayank Kumar, and Amit Kumar

۱v

- 2.1 Introduction 35
- 2.2 Hydrodeoxygenation (HDO) 37
- 2.2.1 Hydrodeoxygenation of Phenol as a Model Compound 38
- 2.2.1.1 HDO of Phenolic (Guaiacol) Model Compounds 38
- 2.2.1.2 HDO of Phenolic (Anisole) Model Compounds 40
- 2.2.1.3 HDO of Phenolic (Cresol) Model Compounds 40
- 2.2.2 Hydrodeoxygenation of Aldehyde Model Compounds 41
- 2.2.3 Hydrodeoxygenation of Carboxylic Acid Model Compounds 43
- 2.2.4 Hydrodeoxygenation of Alcohol Model Compounds 44
- 2.2.5 Hydrodeoxygenation of Carbohydrate Model Compounds 44
- 2.3 Chemical Catalysts for the HDO Reaction 45
- 2.3.1 Catalyst Promoters for HDO 48
- 2.3.2 Catalyst Supports for HDO 49
- 2.3.3 Catalyst Selectivity for HDO 49
- 2.3.4 Catalyst Deactivation During HDO 50
- 2.4 Research Gaps 51
- 2.5 Conclusions 52
 - Acknowledgments 52
 - References 53

vi

Contents	
3	Upgrading of Bio-oil via Fluid Catalytic Cracking 61 Idoia Hita, Jose Maria Arandes, and Javier Bilbao
3.1	Introduction 61
3.2	Bio-oil 63
3.2.1	Bio-oil Production via Fast Pyrolysis 63
3.2.2	General Characteristics, Composition, and Stabilization of Bio-oil 63
3.2.2.1	Adjustment of Bio-oil Composition Through Pyrolytic
3 2 2 2 2	Bio-oil Stabilization 66
323	Valorization Routes for Bio-oil 69
3231	Hydroprocessing 69
3232	Steam Reforming 70
3.2.3.3	Extraction of Valuable Components from Bio-oil 71
3.3	Catalytic Cracking of Bio-oil: Fundamental Aspects 71
3.3.1	The FCC Unit 71
3.3.2	Cracking Reactions and Mechanisms 73
3.3.3	Cracking of Oxygenated Compounds 74
3.3.4	Cracking of Bio-oil 76
3.4	Bio-oil Cracking in the FCC Unit 78
3.4.1	Cracking of Model Oxygenates 78
3.4.2	Coprocessing of Oxygenates and Their Mixtures with Vacuum Gas Oil (VGO) 78
3.4.3	Cracking of Bio-oil and Its Mixtures with VGO 79
3.5	Conclusions and Critical Discussion 86
	References 88
4	Stabilization of Bio-oil via Esterification 97
	Xun Hu
4.1	Introduction 97
4.2	Reactions of the Main Components of Bio-Oil Under Esterification Conditions 102
4.2.1	Sugars 102
4.2.2	Carboxylic Acids 109
4.2.3	Furans 113
4.2.4	Aldehydes and Ketones 114
4.2.5	Phenolics 116

- 4.2.6 Other Components 117
- 4.3 Processes for Esterification of Bio-oil 121
- 4.3.1 Esterification of Bio-oil Under Subcritical or Supercritical Conditions 121
- Removal of the Water in Bio-oil to Enhance Conversion of Carboxylic 4.3.2 Acids 121
- 4.3.3 In-line Esterification of Bio-oil 123
- Esterification Coupled with Oxidation 123 4.3.4
- 4.3.5 Esterification Coupled with Hydrogenation 123
- Steric Hindrance in Bio-oil Esterification 124 4.3.6
- 4.3.7 Coking in Esterification of Bio-oil 125

