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1.1 Introduction

Nanobiotechnology — a revolution in “biomedical engineering,” “nanomaterials
synthesis,” and characterization activities — rules the subfield of biomedicine.
One nanometer, or meters, is the length of a single sugar molecule. A cubic
nanometer provides only enough room for a few hundred carbon atoms. Since
it may never be possible to create novel arrangements of subatomic particles,
a nanometer represents the approximate lower limit on the size of technology.
The dream of nanoscale computing was first brought to prominence by Richard
Feynman in his 1959 speech to the American Physical Society. As he put it,
“there’s plenty of room at the bottom.”

This emerging technology will usher in new possibilities in computation:
molecular electronics, DNA computing, disease diagnosis, target-specific drug
delivery, molecular imaging, and more. Nanoscale architectures must function
correctly even when individual devices fail.

In a layman’s terminology, applying nanotechnology for treatment, diagnosis,
monitoring, and control of diseases is usually referred to as “nanomedicine.”
Nanobiotechnology deals with the construction and application of various
nanomaterials particular to pharmacy and medicine; it has enormous potential
to solve critical issues of important human diseases. For example, the advanced
drug delivery, imaging/diagnosis, theranostics and biosensors, and their appli-
cation to cure patients with cancer, diabetes, cardiovascular disease, and other
diseases reflect the advancement in the field of nanotechnology.

Nanotherapeutics and nanodevices, since explored, have proved to shed enor-
mous positive impacts on human health. Examples include nanoparticles (NPs)
for the delivery of small molecule drugs, proteins, DNAs, siRNAs, and messenger
RNA (mRNAs) for different kinds of therapy (e.g. chemotherapy, gene therapy;,
immunotherapy, etc.) via different administration pathways (e.g. oral administra-
tion, intravenous injection, inhalation, etc.), brand-new nanomaterials for novel
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Figure 1.1 Organ/tissue/cell/subcell levels.

treatment approaches (e.g. photothermal therapy, photodynamic therapy, radio-
therapy, etc.), and multifunctionalized nanoagents for imaging (e.g. photoacous-
tic tomography, fluorescent imaging, computed tomography, magnetic resonance
imaging, etc.), as well as the development of novel nanotechnology-based diag-
nosis/detection approaches.

Implementation of nanobiotechnology in pharmacology means that
“nanoformulations and nanodevices” are technically designed to interact
with organ/tissue/cell/subcell levels (see Figure 1.1) of the body with special
multistage and multiscale properties, achieving maximum efficacy with minimal
side effects.

The superparamagnetic NPs are used in the field of biomedicine for multiple
applications. These magnetic nanoparticles (MNP) when manipulated by mag-
netic fields can be used for the hyperthermia treatment of cancerous cells and for
the purification and separation of biomolecules and whole cells. Lee et al. (2010)
verified through laboratory experiments that the composite NPs can be used for
the separation and sensing of template molecules (the human serum albumin in
urine). Some routes to NP synthesis are presented in Figure 1.2. Thus the MNPs
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Figure 1.2 Nanoparticle synthesis routes. Source: Sohail et al. (2017). Reproduced with
permission of Elsevier.
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Figure 1.3 Time scales for biological processes.

are used in a variety of ways in the field of biomedicine and therapeutics, and
their successful application in all such fields requires detailed understanding of
their pre- and post-application requirements.

Computational approaches, when interfaced, allow the modeling and simula-
tion of complex nanometer-scale structures. The predictive and logical power of
computation is essential to success since the insight provided by computation
should allow us to reduce the development time of a working “dry” nanotechnol-
ogy (derived from surface science and physical chemistry) to a few decades and
it will have a major impact on the “wet” (study of biological systems that exist
primarily in a water environment) side as well.

Computational nanobiotechnology encompasses not only research into these
exciting new approaches but also how to interface them. Theoretical, computa-
tional, and experimental investigations of target-specific drug therapy and meth-
ods for early diagnosis and treatment of diseases are all a part of the paradigm,
breaking set of concepts we call “computational nanobiotechnology.” Develop-
ment of computational approaches to deal with noise at nanoscale is challenging.
For example, computational nanotechnology can deal with the stochastic assem-
bly and fault-tolerant (two fundamental and complex challenges, not specific to
a particular type of manufacturing process) issues more swiftly. One important
feature of computational research is that it can not only analyze the physical prob-
lems in temporal and spatial frames and different levels (see Figures 1.1 and 1.3)
separately but also can further analyze the different molecular, cellular, and sub-
cellular interactions and dynamics using multiscale and multiphase approaches.

In this chapter, we have made an attempt to summarize elementary as well as
recent advances in the field of computational nanobiotechnology. This chapter
is divided into five sections: Section 1.1 provides an overview of the concept,
and the rest (Sections 1.2, 1.3, and 1.4) provide an overview of the subfields of
nanobiotechnology, i.e. the disease diagnosis, treatment and drug delivery, and
corresponding computational approaches. In Section 1.5, some traditional as well
as some novel computational techniques are summarized.

1.2 Nanobiotechnology in Disease Diagnosis
Currently, physical properties such as cell stiffness (cell mechanobiology) are

being used in different fields of biomedicine, such as in the field of oncology,
and Young’s modulus is used to distinguish malignant cancerous cells from
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benign cells (Suresh 2007; Guo et al. 2018). The peptide self-assembly, which
relates structures to molecular activities and mechanical properties, has also
been studied recently. As reported by Knowles et al. (2014), there are now
approximately 50 disorders, with a multitude of disparate symptoms. The
pathological protein components inside the cerebral spinal fluid (CSF) and
blood undergo macro- to nanolevel physical changes. Such changes include
the formation of protein aggregates that reflect disease advancement. The
nanoscale characterization may help to detect these components and their
physical changes during the aggregation. Such approach(es) may be termed as
new class of “physical biomarkers” for disease diagnosis.

