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1.1  Introduction

The growing importance of peptide drugs within the pharmacopoeia has become 
evident over the past several decades. Among the factors that have contributed 
to this trend is the recognition that peptide ligands regulate a multitude of physi-
ological pathways and are often suitable for therapeutic applications, in either 
their native or modified form. In addition, certain attributes that are unique to 
peptides, such as their high selectivity, potency, and lack of toxicity, have ulti-
mately become appreciated. The alternative means of drugging peptide recep-
tors through target‐directed screening or rational design of orally available small 
molecules have, with few exceptions, proved unproductive. Mimicking the activ-
ity of a peptide agonist is highly challenging, particularly in the case of Class II 
G‐protein‐coupled receptor (GPCR) targets. Successful examples have typically 
involved receptor antagonists such as neurokinin, angiotensin, endothelin, and 
orexin. These lessons have increasingly led drug discovery scientists to consider 
peptides as legitimate drug candidates, rather than leads or proof‐of‐concept 
models for small‐molecule programs. Peptide medicinal chemists have also had 
to confront and overcome shortcomings such as rapid metabolism, clearance, 
production costs, and limited alternative delivery options. In the present 
chapter, we highlight the role of peptides in therapeutic areas such as metabolic 
disease, where peptides have been well established, as well as in areas where their 
impact has been minor, but now rapidly expanding. We also emphasize examples 
where time‐extension strategies and alternative delivery routes have helped 
establish and strengthen the position of peptide drugs in competitive markets. 
Finally, we explore two novel trends in peptide drug discovery, macrocyclic and 
cell‐penetrating peptides, both of which may expand future opportunities for 
peptide therapeutics.
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1.2  Peptides in Metabolic Diseases

The global epidemic of type 2 diabetes and obesity continues unabated, impact-
ing quality of life, life expectancy, and economic well‐being. Health‐care organi-
zations have devoted enormous resources toward the treatment of metabolic 
diseases, often dramatically improving patient outcomes [1]. Perhaps more than 
in any other therapeutic area, peptides have had a unique and indispensable role 
in treating type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) 
as well as obesity. This section will provide an overview of approved insulin, 
GLP‐1 (glucagon‐like peptide‐1), and glucagon peptide drugs as well as those in 
late‐stage clinical development.

1.2.1  Insulins

Insulin, which was discovered by Banting and Best in 1921, became commer-
cially available only one year after its discovery (Figure 1.1) [2]. In spite of its 
miraculous potential, the short duration of action of early insulin preparations 
(four to six hours) required multiple daily injections and prompted the search for 
longer acting formulations. The first of these, insulin neutral protamine 
Hagedorn (NPH), developed in the 1940s, consisted of an insulin suspension 
complexed with protamine, a cationic protein isolated from fish sperm. The slow 
disassociation of the NPH complex delayed absorption from the injection site, 
prolonging insulin action to a range of 12 to 18 hours [3]. Insulin Lente, intro-
duced in the 1950s, involved a neutral pH suspension of insulin formulated with 
excess zinc, which extended the duration of action to 24 hours and beyond [3]. 
Between the 1920s and the early 1980s, commercial insulin production relied on 
extraction of pancreatic glands from cows and pigs. The advent of biotechnology 
enabled the production of rDNA‐derived human insulin in the early 1980s in 
sufficient quantity to satisfy the needs of the diabetic population, gradually 

Figure 1.1  Sequences of human, porcine, bovine, and the commercially key insulin analogs.
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displacing animal sourced insulins [4]. Recombinant DNA technology also 
furthered the development of short‐acting analogs to manage prandial glucose 
excursion, as well as long‐acting analogs to mimic basal insulin action [5, 6].

In the native state, the insulin hexamer complex consists of three non‐covalent 
insulin dimers, which are in turn stabilized by two zinc ions coordinating the B10 
His residues. Once injected, the diffusion of the zinc ion causes a sequential 
breakdown of the hexamer into insulin dimers, and further into monomers, the 
last being the rate‐limiting step. Since physiological absorption occurs mainly via 
the monomeric form, research efforts have focused on weakening of the insulin 
dimer association. Examination of the X‐ray structure indicated that the B‐chain 
C‐terminal regions of two insulin molecules form the dimer interface. Weakening 
of this interaction in order to accelerate dimer disassociation resulted in a more 
rapid onset of insulin action. Three rapid‐acting insulin analogs were approved 
between 1996 and 2006: LysB28, ProB29, insulin lispro (Humalog®, Eli Lilly & 
Co.) [7]; AspB28, insulin aspart (Novolog®, Novo Nordisk A/S) [8]; and LysB3, 
GluB29, insulin glulisine (Apidra®, Sanofi S.A.) [9]. The onset of action for these 
analogs is within 5 to 15 minutes, with peak action at 30 to 90 minutes and dura-
tion of 4 to 6 hours [5]. An ultrafast, co‐formulation of insulin aspart and niaci-
namide (Fiasp®, Novo Nordisk A/S) was approved in late 2017.

The long‐acting, or “basal” insulins, use two independent strategies: isoelectric 
point shift and lipidation. Insulin glargine (Lantus®, Sanofi S.A.) is a human insu-
lin analog with a mutation of AsnA21Gly, and an additional ArgB31 and ArgB32 
residues. The presence of the two arginine residues shifts the isoelectric point of 
the hormone from 5.6 to 6.7, reducing its solubility at physiological pH. Aqueous 
solubility at pH 4.0 required the GlyA21 substitution to mitigate the acidic deg-
radation of the native AsnA21. Upon injection, insulin glargine forms an insolu-
ble depot that gradually dissipates, releasing the drug over a 20 to 24 hour period 
[10]. Insulin glargine undergoes extensive metabolism in the subcutaneous depot 
with only its metabolites released into systemic circulation. The earliest com-
mercial application of the lipidation strategy was insulin detemir (Levemir®, 
Novo Nordisk A/S), a human desB30 insulin covalently modified with myristic 
acid at the LysB29 side chain. This modification induces hexamer and di‐hex-
amer formation while also facilitating binding to serum albumin (98 % bound in 
plasma). The former phenomenon delays absorption from the injection site 
while the latter slows plasma clearance, contributing to the extended 12 to 24 hour 
duration of action as well as a less variable pharmacokinetic/pharmacodynamic 
(PK/PD) profile [11]. Insulin degludec (Tresiba®, Novo Nordisk A/S) represents 
the second generation of the lipidation strategy. LysB29 acylation with a γ‐gluta-
mate linked hexadecanedioic acid results in prolonged time action promoted by 
higher order multi‐hexamer association at the subcutaneous injection site, and 
to a lesser degree, by higher affinity for albumin. Insulin degludec provides a 
longer duration of action (42 hours), which enables therapeutic accumulation 
using a once‐daily dosing regimen, thus permitting administration during the 
day [12].

Alternative delivery of insulin has had a mixed record of success with two pre-
viously approved pulmonary products. Exubera® (Pfizer Inc.), an inhalable, 
spray‐dried insulin powder administered using a reusable inhaler was approved 
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in 2006. It was withdrawn from the market after a brief time due to poor 
commercial performance attributed partly to the bulky device. Afrezza® 
(MannKind Corp.), a Technosphere® formulated human insulin delivered in a 
thumb‐sized device, was approved in 2014. Peak plasma insulin levels with 
Afrezza® are achieved within 12 to 15 minutes after administration. Its commer-
cial fate at this time remains uncertain [13].