438	Effects of Bio-oil Esterification on the Subsequent
4.5.0	Hydrotreatment 129
4.4	Catalysts 132
4.5	Summary and Outlook 136
	Acknowledgments 137
	References 137
5	Catalytic Upgrading of Holocellulose-Derived C ₅ and C ₆
	Sugars 145
	Xingguang Zhang, Zhijun Tai, Amin Osatiashtiani, Lee Durndell, Adam F. Lee,
	and Karen Wilson
5.1	Introduction 145
5.2	Catalytic Transformation of C5–C6 Sugars 146
5.2.1	Isomerization Catalysts 147
5.2.1.1	Zeolites 149
5.2.1.2	Hydrotalcites 151 Other Solid Catalysta 154
5.2.1.5 5.2.2	Dehydration Catalysis 154
5.2.2 5.2.2 1	Zeolitic and Mesonorous Bransted Solid Acids 156
5,2,2,1 5,2,2,2	Sulfonic Acid Functionalized Hybrid Organic–Inorganic Silicas 159
5223	Metal-Organic Frameworks 163
5.2.2.4	Supported Ionic Liquids 164
5.2.3	Catalysts for Tandem Isomerization and Dehydration of $C_{c}-C_{c}$
	Sugars 165
5.2.3.1	Bifunctional Zeolites and Mesoporous Solid Acids 165
5.2.3.2	Metal Oxides, Sulfates, and Phosphates 167
5.2.3.3	Metal–Organic Frameworks 172
5.2.4	Catalysts for the Hydrogenation of C_5-C_6 Sugars 172
5.2.4.1	Ni Catalysts 173
5.2.4.2	Ru Catalysts 176
5.2.4.3	Pt Catalysts 178
5.2.4.4	Other Hydrogenation Catalysts 178
5.2.5	Hydrogenolysis Catalysts 179
5.2.6	Other Reactions 183
5.3	Conclusions and Future Perspectives 184
	References 180
6	Chamister of C. C. Dand Formation Department load in Diamood
0	Chemistry of C—C bond Formation Reactions Used in biomass
	Opgrading: Reaction Mechanisms, Site Requirements, and
	Calalylic Walerials 207 Tuona V. Rui, Nhuna Duona, Falina Anava, Duona Nao, Gan Warakumwit
	and Daniel F. Resasco
61	Introduction 207
6.2	Mechanisms and Site Requirements of $C-C$ Coupling Reactions 208
6.2.1	Aldol Condensation: Mechanism and Site Requirement 208
J. 4. 1	Theorem and the second se

6.2.1.1 Base-Catalyzed Aldol Condensation 208

viii Contents

6.2.1.2	Acid-Catalyze	d Aldol Condensation: Mechanism and Site
	Requirement	214

- 6.2.2 Alkylation: Mechanism and Site Requirement 219
- 6.2.2.1 Lewis Acid-Catalyzed Alkylation Mechanism 219
- 6.2.2.2 Brønsted Acid-Catalyzed Alkylation Mechanism 220
- 6.2.2.3 Base-Catalyzed Alkylation: Mechanism and Site Requirement 225
- 6.2.3 Hydroxyalkylation: Mechanism and Site Requirement 225
- 6.2.3.1 Brønsted Acid-Catalyzed Mechanism 227
- 6.2.3.2 Site Requirement 228
- 6.2.4 Acylation: Mechanism and Site Requirement 229
- 6.2.4.1 Mechanistic Aspects of Acylation Reactions 230
- 6.2.4.2 Role of Brønsted vs. Lewis Acid in Acylation Over Zeolites 232
- 6.2.5 Ketonization: Mechanism and Site Requirement 234
- 6.2.5.1 Mechanism of Surface Ketonization 234
- 6.2.5.2 Site Requirement 238
- 6.3 Optimization and Design of Catalytic Materials for C–C Bond Forming Reactions 239
- 6.3.1 Oxides 239
- 6.3.1.1 Magnesia (MgO) 239
- 6.3.1.2 Zirconia (ZrO₂) 245
- 6.3.2 Zeolites 248
- 6.3.2.1 ZSM-5 248
- 6.3.2.2 HY 254
- 6.3.2.3 HBEA 257 References 259