Nanosphere (Northbrook, Illinois) is one of the companies that developed
techniques to optically detect the genetic compositions of biological specimens.
Nanogold particles studded with short segments of DNA form the basis of
the easy-to-read test for the presence of any given genetic sequence. The
engineering of nonlinear nanoplasmonic materials for biological applications
requires detailed understanding of their physical properties. Recently, Lachaine
et al. (2016) provided important physical insights on the influence of materials
on nanocavitation and simulation-based design. Recently, Yue et al. (2017)
presented their results and proposed that this approach may provide a potential
measure to determine how alterations to the nanomechanics and nanomorphol-
ogy of proteins in patients’ CSF and blood reflect and affect Alzheimera€™s
disease onset and pathogenesis. Similarly, Wong (2006) discussed the role of
nanotechnology in salivary diagnostics.

1.2.1 Application of Nanoparticles for Discovery of Biomarkers

Biomarkers are combined with NPs (Chinen et al. 2015; Lin et al. 2016; Howes
et al. 2014) for the medical diagnostic applications. Such biomarkers are usually
based on proteins, antibody fragments, and DNA and RNA molecules. This
technology is promising in a sense that it will make the early detection and
treatment of cancer possible in the near future, as reported by Altintas (2017).
Similarly, the modeling and characterization of kinetic regulatory mechanisms
in human metabolism with response to external perturbations by physical
activity is reported by Breit et al. (2015). Their presented modeling approach
demonstrates high potential for dynamic biomarker identification and the
investigation of kinetic mechanisms in disease or pharmacodynamics studies
using multiple sclerosis (MS) data from longitudinal cohort studies.

The quantitative structure—activity relationship (QSAR) is another emerging
subfield of nanobiotechnology. It uses the relationships to predict various
biological responses after exposure to nanomaterials for the purposes of risk
analysis. This risk analysis is applicable to manufacturers of nanomaterials in
an effort to determine potential hazards. Because metal oxide materials are
some of the most widely applicable and studied NP types for incorporation into
cosmetics, food packaging, and paints and coatings, we focused on comparing
different approaches for establishing QSARs for this class of materials. Metal
oxide NPs are believed, by some, to cause alterations in cellular function due
to their size and/or surface area. Others have said that these nanomaterials,
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because of the oxidized state of the metal, do not induce stress in biological tests
systems (Sayes and Ivanov 2010).

Another computational approach, by utilizing the density functional theory
(DFT) and time-dependent DFT, has been utilized by Michos and Sigalas (2018)
to explore the energy levels and absorption spectra of defected ZnS NPs. In gen-
eral, this type of defect moves the absorption spectra in lower energies, thus
bringing the absorption edge into the visible spectrum, while the unperturbed
NPs have absorption edges in the UV region. In addition, ZnS NPs are made from
more abundant and less toxic elements than the more commonly used CdSe NPs.
For that reason, these are used in biosensing applications as biomarkers.

1.2.2 Nanotechnology-based Biochips and Microarrays

The biochip is a microarray (a collection of miniaturized test sites) arranged
on a solid substrate that permits many simultaneous tests to be performed,
allowing higher-throughput volume and speed. One of the more promising uses
of biochips is isolation and analysis of individual biomolecules, such as DNA.
This capability could lead to new detection schemes for cancer. The construction
of silicon nanowires on a substrate, or chip, using standard photolithographic
and etching techniques, followed by a chemical oxidation step that converts the
nanowires into hollow nanotubes, is an example of this subfield of research.
Protein microarrays for the study of protein function are a developing field of
research since the proteins to spot on the arrays are a challenging task. Protein
nanobiochips utilize nanotechnology-based biochips and microarrays. Extensive
literature review equipped with recent advancement in this field may be obtained
from Altintas (2017). It is emphasized that robust computational research may
lead to successful development of the sensing technology.

1.2.3 Detection via Semiconductor Nanocrystals

Enzymes are essential in the human body, and the disorder of enzymatic activities
has been associated with many different diseases and stages of disease. Lumi-
nescent semiconductor nanocrystals, also known as quantum dots (QDs), have
garnered great attention in molecular diagnostics. Owing to their superior opti-
cal properties, tunable and narrow emissions, stable brightness, and long lifetime,
QD-based enzyme activity measurement has demonstrated improved detection
sensitivity, which is considered particularly valuable for early disease diagnosis.
Recent studies have also shown that QD-based nanosensors are capable of prob-
ing multiple enzyme activities simultaneously. The review provided by Knudsen
et al. (2013) highlights the current development of QD-based nanosensors for
enzyme detection.

The synthesis and multifunctionalization of upconversion nanocrystals with
controlled size, shape, and dissolution properties is really challenging. On
the other hand, the nonspecific binding and loss of biological activities at
multiscales requires serious attention. It is anticipated that advancement in
bioconjugate techniques will certainly lead to enhanced long-term performance.
The nanocrystals impact on living systems is discussed by Gnach et al. (2015).
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Though highly informative, the results that have confirmed low levels of cellular
cytotoxicity in short-term assays may not be applicable to normal physiological
conditions.