A survey of clinical insulin programs indicates a high level of interest in various 
ultrafast bolus and ultra‐long basal analogs, as well as orally administered insu-
lins. The sponsoring companies include Adocia (ultrafast, BioChaperone formu-
lation of insulin lispro, Phase 2; and premixed, Phase 1/2), AntriaBio (once 
weekly, Phase 1), Biocon/Mylan (insulin Tregopil, oral, Phase 2/3), Diasome 
(liver targeted, Phase 2), Eli Lilly (once‐weekly, Phase 1; and ultrafast, Phase 3), 
Merck (glucose‐sensitive, Phase 1), Novo Nordisk (once‐weekly, Phase 2), 
Oramed (ORMD‐0801, oral, Phase 2), and Sanofi S.A (ultrafast, Phase 3).

1.2.2  Glucagon‐like Peptide‐1

GLP‐1 is a peptide hormone secreted from intestinal L‐cells, which serve an 
essential role in glucose homeostasis (Figure 1.2). Activation of GLP‐1 receptors 
on pancreatic β‐cells stimulates glucose‐dependent insulin secretion, and simul-
taneously suppresses glucagon levels under hyperglycemic conditions. Apart 
from helping maintain glucose homeostasis, GLP‐1 also promotes satiety and 
delays gastric emptying, which together contribute to decreased food intake and 
lower body weight. This unique spectrum of biological and pharmacological 
properties has led to the development of a number of successful antidiabetic and 
anti‐obesity medications [14]. Endogenous GLP‐1 circulates in two equipotent 
bioactive isoforms, GLP‐1 (7–36)‐NH2 and GLP‐1 (7–37). Both have short half‐
lives of approximately two minutes because of dipeptidyl peptidase‐4 (DDP‐IV)‐
mediated cleavage of the N‐terminal His7‐Ala8 dipeptides. The short half‐life 
diminishes the pharmacological effects and has promoted the search for longer 
acting, DPP‐IV stabilized analogs [15]. The first approved GLP‐1 analog, exena-
tide (Byetta®, Eli Lilly & Co. and Amylin Pharmaceuticals), was isolated from the 
saliva of the Gila monster lizard. Exenatide, the active pharmaceutical ingredient 
in Byetta, possesses similar in vitro potency as native GLP‐1 with a half‐life of 

GLP-1(human): H-HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR G-OH
Exenatide:    H-HGEGT FTSDL SKQME EEAVR LFIEW LKNGG PSSGA PPPS-NH2
Lixisenatide: H-HGEGT FTSDL SKQME EEAVR LFIEW LKNGG PSSGA PPSKK KKKK-NH2
Albiglutide:  H-HGEGT FTSDV SSYLE GQAAK EFIAW LVKGR  -Albumin
Dulaglutide:  H-HGEGT FTSDV SSYLE EQAAK EFIAW LVKGG G(GGGGS)3   -IgG4-Fc
Liraglutide:  H-HAEGT FTSDV SSYLE GQAAK EFIAW LVRGR G-OH

Semaglutide:  H-HXEGT FTSDV SSYLE GQAAK EFIAW LVRGR G-OH  (X: Aib)

[ ]2
[                                             ]2

Figure 1.2  Structure of GLP‐1 and marketed analogs.
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two to four hours, attributed to resistance toward DPP‐4 cleavage. It is approved 
for twice daily SC injection with a dose of 5 to 10 μg [16]. Lixisenatide, an analog 
of exenatide modified with six lysine residues at its C‐terminus, is marketed as 
Adlyxin® in the United States and as Lyxumia® in the European Union by Sanofi 
S.A. [17]. Initial experience with GLP‐1 agonists suggested that optimal patient 
compliance and outcomes might require once‐daily, once‐weekly, or even less 
frequent dosing intervals. Efforts to extend the Byetta dosing interval involved 
co‐formulation with a poly(d,l‐lactide‐co‐glycolide) (PLGA) polymer, which 
successfully prolonged the drug’s half‐life to five to six days in humans [15]. The 
new formulation was approved for once‐weekly administration in 2012 
(Bydureon®, AstraZeneca plc).

A validated strategy for extending peptide time action involves fusion to a 
macromolecular carrier as a means to mitigate proteolytic degradation, slow 
down renal clearance, and exploit FcRn trafficking to peripheral tissues. Human 
serum albumin (HSA) and the Fc portion of immunoglobulin G (IgG) as molecu-
lar fusions have both been utilized to extend GLP‐1 duration of action to enable 
once‐weekly dosing. Albiglutide (Tanzeum®, GlaxoSmithKline plc) is a recombi-
nant HSA construct N‐terminally extended with two tandem GLP‐1 sequences. 
The DPP‐IV cleavage of GLP‐1 was minimized through the substitution of Gly 
for Ala at the second position. Albiglutide has a half‐life of six to eight days in 
humans and is approved for once‐weekly injection at a dose of 30 to 50 mg [18]. 
Dulaglutide (Trulicity®, Eli Lilly & Co.) is a human IgG4‐Fc fusion protein N‐ter-
minally modified with a Gly4Ser flexible linker and a GLP‐1 sequence. As in 
albiglutide, the DPP‐IV degradation is suppressed by Gly substitution at the sec-
ond position. The half‐life of dulaglutide is approximately four days in humans, 
and the drug is approved for once‐weekly injection at a dose of 0.75 to 1.5 mg [19].

The lipidation strategy utilized successfully to extend insulin pharmacokinet-
ics has also been applied to GLP‐1 peptides. It has resulted in two approved 
GLP‐1 analogs, both from Novo Nordisk A/S. Liraglutide (Victoza®) utilizes a 
GLP‐1 backbone with a palmitic acid attached to the Lys20 side chain via a γ‐
glutamate spacer. The native Lys at position 28, replaced with Arg, facilitates 
site‐specific acylation at Lys20. Liraglutide’s high degree of albumin binding not 
only slows kidney clearance but also effectively shields the native N‐terminus 
from DPP‐IV cleavage. Liraglutide has a half‐life of approximately 13 hours in 
humans, and is approved for once‐daily dosing of 1.2 to 1.8 mg [20]. A higher 
dose of liraglutide, approved for the obesity indication, is marketed as Saxenda®. 
Semaglutide (Ozempic®) is structurally similar to liraglutide, and uses an octade-
canedioic acid in place of palmitic acid with two mini‐PEG units as an additional 
spacer. Greater DPP‐IV stability consistent with a once‐weekly dosing require-
ment was achieved through substitution with 2‐aminoisobutyric acid (Aib) at the 
second position. The combination of high‐affinity albumin binding with greater 
DPP‐IV stability prolongs the half‐life of semaglutide in humans to six to seven 
days. It is approved for once‐weekly injection at a dose of 0.5 to 1.0 mg [21].

The commercial success of the GLP‐1 class has increased research and 
development investment in additional candidates. These include once‐weekly 
efpeglenatide (Sanofi S.A., Phase 3), a subdermal osmotic mini‐pump device, 
which delivers exendin‐4 (Intarcia Therapeutics Inc, ITCA‐650, food and drug 
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administration [FDA] complete response letter [CRL] received) and an oral 
tablet formulation of semaglutide (Novo Nordisk A/S, Phase 3).