7 Downstream Conversion of Biomass-Derived Oxygenates to Fine Chemicals 299

Michèle Besson, Stéphane Loridant, Noémie Perret, and Catherine Pinel

- 7.1 Introduction 299
- 7.2 Selective Catalytic Oxidation 300
- 7.2.1 Introduction 300
- 7.2.2 Catalytic Oxidation of Glycerol *301*
- 7.2.2.1 Glycerol to Glyceric Acid (GLYAC) 301
- 7.2.2.2 Glycerol to Tartronic Acid (TARAC) 304
- 7.2.2.3 Glycerol to Dihydroxyacetone (DHA) 305
- 7.2.2.4 Glycerol to Mesoxalic Acid (MESAC) 305
- 7.2.2.5 Glycerol to Glycolic Acid (GLYCAC) 305
- 7.2.2.6 Glycerol to Lactic Acid (LAC) 306
- 7.2.3 Oxidation of 5-Hydroxymethylfurfural (HMF) 307
- 7.2.3.1 HMF to 2,5-Furandicarboxylic Acid (FDCA) 307
- 7.2.3.2 HMF to 2,5-Diformylfuran (DFF) 309
- 7.2.3.3 HMF to 5-Hydroxymethyl-2-furancarboxylic Acid (HMFCA) or 5-Formyl-2-furancarboxylic Acid (FFCA) *310*
- 7.3 Hydrogenation/Hydrogenolysis 310
- 7.3.1 Introduction 310
- 7.3.2 Hydrogenolysis of Polyols 310

- 7.3.2.1 Hydrodeoxygenation of Polyols 311
- 7.3.2.2 C–C Hydrogenolysis of Polyols 314
- 7.3.3 Hydrogenation of Carboxylic Acids 316
- 7.3.3.1 Levulinic Acid *316*
- 7.3.3.2 Succinic Acid 318
- 7.3.4 Selective Hydrogenation of Furanic Compounds 320
- 7.3.5 Reductive Amination of Acids and Furans 323
- 7.4 Catalyst Design for the Dehydration of Biosourced Molecules 324
- 7.4.1 Introduction 324
- 7.4.2 Glycerol to Acrolein 325
- 7.4.3 Lactic Acid to Acrylic Acid 328
- 7.4.4 Sorbitol to Isosorbide 330
- 7.5 Conclusions and Outlook 331 References 331

8 Conversion of Lignin to Value-added Chemicals via Oxidative Depolymerization 357

Justin K. Mobley

- 8.1 Introduction 357
- 8.1.1 Cautionary Statements 360
- 8.2 Catalytic Systems for the Oxidative Depolymerization of Lignin 361
- 8.2.1 Enzymes and Bio-mimetic Catalysts 361
- 8.2.2 Cobalt Schiff Base Catalysts 363
- 8.2.3 Vanadium Catalysts 367
- 8.2.4 Methyltrioxorhenium (MTO) Catalysts 368
- 8.3 Commercial Products from Lignin 369
- 8.4 Stepwise Depolymerization of β-O-4 Linkages 369
- 8.4.1 Benzylic Oxidation 369
- 8.4.2 Secondary Depolymerization 376
- 8.5 Heterogeneous Catalysts for Lignin Depolymerization 382
- 8.6 Outlook 386 Acknowledgments 386 References 386

9 Lignin Valorization via Reductive Depolymerization 395

- 9.1 Yang (Vanessa) Song 9.1 Introduction 395
- 9.2 Late-stage Reductive Lignin Depolymerization 396
- 9.2.1 Mild Hydroprocessing 398
- 9.2.2 Harsh Hydroprocessing 404
- 9.2.3 Bifunctional Hydroprocessing 407
- 9.2.4 Liquid Phase Reforming 410
- 9.2.5 Reductive Lignin Depolymerization Using Hydrosilanes, Zinc, and Sodium *414*
- 9.3 Reductive Catalytic Fractionation (RCF) 416
- 9.3.1 Reaction Conditions 417
- 9.3.2 Lignocellulose Source 417

- x Contents
 - Applied Catalyst 427 9.3.3 9.4 Outlook 428 Acknowledgment 429 References 429