It is believed that the surface impacts emissive behavior (Klimov 2003). The
computational techniques can help to improve the yield. Recently, Krause and
Kambhampati (2015) reported the developments in ligand chemistry and spec-
troscopic and computational approaches used for advancing the poorly under-
stood electronic structure of the surface.

1.2.4 Nanoscale Sensor Technologies for Disease Detection via
Volatolomics

Many infections may remain undiagnosed due to the inefficiency of available
treatments or due to other reasons. Inexpensive, efficient, and minimally invasive
technologies are thus desired (i) to allow early detection of diseases, (ii) to strat-
ify the population for personalized treatment and therapy, and (iii) to improve
the usefulness of swift bedside evaluation of treatment. Some recent techniques
have been reported, based on the chemical processes involved in highly volatile
organic compounds (VOCs). The VOCs are emitted from body fluids, such as
breath, skin, urine, and blood. A compact name of this field of research is “vola-
tolomics.” It is believed that the human breath contains two hundred plus VOCs,
which can be detected at the trace level down to the part-per-trillion (ppt) range.

Quantitative analysis and classification of potential disease biomarkers can be
seen as the driving force for the analysis of exhaled breath. The ingestion of iso-
topically labeled precursors producing isotopically labeled carbon dioxide and
potentially many other metabolites is used in breath tests. The exogenous VOCs,
penetrating the body as a result of environmental exposure, can be used to mea-
sure body burden. Details of environmental exposure and the health risk assess-
ment may be obtained from the book authored by Asante-Duah (2017).

Several experimental and computational tools have been used in the lit-
erature (Vishinkin and Haick 2015 and the references therein) (i) to choose
nanomaterial-based sensors for the correct targeting of volatile markers and (ii)
to identify the specific limitations on the application of the sensing approach.
The computational techniques used in this field of research include both the
numerical and statistical approaches. More precisely, algorithm-based tech-
niques (Kog et al. 2011; Nakhleh et al. 2017; Vishinkin and Haick 2015) have been
adopted in the recent literature. For example, artificially intelligent nanoarrays
have been used in the literature to analyze the targeted VOCs. The schematic
diagram (Figures 1.4 and 1.5) is designed to interpret the multicomponent
nature of the samples. During the first step, the key compounds of the unknown
sample are identified through spectrometry and spectroscopy methods. These
classifications help out in a quick selection of sensor array components according
to the polarity, dielectric constant, size, and steric effect of the key compounds.

Another example of computational analysis of VOCs is the accurate detection
and monitoring of disease with volatolomics. Once again, artificially intelligent
sensing arrays have been used by Nakhleh et al. (2017) (Figures 1.6 and 1.7
schematically describe the different stages of artificially intelligent olfaction
analysis).
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Figure 1.5 Spectrometry results as depicted in Figure 1.4, when processed via artificially
intelligent (Al) nanoarrays, lead to decision of solid or flexible sensors and other steps involved
in decision making.
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1.3 Nanobiotechnology in Treatment

Nanobiotechnology is serving the clinicians in treating different diseases
including cancer. A consequence of this field is the advancement in the field
of green nanotechnology with minimum side effects. Green nanotechnology
has fascinated the nanotechnologists since it is composed of processes with
reduced toxicity. The biosynthesis of metallic NPs by plants is currently under
improvement. The biological methods of NP preparation include the usage of
microorganisms, enzymes, fungi, and plants or plant extracts. Recently Sohail
et al. (2017) discussed the important features of nanotechnology and specifically
the advancement in hyperthermia treatment.

1.4 Nanobiotechnology in Target-specific Drug Delivery

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of
the drug and its target-specific delivery require detailed analysis. The in silico
computational approaches have been reported by Bunker et al. (2016), Sohail
et al. (2018). In addition, the multifunctionality, complexity, and emergent
properties of NP-based systems create additional and unique challenges. In this
section, some recent techniques are summarized.

1.4.1 Future of Giant Magnetoresistance (GMR) Sensors: An
Alternative to the Traditional Use of Enzymes, Radioisotopes, or
Fluorescent Tagging

Giant magnetoresistance (GMR) sensors have been applied to biological devices
to detect magnetic labels. These sensors are used primarily in the read heads of
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magnetic hard drives and in magnetoelectronic components such as magnetic
isolators. Their growing demand in the field of bionanotechnology cannot be
denied. It has remained a challenge to expand the application of GMR sensor
technology to be a robust tool for biomedical applications such as immunoassays
and filtration processes.

The use of GMR sensors in this context may provide an alternative to the tra-
ditional use of enzymes, radioisotopes, or fluorescent tagging. There are several
open problems in this field of research, such as how to evaluate the capability
of this technology to achieve novel biomedical targets, how to develop advanced
designs of such sensors for practical applications, and how to simulate their effi-
ciency using robust solvers.

Different research groups over the past decade evaluated the use of GMR
sensors to trap and count small concentrations of MNPs (Beveridge et al.
2011; Serrate et al. 2012). Microfabricated GMR sensor arrays have the poten-
tial to detect low concentrations of MNPs in macroscale sample volumes
(I0MNPmI™) at macroscale processing rates (11Jmin~'). Microfluidic
channels allow for continuous flow within the sensors’ limited detection range.
GMR sensor elements and microfluidic channels can be arrayed to increase the
processing rate of the device. Such devices would make magnetic detection of
magnetic labels more feasible for robust “immunoassays” and “filtration studies.”