1.2.3  Glucagon

Glucagon is the primary counter‐regulatory hormone of insulin, which is 
secreted in response to hypoglycemic conditions [22, 23]. Its chief medicinal use 
is the emergency reversal of insulin‐induced hypoglycemic shock, a relatively 
frequent event in the treatment of type‐1 patients. Glucagon’s poor biophysical 
and chemical stability makes liquid formulation challenging, thus requiring 
reconstitution of lyophilized glucagon powder in an acidic diluent immediately 
prior to use. This complicates not only its current emergency use but also hin-
ders potential additional indications, which require a stable, soluble glucagon 
[22]. A recent survey revealed advanced glucagon programs at Adocia 
(BioChaperone formulation of human glucagon, Phase 1), Eli Lilly & Co. (Nasal 
glucagon, Phase 3; and novel soluble analog, Phase 1), Novo Nordisk A/S (novel, 
soluble analog, Phase 1), Xeris Pharmaceuticals (Xerisol, Phase 3, human gluca-
gon in dimethyl sulfoxide [DMSO]), and Zealand Pharma (Dasiglucagon, Phase 
3, novel, soluble analog).

1.2.4  Combination Therapies

Combination therapy, achieved through co‐administration of two agents target-
ing independent pathways, produced additive or synergistic efficacy and a more 
tolerable side‐effect profile [24]. Initiation of insulin therapy, either with a single 
agent or as part of a basal/bolus regimen, promotes weight gain and an increased 
incidence of hypoglycemia. In contrast, GLP‐1 agonists provide not only 
improved glycemic control but also modest body weight loss. As expected, the 
combination of a basal insulin and a GLP‐1 agonist consistently reduces HbA1c 
and body weight in most patients, while reducing the frequency of hypoglycemia 
[25]. Two combination products were approved by the FDA; insulin glargine plus 
lixisenatide (Soliqua®, Sanofi S.A.) and insulin degludec plus liraglutide 
(Xultophy® Novo Nordisk A/S).

Glucagon and glucose‐dependent insulinotropic polypeptide (GIP) are two 
important metabolic hormones closely related to GLP‐1. Glucagon has been 
shown to stimulate lipolysis, increase energy expenditure, and complement the 
weight‐lowering effect of GLP‐1 [22]. GIP is an incretin that functions as a “glu-
cose‐stat” stimulating insulin secretion under hyperglycemic conditions, while 
stimulating glucagon secretion in the hypoglycemic state [26]. Consequently, 
various combinations of GLP‐1, GIP, and glucagon pharmacology have been 
explored in the form of unimolecular co‐agonists [27]. A number of these 
programs reached the clinical development stage, including GLP‐1/glucagon 
dual agonists from AstraZeneca plc (MEDI0382, Phase 2), Eli Lilly & Co. (Phase 
1), Johnson & Johnson (JNJ‐64565111, Phase 2), Novo Nordisk A/S (Phase 1), 
OPKO Health (POK88003, formerly TT401, Phase 2), Sanofi S.A. (SAR425899, 
Phase 2) and Zealand Pharma/Boehringer Ingelheim Gmbh (BI456906, Phase 1), 
GLP‐1/GIP dual agonists from Eli Lilly & Co. (LY3298176, Phase 3) and Sanofi 
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S.A. (SAR438335, Phase 1), and a GLP‐1/glucagon/GIP tri‐agonist from Novo 
Nordisk A.S.(NN9423, Phase 1).

1.3  Peptide Antibiotics

While cyclic peptides such as gramicidin were among the earliest antibiotics dis-
covered, their clinical application has been limited by their lack of oral availabil-
ity, short half‐life, and systemic toxicity. As a result, their use has been restricted 
to topical application in ophthalmology and dermatology. However, their inher-
ent advantages, including their broad‐spectrum activity, lesser susceptibility to 
microbial resistance, as well as the potential for broader indications, have com-
bined to revive interest in this peptide category. The peptide antibiotics are 
structurally diverse and frequently highly complex natural products produced by 
either ribosomal or non‐ribosomal biogenic pathways. Peptides such as the 
mammalian defensins, the insect‐derived cecropins, and the amphibian antimi-
crobial peptides (AMPs), assembled by ribosomal synthesis, are occasionally 
posttranslationally modified. Peptides of microbial origin, assembled by non‐
ribosomal synthesis, incorporate a wide selection of non‐native amino acids and 
are represented by the bacitracins, polymyxins, gramicidins, and vancomycin.

1.3.1  Non‐ribosomally Synthesized

The isolation of tyrothricin (a mixture of gramicidins and tyrocidines) by R. 
Dubos in the late 1930s from Bacillus brevis provided the first clinically useful 
antibiotic for skin and throat infections [28]. Gramicidin S is mainly used for 
ophthalmic indications and treatment of surface wounds infected by gram‐posi-
tive and gram‐negative bacteria [29]. The polymyxins, discovered in the late 
1940s, were used clinically for a number of years against gram‐negative bacterial 
infections. As a result of reported systemic toxicity the polymyxins were all dis-
continued by the 1970s, but have recently re‐emerged as a last resort treatment 
against resistant gram‐negative bacteria. Recent reports have also described 
atypical synthetic polymyxin analogs with high antibiotic activity and minimal 
toxicity [30]. Bacitracin, first isolated in 1945 from B. brevis and used in combi-
nation with other antibiotics to treat skin and eye infections, is marketed as 
Neosporin®. A more recently developed lipidated cyclic depsipeptide, daptomy-
cin (Cubicin®, Cubist Pharmaceuticals), was approved by the FDA in 2003 for 
complicated skin and skin‐structure infections caused by Staphylococcus aureus. 
Daptomycin is also approved for systemic use in the treatment of bacteremia 
associated with right‐sided endocarditis [31].

The glycopeptides (lipoglycopeptides) are an important class of antibiotics 
that has remained relevant 60 years after the discovery of vancomycin 
(Figure 1.3a), (Vancocin®, Eli Lilly & Co.). A group led by E.C. Kornfeldt isolated 
the molecule from soil samples collected in Borneo in 1953 [32]. Vancomycin 
moved quickly through development, with approval in 1958, and was used pri-
marily against gram‐positive strains. Its use declined with the introduction of 
newer antibiotics through the 1980s; however, increasing resistance to these 
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Figure 1.3  Structures of vancomycin (a) and telavancin (b).
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newer agents led to vancomycin’s re‐introduction particularly for use against 
S. aureus [33]. Its complex structure was not elucidated until 1982 [34], which 
effectively limited exploration of its structure–activity relationships prior to that 
time. The unique efficacy of vancomycin stimulated extensive research into 
other glycopeptide antibiotics [32], leading to the discoveries of other naturally 
occurring analogs such as teicoplanin (Targocid®, Sanofi S.A.). A number of suc-
cessful second generation semisynthetic glycopeptides based on vancomycin 
were subsequently introduced [35]. For example, telavancin (Vibativ®, 
Theravance Biopharma) introduced in 2009 demonstrates enhanced pharma-
cokinetic properties as well as efficacy against S. aureus strains (Figure 1.3b).