10 Conversion of Lipids to Biodiesel via Esterification and Transesterification 439

Amin Talebian-Kiakalaieh and Amin Nor Aishah Saidina

- 10.1 Introduction 439
- Different Feedstocks for Biodiesel Production 441 10.2
- 10.3 Biodiesel Production 441
- 10.3.1 Algal Biodiesel Production 442
- 10.3.1.1 Nutrients for Microalgae Growth 443
- 10.3.1.2 Microalgae Cultivation System 444
- 10.3.1.3 Harvesting 444
- 10.3.1.4 Drying 445
- 10.3.1.5 Lipid Extraction 446
- 10.4 Catalytic Transesterification 446
- Homogeneous Catalysts 446 10.4.1
- 10.4.1.1 Alkali Catalysts 446
- 10.4.1.2 Acid Catalysts 448
- 10.4.1.3 Two-step Esterification–Transesterification Reactions 448
- 10.4.2 Heterogeneous Catalysts 450
- 10.4.2.1 Solid Acid Catalysts 451
- 10.4.2.2 Solid Base Catalysts 451
- 10.4.3 Enzyme-Catalyzed Transesterification Reactions 453
- 10.5 Supercritical Transesterification Processes 454
- Alternative Processes for Biodiesel Production 455 10.6
- 10.6.1 Ultrasonic Processes 455
- 10.6.2 Microwave-Assisted Processes 456
- 10.7 Summary 459 References 459
- 11 Upgrading of Lipids to Hydrocarbon Fuels via (Hydro)deoxygenation 469 David Kubička
 - Introduction 469
- 11.1 11.2 Feedstocks 471
- 11.3 Chemistry 472
- Technologies 475 11.4
- 11.5 Catalysts 477
- 11.5.1 Sulfided Catalysts 477
- 11.5.2 Metallic Catalysts 480
- 11.5.3 Metal Carbide, Nitride, and Phosphide Catalysts 483
- 11.6 Conclusions and Outlook 489 References 490

12 Upgrading of Lipids to Fuel-like Hydrocarbons and Terminal Olefins via Decarbonylation/Decarboxylation 497

Ryan Loe, Eduardo Santillan-Jimenez, and Mark Crocker

- 12.1 Introduction 497
- 12.2 Lipid Feeds 500
- 12.3 $deCO_x$ Catalysts: Active Phases 502
- 12.4 deCO_x Catalysts: Support Materials 508
- 12.5 Reaction Conditions 509
- 12.6 Reaction Mechanism 511
- 12.7 Catalyst Deactivation 516
- 12.8 Conclusions and Outlook 518 References 518

13 Conversion of Terpenes to Chemicals and Related Products 529 Anne E. Harman-Ware

- 13.1 Introduction 529
- 13.2 Terpene Biosynthesis and Structure 529
- 13.3 Sources of Terpenes 532
- 13.3.1 Conifers and Other Trees 532
- 13.3.2 Essential Oils and Other Extracts 534
- 13.4 Isolation of Terpenes 535
- 13.4.1 Tapping and Extraction 535
- 13.4.2 Terpenes as a By-product of Pulping Processes 536
- 13.5 Historical Uses of Raw Terpenes 536
- 13.5.1 Adhesives and Turpentine 536
- 13.5.2 Flavors, Fragrances, Therapeutics, and Pharmaceutical Applications *537*
- 13.6 Catalytic Methods for Conversion of Terpenes to Fine Chemicals and Materials 537
- 13.6.1 Homogeneous Processes 538
- 13.6.1.1 Hydration and Oxidation Reactions 538
- 13.6.1.2 Homogeneous Catalysis for the Epoxidation of Monoterpenes 541
- 13.6.1.3 Isomerizations 541
- 13.6.1.4 Production of Terpene Carbonates from CO₂ and Epoxides 543
- 13.6.1.5 Polymers and Other Materials from Terpenes 545
- 13.6.1.6 "Click Chemistry" Routes for the Production of Materials and Medicinal Compounds from Terpenes 548
- 13.6.2 Heterogeneous Processes 551
- 13.6.2.1 Isomerization and Hydration of α -Pinene 551
- 13.6.2.2 Heterogeneous Catalysts for the Epoxidation of Monoterpenes 553
- 13.6.2.3 Isomerization of α-Pinene Oxide 555
- 13.6.2.4 Vitamins from Terpenes 555
- 13.6.2.5 Dehydrogenation and Hydrogenation Reactions of Terpenes 557
- 13.6.2.6 Conversion of Terpenes to Fuels 558
 - Acknowledgments 560 References 561

xii Contents

14	Conversion of Chitin to Nitrogen-containing Chemicals	
	Xi Chen and Ning Yan	

- 14.1 Waste Shell Biorefinery 569
- 14.2 Production of Amines and Amides from Chitin Biomass 571
- 14.2.1 Sugar Amines/Amides 571
- 14.2.2 Furanic Amines/Amides 574
- 14.2.3 Polyol Amines/Amides 576
- 14.3 Production of N-heterocyclic Compounds from Chitin Biomass 579
- 14.4 Production of Carbohydrates and Acetic Acid from Chitin Biomass 581
- 14.5 Production of Advanced Products from Chitin Biomass 584
- 14.6 Conclusion 587 References 587
- **15 Outlook** 591 Eduardo Santillan-Jimenez and Mark Crocker

Index 599