1.4.2 Drug Delivery via Hyperthermia

Recently, Sohail et al. (2017) discussed the importance of hyperthermia treatment
in the field of drug delivery. The effective dose delivery of chemotherapeutics
to the interior of tumor is hampered by ill-developed perforated vasculature.
Hyperthermia improves blood flow and oxygenation to the tumor core, insti-
gating an escalated drug uptake by the deep seated regions without affecting
the healthy cells. Therapeutic efficacy is further fortified by direct cytotoxic
effect of hyperthermia that includes many extracellular and intracellular degra-
dation processes. High thermal dose results in elevated expression of heat
shock proteins (HSP) in malignant cells at the temperature range of 41-45°C.
Moreover, membrane permeability and cytoskeleton structure of the cancer
cells is changed, resulting in degradation processes such as protein folding,
denaturation, aggregation, and DNA cross-linking. This apoptotic signaling cas-
cade of events induces programmed demise of malignant cells. Thus combined
approach eliminates most of the cancer cells while leaving resistant cells more
susceptible to adjuvant therapies. Synergistic application of hyperthermia with
radiation increases the vulnerability of cancerous cells. Thermal shocks result in
aggregation of nuclear proteins. Consequently sensitized and already denatured
cells are easily killed by radiation, leading to highest thermal enhancement ratio
(TER). TER is defined as “ratio of radiation sensitivity at 37.5 °C to the sensitivity
at elevated temperatures.”

In recent years term hyperthermia has got broadened meaning involving
therapy along with magnetically modulated drug delivery by heating. Increased
interstitial pressure and impaired blood supply are the main reasons of sporadic
drug delivery to solid tumors. Specially tailored multifunctional MNPs for
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hyperthermia provide an opportunity for spatiotemporal control release of
drug at specific target. Studies have shown that MNP-based hyperthermia
can also be employed as potentially useful magnetothermally triggered drug
delivery system. Review of the current literature shows that most of the
investigation studies utilized iron oxide MNPs for hyperthermia-based drug
delivery. Experimental results revealed that major ongoing challenges of this
strategy for preclinical trials include optimization of MNP properties along
with elimination of toxicity, biocompatibility and clearance, induction and
maintenance of therapeutic temperature, thermal tolerance, and self-regulation
(Sohail et al. 2017).

1.5 Computational Approaches

The traditional experimental techniques, when interfaced with the compu-
tational methods, help to validate the hypotheses more swiftly. The recent
biotechnology news includes many amazing facts such as “Gene therapy
can potentially correct genetic disorders by directly editing defective genes”
(Nakajima et al. 2018), “Green nanotechnology and the anti-cancer effect of
a daffodil extract” (Pellegrino et al. 2018), and “New Bioartefacts and Their
Ethical and Societal Consequences,” which has been recently reported by
Salgado (2018). “Metrology and nano-mechanical tests for nano-manufacturing
and nano-bio interface: Challenges & future perspectives” has been discussed
by Koumoulos et al. (2018). In all such disciplines of bionanotechnology, the
advanced computational techniques, such as the deterministic, stochastic,
and statistical techniques, have played a vital role. Additionally, computer
simulations allow for theory to propose areas of interest to which experimental
techniques may be applied.

Knowledge representation/reasoning, machine learning, statistical pat-
tern recognition, and natural computing or soft computing contribute as
imperative elements in the fields of science and engineering. With some
modifications in nanotechnology characteristics, these techniques can be
implemented to control the “nanoformulations and nanodevices” interacting
with organ—tissue—cell-subcell levels and kilo, milli, micro, or other temporal
scales (Figures 1.1 and 1.3). Soft computing methods are believed to overcome
concerns about harmful implications of nanotechnology and are thus trusted
to provide benchmarks in the field of designing biomaterials and application
of nanotechnology and nanostructured surfaces for biophysics, cell biology
research, and other subdisciplines of bionanotechnology.

Different probabilistic approaches have been used in the literature to model
the disease diagnostics. Heckerman (1990) provided a probabilistic model for the
diagnosis of multiple diseases. In the model, diseases and findings were repre-
sented as binary variables. An algorithm for computing the posterior probability
of each disease, given a set of observed findings, called QuickScore, was pre-
sented. The order for the time complexity of the algorithm was obtained.
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1.5.1 Computational Model of Drug Targeting

Current research on methods to target chemotherapy drugs in the human body
includes the investigation of biocompatible magnetic nanocarrier systems. For
example, magnetic liquids such as ferrofluids can play an important role as drug
carriers in the human body (Altintas 2017). As such, they can be used for drug
targeting in modern locoregional cancer treatment. A remaining challenge for
this medical application is the choice of clinical setting. Important parameters
are optimal adjustment of the external magnetic field and the choice of ferrofluid
properties.

Avoiding damage to healthy human cells from chemotherapy drugs imposes an
upper limit in the treatment dose. This limit impedes the chances of successful
treatment of the tumor cells. One objective of modern cancer research is there-
fore to concentrate chemotherapy drugs locally on tumor tissue and to weaken
the global exposure to the organism.

Consider a computational model of the blood ferrohydrodynamics. This model
demonstrates a simple setup for investigating an external magnetic field and its
interaction with blood flow containing a magnetic carrier substance. The liquid
will be treated as continuum during the simulations. The model can further
be interfaced with the particle tracing model to interface it with the current
challenges of drug-targeting approaches. The equations and theory are based on
Maxwell’s equations and the Navier—Stokes equations. The coupled solver first
solves Maxwell’s equations in the full modeling domain. It consists of permanent
magnet, blood-vessel, tissue, and air domains. A magnetic volume force then
couples the resulting magnetic field to a fluid flow problem in the blood-vessel
domain described by the Navier—Stokes equations. In Figure 1.8, the top panel
describes the schematic and the mesh discretization, whereas bottom panel
shows the magnetic potential and surface velocity.