The echinocandins are semisynthetic lipidated, cyclic hexapeptides, which 
present an important option for combating invasive systemic fungal infections. 
All are structurally based on the parent echinocandin B natural product discov-
ered in 1974 [36, 37]. The echinocandins exert their antifungal activity through a 
unique mechanism that involves potent inhibition of the (1  →  3)‐β‐d‐glucan 
enzyme synthesis complex. Their main therapeutic indication is the treatment of 
Candida fungal infections, particularly those resistant to fluconazole and 
amphotericin B. They are also highly efficacious against a number of Aspergillus 
species [38]. Marketed echinocandins include caspofungin (Cancidas®, Merck & 
Co., Inc.), anidulafungin (Eraxis®, Pfizer Inc.), and micafungin (Mycamine, 
Astellas Pharma Inc.).

1.3.2  Ribosomally Synthesized

Lantibiotics (or lanthipeptides) are representative ribosomally synthesized pep-
tides, which undergo posttranslational modification. The lantibiotics are charac-
terized by thioether amino acid residues lanthionine and methyllanthionine [39]. 
The prototypical and oldest lantibiotic is nisin, originally isolated from 
Lactococcus lactis in the 1930s, which has been used for decades as a food pre-
servative. More recently discovered analogs have attracted considerable interest 
for their multiple modes of action and high in vitro potency against a number of 
problematic organisms such as methicillin‐resistant S. aureus and vancomycin 
resistant Streptococcus pneumoniae [40]. The clinical and commercial develop-
ment of lantibiotics has been complicated by inefficient production and poor 
chemical and biophysical properties. Nevertheless, their unique therapeutic 
potential will likely help maintain interest in the lantibiotics class in the future.

Our understanding of the role and potential utility of peptide antibiotics was 
transformed in the 1980s by seminal discoveries of the cecropins, the magainins, 
and the defensins. The cecropins, isolated by Boman’s group from the hemolymph 
of the cecropia moth, are 30 to 37 residue peptides that mediate cell‐free immu-
nity for the insect and are active against both gram‐positive and gram‐negative 
bacteria [41] with similar peptides identified in related insect species. Selsted 
et al. isolated homologous AMPs termed “defensins” from human and rabbit leu-
kocytes with potent activity against bacterial and fungal organisms, suggesting 
that these peptides play a key role in mammalian host defense [42]. The defensins 
were subsequently also detected in mammalian respiratory secretions where they 
are thought to provide a first line of defense against microbial invasion [43].
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Skin secretions from frogs and toads are a rich source of bioactive peptides. 
The serendipitous discovery of the magainins in the skin of the African clawed 
frog by Zasloff [44] was the first of many subsequently discovered ribosomally 
synthesized AMPs of amphibian origin. Other AMP families include dermasep-
tins, bombinins, brevinins, esculentins, and ranalexins with additional examples 
frequently reported. An updated database can found at http://aps.unmc.edu/AP. 
Many of these peptides have been shown to have potent, broad‐spectrum activ-
ity against a variety of gram‐positive and gram‐negative bacterial as well as fun-
gal pathogens. Despite their structural heterogeneity, most AMPs share a 
cationic, amphiphilic a‐helical structure, which enables them to penetrate and 
disrupt bacterial cell membranes, their presumed mode of action [45, 46]. Their 
cationic nature, however, contributes to their hemolytic properties, which have 
thus far limited their use as systemic antibiotics. Despite this shortcoming, the 
use of AMPs in the clinical setting is being explored in wound healing [47] as well 
as skin and oral infections [47]. A number of AMPs have entered clinical trials: 
CLS001 (omniganan) in rosacea and acne vulgaris, AB‐103 (reltecimod) in 
necrotizing soft tissue infections, SGX942 (dusquetide) and brilacidin each in 
oral mucositis [48]. A number of other candidates are either in early or preclini-
cal stages of development.

1.4  Peptides in Cancer

Until recently, peptides had only limited application in the treatment of cancer; 
specifically, they were used to induce hormonal deprivation as a means of slow-
ing tumor growth and disease progression. Nevertheless, luteinizing hormone 
releasing hormone (LHRH) and somatostatin (SST) analogs remain the standard 
of care for numerous cancer indications, and currently provide a versatile plat-
form for diagnostic and therapeutic innovation, which helps advance cancer 
treatment.

1.4.1  Luteinizing Hormone Releasing Hormone

The history of the LHRH peptide family was recently reviewed by Schally, whose 
group was principally involved in its discovery and subsequent introduction into 
reproductive medicine and oncology (see Figure 1.4) [49]. The demonstration 
that continuous administration of LHRH hormone (Figure 1.4a) downregulated 
LH and follicle‐stimulating hormone (FSH) secretion was central to the clinical 
application of LHRH agonists to cancers of the prostate, breast, and endome-
trium [50]. The earliest approved examples of this class were short‐acting ago-
nists leuprolide (Lupron®, Abbott Laboratories), triptorelin (Trelstar®, Allergan, 
Inc.), buserelin (Suprecur®, Sanofi S.A.), and goserelin (Zoladex® AstraZeneca 
plc), which were all subsequently developed as depot formulations, providing 
continuous exposure for up to several months (Figure  1.4b–d respectively). 
Exploration of LHRH structure–activity relationships resulted in the discovery 
of LHRH antagonists such as degarelix (Figure  1.4e) (Firmagon®, Ferring 
Pharmaceuticals, Inc.) capable of inducing competitive LHRH receptor blockade 
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in the absence of an intrinsic agonist effect. In contrast to the earlier agonists, 
administration of LHRH antagonists produces immediate androgen deprivation, 
and importantly does not provoke the characteristic LH release or “flare” [51]. 
This was confirmed in a comparative study of the antagonist degarelix versus the 
agonist leuprolide, which demonstrated equally durable testosterone suppres-
sion for both agents. However, testosterone suppression occurred faster and with 
no reported “flare” in the degarelix arm [52].

1.4.2  Somatostatin

SST analogs represent the other major class of peptide therapeutics with applica-
tion to cancer treatment. The initial observations noting that hypothalamic 
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extracts inhibited secretion of growth hormone (GH) from the pituitary led to 
the isolation and characterization of the 14 amino acid peptide, SST‐14, by Vale 
and Guillemin [53, 54]. Early research demonstrated that in addition to the 
known inhibition of GH, somatostatin peptides are also potent suppressors of a 
number of other hormones, including insulin, TSH, and glucagon [55]. The 
potential application of SST ligands to cancer treatment was suggested by the 
finding that SST receptors are overexpressed in tumors originating within SST 
target tissues. This prompted Vale and coworkers, as well as investigators at the 
former Sandoz laboratories starting in the 1970s to find more potent and stable 
SST analogs [56]. The latter’s efforts culminated in the development and approval 
of the potent SST agonist octreotide (Sandostatin® Novartis Pharmaceuticals 
Corporation) (Figure 1.5a). Octreotide demonstrated a three‐fold higher potency 
in insulin inhibition as well as a nearly 20‐fold higher potency in GH inhibition 
relative to the native hormone [57]. Following its launch in 1983, it proved a 
highly valuable treatment option for a number of conditions such as carcinoid 
syndrome, intestinal, pancreatic, and pituitary tumors [58]. Octreotide’s ability 
to suppress pituitary secretion of GH also made it invaluable for the treatment of 
acromegaly. In addition to octreotide, a structurally similar SST analog lanreo-
tide (Somatuline®, Ipsen S.A.S.) (Figure 1.5b) was approved in 2007 and is used 
to treat various gastro‐enteropancreatic‐neuroendocrine tumors (GEP‐NETs). 
Both octreotide and lanreotide are available as extended time‐action depot for-
mulations: Sandostatin LAR Depot from Novartis and Somatuline Depot from 
Ipsen.