1.5.2 Computational Model of Electrical Activity in Cardiac Tissue

Cardiac tissue engineering has rapidly progressed during the past decade, as
reported by Hirt et al. (2014) and later on by Fleischer et al. (2017). The threshold
values, for the fabrication of biomaterials in cellular microenvironments, can
be recognized with the aid of computational techniques. The use of inorganic
NPs and nanodevices for improved performance of engineered tissues and the
main challenges and prospects of applying nanotechnology in tissue engineering
is discussed by Fleischer and Dvir (2013). It is anticipated that the integrated
tissue engineering with complex electronics will provide the therapeutic control
of cardiac function. A detailed study has been provided by the research group
(Feiner et al. 2016).

There has been a growing trend toward applying conducting polymers for
electrically excitable cells to increase electrical signal propagation within the
cell-loaded substrates. A novel approach was presented by Baheiraei et al. (2014).
The potential application of bioelectroactive polyurethane was discussed (as a
platform substrate to study the effect of electrical signals on cell activities).

11
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Figure 1.8 Finite element modeling of blood ferrohydrodynamics.

Let us consider a computational model of electrical activity in cardiac tis-
sue. This model will provide a helpful tool in understanding the patterns of
contractions and dilations in the heart. We will now consider two models to
describe different aspects of electrical signal propagation in cardiac tissue:
(i) the FitzZHugh—Nagumo equations and (ii) the complex Ginzburg—Landau
equations, both of which are solved on the same geometry using COMSOL
Multiphysics finite element solver (Dickinson et al. 2014). Interesting patterns
emerging from these types of models are, for example, spiral waves, which, in
the context of cardiac electrical signals, can produce effects similar to those
observed in cardiac arrhythmia. In Figure 1.9, panel (a) shows the discretization
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750

(a)

Figure 1.9 Finite element modeling of electrical activity in cardiac tissue.

of the domain, whereas panel (b) shows the diffusing species, displaying the
characteristic spiral patterns. This model can be extended to incorporate with
the complex electronics as anticipated by Feiner et al. (2016).

1.5.3 Computational Model of Fringe Field Effect

As communicated in Section 1.4.1, the GMR sensors can be used, while modeling
biological devices, to detect magnetic labels. When it comes to computational
approach, an inverse method can be used to utilize the effect of fringe fields
present on the periphery of the GMR elements, thus changing the GMR response
per MNP. The study of a solution containing MNPs, flowing through microfluidic
channels parallel to the GMR sensor’s edge, under Poiseuille flow, can demon-
strate such approach. In Figure 1.10, a schematic of the fringe field effect between

Figure 1.10 Finite element modelling of fringe field effect in a micro device.
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Figure 1.11 Penetrance functions (tables), broad-sense heritability (h), total entropy (H), and
interaction graphs for a dominant main effect model (a), a dominant-by-dominant interaction
model (b), and a nonlinear interaction model based on the XOR function (c). Note that the
entropy estimates in the interaction maps recapitulate the genetic models. Source: Moore

et al. (2006). Reproduced with permission of Elsevier.

two sensors is presented. For further information on the device design concept,
modeling, and computations, some useful sources may be accessed (Pankhurst
et al. 2003; Hamdi and Ferreira 2008; Rani 2014). With the passage of time, and
with the advancement in the field of nanotechnology, more advanced and accu-
rate algorithms (e.g. Figure 1.11) and computational models have commercially
launched.

1.5.4 Computational Model of Nanoparticle Hyperthermia

The nanofluid infusion and the subsequent thermal activation of the infused
NPs are two critical stages during the hyperthermia treatment. A computational
model can demonstrate such stages in a noninvasive and time-efficient manner.
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A simplified analytical technique was adopted by Pizzichelli et al. (2016)
to predict the NP concentration profile during the infusion process. The
concentration profile was then exploited to depict the steady-state temperature
profile. The important features such as the tissue heterogeneity, poroelasticity,
blood perfusion, and NPs absorption onto tissue were taken into account.
Such mathematical models can be used for planning real procedures. The work
can further be extended by taking into account the NP synthesis and relevant
parametric values.

Recent advances in the field of computational nanobiotechnology can be uti-
lized to model and predict the nanofluid infusion, thermal activation, and drug
therapy during NP hyperthermia treatment. The discrete and hybrid mathemat-
ical models such as the models presented by Sohail et al. (2017) and Tang et al.
(2018) can be extended to optimize such factors.

1.5.5 Hybrid Models in Computational Nanobiotechnology

The field of nanobiotechnology has become an important ingredient while man-
ufacturing the devices for the drug discovery, disease diagnosis, and treatment.
Nanoscale studies are not limited to single-scale ideology due to their applied
nature. The variation in scale is a natural requirement and is somehow really
challenging while optimizing the parametric values associated with such studies.
Computational nanobiotechnology helps to analyze the multiscale, multidimen-
sional, and multiphase dynamics of each problem in novel way. Recently, the
research group Valverde and Orozco (2016) discussed the hybrid techniques,
such as the ultrasequencing techniques (NGS) and the cheaper options of
genome reading techniques. Such techniques depend on the “metabolic inter-
relations” and “unstable biological circuits.” They discussed some examples of
DNA nanotechnology (molecular structure of insulin), which provide rapid
translational (bioinformatics) services for the diagnosis and prognosis. Similarly
Kim et al. (2013) discussed the recent advances and limitations in the analysis
and control of mechanical, biochemical, fluidic, and optical interactions in the
interface areas of nanotechnology-based materials and living cells in both in
vitro and in vivo settings. Biological applications using hybrids of nucleic acids
and CNTs were discussed by Umemura (2015). In the recent literature, several
hybrid models are presented to detect complex stages of the cancer invasion and
to design treatment strategies accordingly. Thus hybrid models are required at
nano-, micro-, and mesoscales in the field of computational nanobiology and
biotechnology, for example, the models presented by He et al. (2015), Belkahla
et al. (2017), and Zhang et al. (2017a).

1.5.6 Machine Learning for Detection and Diagnosis of Diseases

Machine learning is basically an algorithm-based field of research, consists of
powerful tools that can extract relevant information from massive and noisy data
sets, and is thus serving successfully in the field of science and engineering. Such
algorithms are capable of adapting their structure (e.g. parameters) based on a
set of observed data, with adaptation done by optimizing over an objective or
cost function. It is thus a rapidly growing technical field, lying at the intersection
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of computer science and statistics and at the core of artificial intelligence and
data science.

Understanding of the physical properties of the assemblies of atoms of vari-
ous sizes is desired at different stages such as manufacturing and application of
nanosystems. Continuous mathematical models are used at several occasions,
under limitations, such as the Schrédinger equation that is used for the hydro-
gen atom and ions with only one electron. For larger atoms and molecules, robust
numerical solvers are required. Machine learning can be an efficient alternative
to numerical computations. During the recent era, this technique has been used
to accelerate the drug discovery techniques. As compared with the traditional
approaches, the computer-aided techniques may swiftly provide a range of pos-
sible compositions. Recently Durrant and Amaro (2015) discussed the feasibility
of machine learning in identifying the experimentally validated antibiotics.

Machine learning is also used to propose increasingly accurate and low-cost
drug target methods. Simultaneous use of systems biology and machine learning
has been used in the literature to access gene and protein druggability. Kandoi
et al. (2015) discussed the open challenges and recent advances in this field of
research.

Bayesian and probabilistic techniques are adopted in machine learning
domains, where uncertainty is a necessary consideration. The well-developed
Bayesian inference methods are well suited for incorporating sources of noisy
measurements and uncertain prior knowledge into the diagnostic process. A
relatively popular application of Gaussian processes is the hyperparameter
optimization for machine learning algorithms. The choice of technique depends
on the type of the data set. Some frequently used techniques are listed in
Table 1.1.

1.5.6.1 Machine Learning and Recent Bioinformatics: Case Studies

In vivo magnetic resonance spectroscopy imaging (MRSI) is a noninvasive
approach. It allows characterization and quantification of molecular markers for
improving disease detection and treatment. MR spectra across a volume of tissue
with common nuclei are acquired from MRSI. Machine learning approaches
help to integrate MRSI with structural MRI and are thus promising to improve
the assessment of soft tissue tumors (i.e. brain). Similarly, MS, which is an
inflammatory disorder of the brain and spinal cord (affecting approximately 2.5
million people worldwide), can be detected and treated with the utility of MRSI
interfaced with machine learning. For example, Ion-Margineanu et al. (2017)
classified the MS courses, using “features extracted from MRSI” combined with
“brain tissue segmentations of gray matter, white matter, and lesions.” Different
classifiers were used, and results were obtained after training “support vector
machines (SVMs)” with Gaussian kernel on the stated problem.

Machine learning has successfully progressed in the field of genomic medicine.
As stated by Leung et al. (2016), “one of the goals of genomic medicine is to
determine how variations in the DNA of individuals can affect the risk of
different diseases, and to find causal explanations so that targeted therapies can
be designed.” The relationship between the cell variables and with the disease
risk can be modeled with the help of machine learning. Such cell variables
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Table 1.1 Recent machine learning approaches with applications.

Technique

Recommended for

Application

MRSI

Linear discriminant analysis
(a linear classification
technique)

Random forest regression

Uncertainty sampling

Hu moment invariants
(HMI) and TSVM

Random forest classifier

Weighted-type fractional

Fourier transform

mRNA

Perturbation theory

For more than two classes

Ensembled learning
method for classification
and regression

Active learning approach

Rapid computer-aided
diagnosis system

For quality control of the
spectra

Spectrum extraction

For the management of
ruminant growth yield

For the identification of

Classification of MS courses
(Ion-Margineanu et al. 2017)

For measuring brain tissue
metabolite levels in vivo
(Das et al. 2017)

For efficient labeling in
automatic quality control
(de Barros et al. 2017)

Pathological brain detection
(Zhang et al. 2017b)

Pedrosa de Barros et al.
(2016)

To classify brain images
Zhang et al. (2015)

Ran et al. (2016)

Mort et al. (2014)

MutPred Splice
coding region
substitutions that disrupt
pre-mRNA splicing

include gene expression, splicing, and proteins binding to nucleic acids, which
can all be treated as training targets for predictive models. Thus it is anticipated
that machine learning can prove to be an imperative tool to explore intracellular
networks and dynamics.

Another example is the SVM, which has been used as a machine learning tool
to analyze the gene expressions measured via microarrays. Microarrays measure
mRNA in a sample through the use of probes, which are known affixed strands of
DNA. mRNA is fluorescently labeled and those that match the probes will bind.
Concentration is measured via the fluorescence. The signals can thus be seen as
a set of intensities within a known probe matrix. Some applications of machine
learning to explore mRNA are discussed in Table 1.1. In this chapter, we have
outlined some of the applications of machine learning in the field of nanobiotech-
nology. The field is diverse and is rapidly growing; thus the readers are encouraged
the most state-of-the-art literature for further details.