1.4.3  Peptide–Drug Conjugates

The clinical success of antibody–drug conjugates (ADCs) has validated Paul 
Ehrlich’s century‐old concept of a targeted “magic bullet” cancer therapy. The 
exquisite selectivity of peptide ligands has been successfully harnessed for the 
design of peptide–drug conjugates (PDCs), utilizing the same receptor targeting 
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strategy as the ADCs to deliver a cytotoxic payload directly to a tumor while 
minimizing systemic toxicity [59]. Substitution of an antibody with a peptide 
offers several advantages such as a reduction in immunogenicity, and a potential 
increase in cell and tissue penetration. From a technical standpoint, the installa-
tion of a linker and drug conjugation may be more straightforward in the case of 
a PDC. In addition, the peptide’s lower molecular weight also permits higher 
drug loading relative to an ADC.

In the case of LHRH‐based PDCs, several cytotoxic analogs have been evalu-
ated clinically, including AEZS‐152, a doxorubicin conjugate of [d‐Lys6]‐LHRH 
[60]. The octreotide platform also continues to be of great utility for both diag-
nostic and therapeutic applications [61]. The imaging agent 111 In‐DPTA‐octre-
otide (diethylene triamine pentaacetic acid) (OctreoScan® Mallinckrodt 
Pharmaceuticals) has been used extensively to localize somatostatin‐expressing 
neuroendocrine tumors (NET) while 99mTc‐depreotide (NeoTect® Diatide, Inc.) 
is used as a diagnostic for small cell lung cancer. The octreotide scaffold also 
serves as a targeting ligand in peptide radionuclide therapy. 177Lu octreotate 
(Lutathera® Advanced Accelerator Applications) was recently approved by the 
FDA for the treatment of somatostatin receptor‐positive GEP‐NETs [62].

Integrin motifs, such as ArgGlyAsp (RGD) and AsnGlyArg (NGR), are used to 
target tumor vasculature. NGR‐hTNF is a fusion protein consisting of the 
CNGRCG tumor homing peptide and tumor necrosis factor (hTNF) cytokine 
[63]. NGR‐hTNF is being investigated for the treatment of malignant pleural 
mesothelioma, either as a stand‐alone therapy or in combination with standard 
chemotherapeutic regimens. Mipsagargin is a conjugate of a prostate‐specific 
membrane antigen (PSMA) homing peptide fused with the cytotoxic sesquiter-
pene lactone thapsigargin, which is in clinical trials for hepatocellular carcinoma 
[64]. ANG 1005 is a conjugate formed with paclitaxel and angiopep‐2, a peptide 
targeting the low density lipoprotein receptor‐related protein 1 (LRP‐1), being 
developed by Angiochem, Inc. for a glioblastoma indication [65].

1.4.4  Cancer Vaccines

Cancer vaccines have been previously tested in late‐stage or metastatic settings 
and have shown only modest results [66]. Recently, however, this therapeutic 
approach has made enormous progress and for the first time gained substantial 
clinical validation [67]. The two basic peptide‐based immunization strategies 
can be classified as utilizing either self‐antigens or neo‐antigens and are dis-
cussed briefly below. Successful vaccination with a self‐antigen, typically directed 
at an overexpressed receptor, has been demonstrated in animal models and 
recently in the clinic. A breast cancer vaccine, Neuvax™, based on a human epi-
dermal growth factor receptor‐2 (HER‐2) immuno‐dominant epitope adminis-
tered with granulocyte colony‐stimulating factor (GMCSF) as an adjuvant has 
been evaluated extensively in a number of clinical trials designed to reduce breast 
cancer recurrence [68]. A meta‐analysis has shown that Neuvax either as a single 
agent or in combination with Herceptin reduces risk of recurrence and prolongs 
both disease‐free and overall survival [69]. Despite these promising results, the 
self‐antigen strategy is based on a single epitope that may diminish the magni-
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tude of the immune response [70]. The strategy is further limited by major histo-
compatibility complex (MHC) restriction to HLA‐A2 and HLA‐A3 positive 
patients [71].

An emerging vaccine paradigm involves amplification of tumor‐specific T‐cell 
response through immunization with multiple neo‐antigens, unique sequences 
arising from cancer‐specific somatic mutations. In contrast to self‐antigens, neo‐
antigens bypass central thymic tolerance and are therefore more likely to pro-
duce a strong T‐cell response [72]. The sequences of the neo‐antigen peptides 
are predicted from algorithms utilizing genomic, proteomic, and predicted MHC 
binding data from an individual patient’s tumor, synthesized and assembled into 
a personalized cancer vaccine. The strategy has been successful in small clinical 
trials, particularly in cases of tumors with a high mutagenic load. Of six patients 
diagnosed with advanced melanoma and treated with personalized neo‐antigen 
vaccines, four were recurrence free 25 months post vaccination [73]. The two 
patients who experienced recurrence responded favorably to anti‐programmed 
cell death protein‐1 (anti‐PD‐1) therapy, an effect attributed to stimulation of 
their tumor‐specific T cells. In another study, late‐stage melanoma patients were 
treated with a poly‐epitope vaccine constructed from two synthetic ribonucleic 
acids (RNAs) encoding linker connected antigens. Of the 13 patients in the study, 
eight remained recurrence free for 12 to 23 months. Of the five who relapsed, one 
achieved complete response to an anti‐PD‐1 antibody [74].

1.5  Peptides in Bone Diseases

As a molecular class, peptides are underrepresented in the treatment of bone 
disease. With the singular exception of calcitonin, used for the treatment of oste-
oporosis, most drugs approved for bone diseases have been orally adminis-
tered  –  small molecules such as estrogen, the selective estrogen receptor 
modulator, raloxifene (Evista®, Eli Lilly & Co.), and the bisphosphonates. The 
competitive landscape changed dramatically with the introduction of teripara-
tide and later abaloparatide, peptides, which have demonstrated restoration of 
osteopenic bone and a reduction in fracture rates.

1.5.1  Calcitonin

A 32 amino acid peptide first described in the early 1960s, calcitonin 
(Figure 1.6a,b), is secreted by the parafollicular cells of the thyroid gland and is 
responsible for maintaining calcium homeostasis and regulation of bone turno-
ver [75]. Because of its greater pharmacological potency, salmon calcitonin has 
been utilized in place of human calcitonin for most therapeutic applications. 
Initially approved in 1984 for the treatment of postmenopausal osteoporosis, cal-
citonin is currently also prescribed for Paget’s disease and hypercalcemia. Its 
anti‐resorptive activity at bone is mediated primarily through inhibition of oste-
oclast formation, although its precise mechanism is still not entirely clear. 
Clinical studies established that persistent parenteral administration of salmon 
calcitonin prevented postmenopausal bone loss and increased bone mineral 
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density (BMD) [76]. Later studies with daily injectable salmon calcitonin also 
demonstrated an ability to reduce the risk of both vertebral [77] and hip fractures 
[78]. In addition to its potent in vivo activity, salmon calcitonin is reported to 
exhibit high bioavailability by nasal administration, estimated at 10 to 25 %. This 
offers an important option, which has facilitated greater patient acceptance and 
compliance. Clinical results with nasal calcitonin (Miacalcin®, Mylan), however, 
have demonstrated only a modest 1.7 % increase in BMD in osteoporotic women 
after one year [79] and also appeared inferior in a 12 month study versus alen-
dronate [80]. The efficacy of nasal calcitonin in prevention of fractures is also less 
convincing, despite numerous clinical studies. A closer analysis of clinical trial 
data suggests that calcitonin pharmacology is, generally, more pronounced in 
patients with high bone turnover and established osteoporosis. The potential 
clinical utility of calcitonin is not limited to existing bone indications; it has also 
been investigated for its analgesic properties in the treatment of acute vertebral 
fracture pain [81] and osteoarthritis [82].

1.5.2  Parathyroid Hormone (PTH) (1–34) and (1–84)

Originally isolated by Collip in the 1920s [83], parathyroid hormone (PTH) was 
noted for its effects on calcium levels in the 1930s, but not fully investigated for 
its therapeutic potential until the 1970s. An early, small clinical study of 
21 patients with osteoporosis confirmed that PTH (1–34) dosed daily at 100 μg 
for 6 to 24 months resulted in significant increases in new bone formation, par-
ticularly in trabecular bone [84]. This proved to be a seminal finding supporting 
therapeutic use of the hormone, since chronic overexposure to PTH as observed 
in hyperparathyroidism leads to osteoporosis. Subsequently, a number of clinical 
trials established the efficacy of PTH (1–34) in the management of severe osteo-
porosis in postmenopausal women, particularly those who had suffered a previ-
ous vertebral fracture. These studies revealed improvements in a number of 
clinical end points such as trabecular and cortical bone mass, mineral content, 
density, and fracture healing [85]. Additional studies also confirmed the impor-
tance of intermittent exposure to PTH (1–34) to achieve optimal anabolic activ-
ity, rather than continuous dosing with persistent plasma elevation of the 
hormone [86]. PTH (1–34) offers unprecedented therapeutic benefits relative to 
calcitonin, the bisphosphonates, and estrogen, which achieve their effect primar-
ily through inhibition of osteoclast‐mediated bone resorption. These clinical 
results demonstrated the seminal point that pharmacology differs from 

(a)

X = Amino isobutyric acid (Aib)

C − G − N − L − S − T − C − M − L − G − T − Y − T − Q − D − F − N − K − F − H − T − F − P − Q − T − A − I − G − V − G − A − P — NH2

(b) C − S − N − L − S − T − C − V − L − G − K − L − S − Q − E − L − H − K − L − Q − T − Y − P − R − T − N − T − G − S − G − T − P — NH2

(c) S − V − S − E − I − Q − L − M − H − N − L − G − K − H − L − N − S − M − E − R − V − E − W − L − R − K − K − L − Q − D − V − H − N − F — OH

(d) A − V − S − E − H − Q − L − L − H − D − K − G − L − S − I − Q − D − L − R − R − R − E − L − L − E − K − L − L − X − K − L − H − T − A — OH

Figure 1.6  Structures of (a) human calcitonin, (b) salmon calcitonin, (c) teriparatide, and (d) 
abaloparatide.
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physiology and pathology [87]. Through careful selection of clinical dosing and 
intermittent administration, the biological outcome derived from PTH is com-
pletely reversed from bone loss to bone growth. PTH (1–34) pharmacological 
effects are largely the result of its anabolic properties, which include bone‐lining 
cell activation, osteoblast cell differentiation, and proliferation [88]. PTH (1–34) 
was approved in 2002 by the FDA for the treatment of osteoporosis in postmeno-
pausal women and men with high risk of fracture as teriparatide (Forteo®, Eli 
Lilly & Co.) (Figure 1.6c). Clinical data collected prior to and post FDA approval 
support Forteo as the first truly regenerative medicine that stimulates active 
bone formation and restores osteopenic bone to near normal health. Despite 
some initial controversy, which pertained to the prospect of irreversible effects 
of bisphosphonates, teriparatide has been shown to work well with their concur-
rent administration, presumably because of the additive anti‐resorptive effect of 
the oral agents [89]. The risks of teriparatide include increased blood calcium 
levels and osteosarcoma. The latter effect, which was specific to rodent studies, 
resulted in a restricted label with a clinical use limit of two years. The full‐length 
PTH (1–84) protein was marketed for osteoporosis indication in the European 
Union as Preotact® starting in 2006, until its withdrawal for commercial reasons 
in 2014. Currently, it is approved for the treatment of chronic hypoparathy-
roidism in the European Union (as Natpar®, Shire Pharmaceuticals) and the 
United States (as Natpara®).

1.5.3  Parathyroid Hormone Related Protein

Parathyroid Related Protein (PTHrP) and PTH signal through a common recep-
tor; however, there are notable differences in their respective modes of receptor 
interaction. A recent in vitro study examined the binding preference of PTH and 
PTHrP peptides to the R0 (G‐protein‐independent) and RG (G‐protein‐depend-
ent) conformations of the PTHr1 [90]. The findings indicated that while both 
PTHrP and PTH peptides bind to the RG conformation of PTHr1, the PTHrP 
ligands bind the R0 conformation with much lower affinity. The high RG selec-
tivity of PTHrP is characteristic of a transient signaling response and consistent 
with a pronounced anabolic effect relative to PTH. The recently approved 36 
amino acid fragment of PTHrP, abaloparatide (Figure  1.6d) (Tymlos®, Radius 
Health, Inc.), exerts qualitatively similar pharmacological effects as teriparatide, 
with several notable therapeutically significant differences. Studies in human 
osteoblast cells indicated that abaloparatide exerts a lesser effect on the expres-
sion of bone‐resorptive factors compared to teriparatide, supporting an overall 
greater net anabolic character than the latter [91]. Other clinical studies, notably 
a pivotal 18‐month Phase 3 study (ACTIVE) in 2463 postmenopausal women 
using abaloparatide, teriparatide, and placebo revealed respective vertebral frac-
ture rates of 0.6 %, 0.8 %, and 4.2 %, and non‐vertebral fracture rates of 2.7 %, 3.3 %, 
and 4.7 %. In addition, the study noted lower hypercalcemia rates for abalopara-
tide than for teriparatide (3.4 % versus 6.4 %), consistent with the hypothesis that 
the former agent exerts a lesser bone‐resorptive effect than the latter. While the 
overall results were supportive of greater efficacy of abaloparatide, the study 
noted slightly higher rates of adverse events for this agent [92].
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1.5.4  Incretin Peptides

Recently, a number of peptides have been investigated for their bone remodeling/
healing potential, and while these have not advanced into clinical trials, they never-
theless show promise. The growing interest in the extra‐pancreatic actions of GLP‐1 
and GIP has revealed a strong link between incretin activity, bone strength, and 
fracture reduction [93]. A bone‐densitometry study by Yamada [94] of GLP‐1 recep-
tor knockout mice and their littermate controls revealed cortical osteopenia and 
bone fragility in the receptor‐deficient animals, due to increased osteoclast resorp-
tion. GLP‐1 and exendin‐4 also reversed osteopenia in hyperlipidic and hyperca-
loric rat models [95, 96]. Clinical data, however, appear mixed as a meta‐analysis 
conducted by Su [97] found a significant decrease in bone fractures in patients 
treated with liraglutide, but an increase in patients treated with exenatide.