1.5.6.2 Current Challenges

Clear understanding of the mechanical properties of materials, such as cell
interaction with surfaces, nanopatterns, and NPs, and electrical and optical
effects (such as electrical stimulation, energy storage, absorption, luminescence,
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and fluorescence) is necessary, and their computing via chemical wet computers
and DNA computing is getting tremendous attention in the current era. In this
chapter we have outlined some important studies. The computational design of
chemical nanosensors, the stochastic dynamics of bionanosystems, the in vitro
anti-hydroxyl radical activity using spectroscopic and computational approaches
(as reported by Pejin et al. (2014) and Forrestal et al. (2017)), and the advanced
imaging options all require robust computational tools. Such tools are rapidly
developing as discussed in this chapter.

Improved detection and diagnosis of disease, while at the same time increasing
objectivity of the decision-making process, is highly desired. Although computa-
tional approaches such as the machine learning can work in this domain (i.e. the
use of machine learning for mammographic screening), there are certain limita-
tions. It is anticipated that the in silico studies can provide new tools for inter-
preting the high-dimensional and complex medical data sets.

References

Altintas, Z. (2017). Biosensors and Nanotechnology: Applications in Health Care
Diagnostics. John Wiley & Sons.

Asante-Duah, K. (2017). Public Health Risk Assessment for Human Exposure to
Chemicals, vol. 27. Springer.

Baheiraei, N., Yeganeh, H., A, J. et al. (2014). Synthesis, characterization and
antioxidant activity of a novel electroactive and biodegradable polyurethane for
cardiac tissue engineering application. Materials Science and Engineering: C 44:
24-37.

de Barros, N.P,, McKinley, R., Knecht, U. et al. (2016). Automatic quality control in
clinical 1 h mrsi of brain cancer. NMR in Biomedicine 29 (5): 563-575.

de Barros, N.P, McKinley, R., Wiest, R., and Slotboom, J. (2017). Improving labeling
efficiency in automatic quality control of mrsi data. Magnetic Resonance in
Medicine 78 (6): 2399—2405.

Belkahla, H., Herlem, G., Picaud, F. et al. (2017). Trail-np hybrids for cancer
therapy: a review. Nanoscale 9 (18): 5755-5768.

Beveridge, ].S., Stephens, J.R., and Williams, M.E. (2011). The use of magnetic
nanoparticles in analytical chemistry. Annual Review of Analytical Chemistry 4:
251-273.

Breit, M., Netzer, M., Weinberger, K.M., and Baumgartner, C. (2015). Modeling and
classification of kinetic patterns of dynamic metabolic biomarkers in physical
activity. PLoS Computational Biology 11 (8): €1004454.

Bunker, A., Magarkar, A., and Viitala, T. (2016). Rational design of liposomal drug
delivery systems, a review: combined experimental and computational studies of
lipid membranes, liposomes and their pegylation. Biochimica et Biophysica Acta
(BBA)-Biomembranes 1858 (10): 2334—2352.

Chinen, A.B., Guan, C.M., Ferrer, J.R. et al. (2015). Nanoparticle probes for the
detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical
Reviews 115 (19): 10530—10574.



Computational Approaches in Biomedical Nanoengineering: An Overview

Das, D., Coello, E., Schulte, R.F.,, and Menze, B.H. (2017). Quantification of
metabolites in magnetic resonance spectroscopic imaging using machine
learning. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, 462—470. Springer.

Dickinson, E.J.F.,, Ekstrom, H., and Ed, F. (2014). Comsol multiphysics®: Finite
element software for electrochemical analysis. a mini-review. Electrochemistry
Communications 40: 71-74.

Durrant, J.D. and Amaro, R.E. (2015). Machine-learning techniques applied to
antibacterial drug discovery. Chemical Biology & Drug Design 85 (1): 14—21.

Feiner, R., Engel, L., Fleischer, S. et al. (2016). Engineered hybrid cardiac patches
with multifunctional electronics for online monitoring and regulation of tissue
function. Nature Materials 15 (6): 679.

Fleischer, S. and Dvir, T. (2013). Tissue engineering on the nanoscale: lessons from
the heart. Current Opinion in Biotechnology 24 (4): 664—671.

Fleischer, S., Feiner, R., and Dvir, T. (2017). Cutting-edge platforms in cardiac tissue
engineering. Current Opinion in Biotechnology 47: 23-29.

Forrestal, D.P,, Klein, T.J., and Woodruff, M.A. (2017). Biocatalysis, protein
engineering and nanobiotechnology. Biotechnology and Bioengineering
114 (6).

Gnach, A,, Lipinski, T., Bednarkiewicz, A. et al. (2015). Upconverting nanoparticles:
assessing the toxicity. Chemical Society Reviews 44 (6): 1561-1584.

Guo, R., Guolan, L., Qin, B, and Fei, B. (2018). Ultrasound imaging technologies for
breast cancer detection and management: a review. Ultrasound in Medicine and
Biology 44 (1): 37-70.

Hamdi, M. and Ferreira, A. (2008). Dna nanorobotics. Microelectronics Journal 39
(8): 1051-1059.

He, C., Liu, D., and Lin, W. (2015). Nanomedicine applications of hybrid
nanomaterials built from metal-ligand coordination bonds: nanoscale
metal—organic frameworks and nanoscale coordination polymers. Chemical
Reviews 115 (19): 11079-11108.