Preclinical evidence for a bone‐related benefit seems more compelling in the 
case of GIP. GIP overexpressing mice exhibited increased bone formation and 
decreased bone resorption [98], while GIP receptor deficient mice exhibited 
bone weakening including decreased cortical thickness, increased resorption, 
and decreased bone mineralization [99]. An important link to human biology 
comes from association of functional GIP receptor polymorphism Glu354Gln 
and fracture risk conducted by Torekov et al. [100]. The Glu354Gln substitution 
attenuates GIP signaling, resulting in lower insulin secretion and higher glucose 
levels. Women with this allele in a 10 year period were found to have lower bone 
density and greater fracture risk.

1.5.5  Bone Morphogenic Protein‐Derived Peptides

Bone morphogenic proteins (BMPs), members of the TGF‐β (transforming 
growth factor) family, play an important role in bone formation and develop-
ment [101, 102]. A number of peptide sequences derived from BMP proteins 
have shown potent osteogenic activity in animal models. Two peptides derived 
from BMP‐7, bone‐forming peptide‐1 and 2, stimulated differentiation of bone 
marrow stem cells in vitro and in vivo [103, 104]. Work with BMP‐9 identified a 
peptide that promoted the differentiation of pre‐osteoblasts and deposition of 
calcium, conditions required for bone mineralization [105, 106].

1.6  Peptides in Gastrointestinal Diseases

The treatment of gastrointestinal (GI) disorders has been one therapeutic area 
where peptide drugs played virtually no role until very recently. The low pH and 
presence of proteolytic enzymes have made the GI track particularly unsuitable 
for peptide drugs. Nevertheless, in the last six years three new important peptide 
drugs have been launched, each addressing unmet needs in GI disease states.

1.6.1  Glucagon‐like Peptide‐2

A 33 amino acid peptide secreted by entero‐endocrine L‐cells, glucagon‐like 
peptide‐2 (GLP‐2) exerts a number of effects on the GI tract. Most notably, it 
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increases intestinal nutrient absorption and the stimulation of intestinal growth 
mediated by the release of insulin‐like growth factor‐1, epidermal growth factor, 
and keratinocyte growth factor [107]. Much like GLP‐1, GLP‐2 has a short bio-
logical half‐life of approximately seven minutes, due to DPP‐IV inactivation. 
Teduglutide (Figure 1.7) is a DPP‐IV‐stabilized GLP‐2 analog where the native 
Ala at the second position is replaced by Gly. The clinical development of tedu-
glutide sponsored by NPS Pharmaceuticals focused on short bowel syndrome 
(SBS), a condition characterized by significant loss of bowel mass and function. 
Patients afflicted by SBS may lose sufficient absorptive function to the extent 
that they need to rely on parenteral support (PS) to maintain nutrient intake and 
electrolyte balance. A 21 day Phase II open label clinical study of teduglutide 
demonstrated a statistically significant increase in intestinal wet weight absorp-
tion in 15 of 16 patients [108]. The trial also noted favorable histological changes 
in most patients, specifically increases in villus height, crypt depth, and mitotic 
index. A subsequent Phase III study in SBS patients who had suffered intestinal 
failure met its primary end point, demonstrating a statistically significant reduc-
tion in PS requirements, as well as a secondary end point of allowing patients to 
gain additional days off PS, or entirely eliminating the need for it [109]. 
Teduglutide was approved by the FDA in 2012 for adults with SBS requiring PS 
support and marketed as Gattex® by NPS Pharmaceuticals. Zealand Pharma 
recently announced initiation of a Phase 3 trial of their GLP‐2 analog glepaglu-
tide in SBS.

1.6.2  Guanylate Cyclase‐C Agonists

The natriuretic peptide hormones guanylin and uroguanylin (Figure  1.8a,b 
respectively) are produced by the entero‐endocrine cells of the GI tract and sig-
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Figure 1.7  Structure of teduglutide.
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nal through the guanylate cyclase (GC‐C) receptors located on the intestinal 
enterocytes. Activation of the GC‐C pathway is essential for maintaining fluid as 
well as chloride and bicarbonate ion homeostasis within the GI tract, which are 
supportive of healthy intestinal transit [110]. Linaclotide (Figure 1.8c), a peptide 
closely related to guanylin and uroguanylin, was developed by Ironwood 
Pharmaceuticals for symptoms related to constipation‐predominant irritable 
bowel syndrome (IBS‐C). Oral administration of linaclotide to healthy volun-
teers was shown to be safe and efficacious with a dose‐dependent increase in 
stool frequency and weight [111]. Remarkably, the study also found no evidence 
of systemic absorption following oral dosing, suggesting that linaclotide works 
locally in the GI tract. In a subsequent placebo‐controlled Phase II study in 
patients suffering from IBS‐C, linaclotide improved bowel function in terms of 
frequency, severity of straining, stool consistency, and abdominal pain [112]. In 
a 26 week, double‐blind, placebo‐controlled Phase III trial in 804 patients, daily 
oral administration of 290  μg of linaclotide showed statistically significant 
improvements in the frequency of complete spontaneous bowel movements 
(CSBM) and a reduction of abdominal pain episodes [113]. Based on this as well 
as an additional Phase III clinical study linaclotide was approved by the FDA for 
adults suffering from IBS‐C and chronic idiopathic constipation (CIC) in 2012 
and marketed as Linzess® by Allergan and Ironwood Pharmaceuticals.

Plecanatide (Figure 1.8d) is a GC‐C agonist peptide structurally related to uro-
guanylin, differing only in the substitution of Glu3 for the native Asp3. Plecanatide 
reversed symptoms of acute and chronic ulcerative colitis in several animal mod-
els [114], suggesting that uroguanylin and possibly guanylin deficiency may be a 
causative factor in GI inflammation. Synergy Pharmaceuticals undertook the 
development of plecanatide for various gastrointestinal disorders. A Phase I clin-
ical study found plecanatide to be safe, and similarly to linaclotide, showed no 
evidence of systemic absorption [115]. A larger 12 week trial tested 3 and 6 mg 
doses of plecanatide or placebo in 1346 patients suffering from CIC. Both dose 
cohorts met the primary and secondary end points of significantly increasing 
CSBM and spontaneous bowel movements (SBM) [116]. The favorable results of 

(a) P − G − T − C − E − I − C − A − Y − A − A − C − T − G − C

(b) N − D − D − C − E − L − C − V − N − V − A − C − T − G − C − L

(c) C − C − E − Y − C − C − N − P − A − C − T − G − C − Y

(d) N − D − E − C − E − L − C − V − N − V − A − C − T − G − C − L

Figure 1.8  Structures of (a) guanylin, (b) uroguanylin, (c) linaclotide, and (d) plecanatide.
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this trial, as well as additional Phase III trials in CIC and IBS‐C patients, supported 
the FDA approval of plecanatide (Trulance®, Synergy Pharmaceuticals).

There are currently a number of peptide drugs in development for GI disorders 
and are summarized in a recent review [117]. These include larazotide, a peptide 
based on zonula occludent toxin, which is being advanced by Innovate 
Pharmaceuticals for celiac disease in patients who are symptomatic despite 
adhering to a gluten‐free diet [118]. Relamorelin, a ghrelin agonist, is being 
investigated for several GI conditions including CIC and gastroparesis, the latter 
a currently an unmet medical condition [119].

1.7  Emerging Trends in Peptide Drug Discovery

1.7.1  Cell‐Penetrating Peptides

The lack of membrane permeability, which effectively prevents access of various 
drugs to intracellular targets, is a common problem in drug discovery. Thirty 
years ago, novel peptides capable of transporting cargo across biological mem-
branes were termed cell‐penetrating peptides (CPPs). Members of this group 
range from 5 to 40 amino acids and have been successfully used to facilitate 
intracellular uptake of various cargoes including proteins, quantum dots, and 
siRNAs [120–122]. Recently, confirmation of the ability of CPPs to transport 
drug cargo safely into cells was demonstrated in preclinical and clinical studies. 
CPPs can be utilized in the form of a non‐covalent complex or as a covalently 
bound drug conjugate. CPPs fall into three major categories and they include 
cationic, amphipathic, or hydrophobic. A representative of the cationic class, 
which was also the first CPP family member identified, is the trans‐activating 
transcriptional (TAT) activator from human immunodeficiency virus 1 (HIV‐1) 
(see Figure 1.9 for the sequences of various CPPs) [123, 124]. The minimal HIV‐
TAT derived sequences required for transduction were characterized several 
years later [125, 126]. Another important CPP is penetratin, a minimized 16 
amino acid cationic sequence derived from Antennapedia, a homeoprotein of 
Drosophila melanogaster [127, 128]. Two examples of amphipathic CPPs con-
taining both hydrophilic and hydrophobic amino acids, are transportan [129] 
and the model amphipathic peptide (MAP) [130]. Hydrophobic CPPs such as the 
Pep‐7 peptide [131] are less common but are of particular interest as a result of 
their energy‐independent mechanism. The list of CPPs is growing and their use 
is being explored for the treatment of infectious diseases [132], inflammation 
[133], and cancer [134] with several candidates in late‐stage clinical development 

HIV-TAT (48–60) GRKKRRQRRRPPQ
RQIKIWFQNRRMKWKKPenetratin

Transportan GWTLNSAGYLLGKINLKALAALAKKIL
KLALKLALKALKAALKLAMAP
SDLWEMMMVSLACQYPep-7

Figure 1.9  Structures of various CPPs.
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[135]. The preferred CPP peptides used in preclinical and clinical trials today are 
generally based on the shorter TAT or penetratin sequences. Kai Pharmaceuticals 
(acquired by Amgen in 2012) had advanced at least two compounds containing 
TAT derivatives into clinical trials (KAI‐9803 [136], KAI‐1678 [137]). Sarepta 
Therapeutics, a company with multiple CPP‐based clinical candidates, has 
developed eteplirsen, a phosphorodiamidate morpholino oligomer (PMO) con-
jugated to a proprietary arginine‐rich CPP, to treat Duchenne muscular dystro-
phy, which received approval as Exondys 51™ [138]. Brimapitide, an arginine‐rich 
sequence combined with a c‐Jun‐N‐terminal kinase (JNK) inhibitor developed 
by Xigen, has received FDA fast track status for hearing loss treatment [139].

1.7.2  Macrocyclic Peptides

Natural product‐derived macrocyclic peptides, such as vancomycin and cyclo-
sporine, serve as an important historical precedent for peptide medicinal chem-
ists. As a class, macrocyclic peptides possess properties that are atypical of those 
of conventional peptides, particularly protease stability, and in the rare case of 
cyclosporine, even oral availability [140]. A wide variety of chemistries can be 
used to construct macrocyclic peptides including disulfide, thioether, head‐to‐
tail, and depsi‐peptide bonds [141, 142]. In general, as the size of the macrocycle 
increases, the structure becomes more flexible and susceptible to proteolytic 
degradation. Additional constraint in the form of a second ring not only enhances 
proteolytic stability but can also increase affinity and selectivity, an approach 
pioneered by Bicycle Therapeutics. The company is advancing BT1718, a bicy-
clic macrocyclic peptide, for the treatment of advanced solid tumors. A second 
clinical candidate based on this technology, THR‐149, a novel plasma kallikrein 
inhibitor for the treatment of diabetic macular edema, is being developed by 
Thrombogenics. PeptiDream has combined genetic code reprogramming to 
incorporate non‐proteinogenic amino acids into vast libraries of macrocycles. 
The company’s proprietary Peptide Discovery Platform System (PDPS) uses 
Flexizymes, artificial ribozymes capable of charging tRNAs with unnatural 
amino acids [143]. Aileron Therapeutics has applied the Grubbs olefin metath-
esis to construct “stapled peptides,” which exhibit remarkable protease stability 
as well as unique ability to engage intracellular targets such as BCL‐2 and MDMX 
and MDM2, by virtue of their covalently stabilized α‐helical structure  [144]. 
Aileron has used this platform to deliver their ALRN‐6924 clinical candidate, an 
MDMX/MDM2 inhibitor currently in multiple Phase 1 and 2a clinical trials for 
the treatment of advanced solid tumors, peripheral T cell lymphoma (PTCL), 
acute myeloid leukemia, and advanced myelodysplastic syndrome [145]. Other 
companies focusing on the development of therapeutics based on cyclic peptides 
include Ra Pharma and Polyphor.

1.8  Summary

The peptide therapeutic class has experienced significant growth in recent years, 
as is evident from the approved and late‐stage clinical programs highlighted in this 
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chapter. However, a comprehensive survey of earlier clinical and preclinical efforts 
suggests that this growth will accelerate in the future as peptides impact multiple 
therapeutic areas. A key reason for this trend is the inherent efficacy of peptide 
drugs in restoring normal physiological function to patients suffering from diabe-
tes, osteoporosis, and other chronic diseases. This attribute has often enabled pep-
tides to compete successfully against less efficacious oral agents. One example is 
the commercial success of injectable GLP‐1 agonists when competing against 
orally administered DPP‐4 inhibitors. Another is the superior performance of 
injectable PTH (1–34), relative to the oral bisphosphonates. The traditional advan-
tages of oral agents over injectable drugs have recently narrowed through intro-
duction of extended duration peptide analogs, which prolong the dosing interval 
from days to weeks or even longer. Additionally, a number of recently introduced 
peptide drugs such as the GC‐C agonists can be delivered orally, and several more 
orally administered peptide candidates are in late stage clinical trials. Innovative 
concepts such as cell‐penetrating peptides, stapled peptides, and peptide–drug 
conjugates promise to enable engagement of diverse, previously inaccessible 
targets. We anticipate that the above trends will expand the niche for peptide ther-
apeutics in the pharmaceutical armamentarium of the future.
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