Heckerman, D. (1990). A tractable inference algorithm for diagnosing multiple
diseases. In: Machine Intelligence and Pattern Recognition, vol. 10, 163—-171.
Elsevier.

Hirt, M.N., Hansen, A., and Eschenhagen, T. (2014). Cardiac tissue engineering:
state of the art. Circulation Research 114 (2): 354—367.

Howes, P.D., Chandrawati, R., and Stevens, M.M. (2014). Colloidal nanoparticles as
advanced biological sensors. Science 346 (6205): 1247390.

Ion-Mérgineanu, A., Kocevar, G., Stamile, C. et al. (2017). A comparison of machine
learning approaches for classifying multiple sclerosis courses using mrsi and
brain segmentations. In: International Conference on Artificial Neural Networks
(ed. 651), 643. Springer.

Kandoi, G., Acencio, M.L., and Lembke, N. (2015). Prediction of druggable proteins
using machine learning and systems biology: a mini-review. Frontiers in
Physiology 6 (366).

Kim, E.-S., Ahn, E.H., Chung, E., and Kim, D.-H. (2013). Recent advances in
nanobiotechnology and high-throughput molecular techniques for systems
biomedicine. Molecules and Cells 36 (6): 477-484.

19



20

Computational Approaches in Biomedical Nano-Engineering

Klimov, V.I. (2003). Semiconductor and Metal Nanocrystals: Synthesis and Electronic
and Optical Properties. CRC Press.

Knowles, T.PJ., Vendruscolo, M., and Dobson, C.M. (2014). The amyloid state and
its association with protein misfolding diseases. Nature Reviews Molecular Cell
Biology 15 (6): 384.

Knudsen, B.R., Jepsen, M.L., and Ho, Y.-P. (2013). Quantum dot-based nanosensors
for diagnosis via enzyme activity measurement. Expert Review of Molecular
Diagnostics 13 (4): 367-375.

Kog, H., King, J., Teschl, G. et al. (2011). The role of mathematical modeling in voc
analysis using isoprene as a prototypic example. Journal of Breath Research 5 (3):
037102.

Koumoulos, E.P, Tofail, S.A.M., Silien, C. et al. (2018). Metrology and
nano-mechanical tests for nano-manufacturing and nano-bio interface:
Challenges & future perspectives. Materials & Design 137: 446—462.

Krause, M.M. and Kambhampati, P. (2015). Linking surface chemistry to optical
properties of semiconductor nanocrystals. Physical Chemistry Chemical Physics
17 (29): 18882-18894.

Lachaine, R.I.m., tienne Boulais, E.I., Rioux, D. et al. (2016). Computational
design of durable spherical nanoparticles with optimal material, shape, and
size for ultrafast plasmon-enhanced nanocavitation. ACS Photonics 3 (11):
2158-2169.

Lee, M.-H., Thomas, J.L., Ho, M.-H. et al. (2010). Synthesis of magnetic molecularly
imprinted poly (ethylene-co-vinyl alcohol) nanoparticles and their uses in the
extraction and sensing of target molecules in urine. ACS Applied Materials &
Interfaces 2 (6): 1729-1736.

Leung, M.K.K,, Delong, A., Alipanahi, B., and Frey, B.]. (2016). Machine learning in
genomic medicine: a review of computational problems and data sets.
Proceedings of the IEEE 104 (1): 176—197.

Lin, X,, Sun, X., Luo, S. et al. (2016). Development of dna-based signal amplification
and microfluidic technology for protein assay: a review. TrAC Trends in
Analytical Chemistry 80: 132—148.

Michos, EI and Sigalas, M.M. (2018). Computational study of the absorption
spectrum of defected zns nanoparticles. Journal of Applied Physics 123 (16):
161587.

Moore, ].H., Gilbert, ].C., Tsai, C.-T. et al. (2006). A flexible computational
framework for detecting, characterizing, and interpreting statistical patterns of
epistasis in genetic studies of human disease susceptibility. Journal of Theoretical
Biology 241 (2): 252-261.

Mort, M., Sterne-Weiler, T., Li, B. et al. (2014). Mutpred splice: machine
learning-based prediction of exonic variants that disrupt splicing. Genome
Biology 15 (1): R19.

Nakajima, K., Zhou, Y., Tomita, A. et al. (2018). Precise and efficient nucleotide
substitution near genomic nick via noncanonical homology-directed repair.
Genome Research 28 (2): 223-230.

Nakhleh, M.K., Quatredeniers, M., and Haick, H. (2017). Detection of halitosis in
breath: Between the past, present and future. Oral Diseases.



Computational Approaches in Biomedical Nanoengineering: An Overview

Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J. (2003). Applications of
magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics
36 (13): R167.

Pejin, B., Savic, A.G., Petkovic, M. et al. (2014). In vitro anti-hydroxyl radical activity
of the fructooligosaccharides 1-kestose and nystose using spectroscopic and
computational approaches. International Journal of Food Science & Technology
49 (6): 1500—1505.

Pellegrino, S., Meyer, M., Zorbas, C. et al. (2018). The amaryllidaceae alkaloid
haemanthamine binds the eukaryotic ribosome to repress cancer cell growth.
Structure 26 (3): 416—425.

Pizzichelli, G., Di Michele, F., and Sinibaldi, E. (2016). An analytical model for
nanoparticles concentration resulting from infusion into poroelastic brain tissue.
Mathematical Biosciences 272: 6—14.

Ran, T, Liy, Y., Li, H. et al. (2016). Gastrointestinal spatiotemporal mrna expression
of ghrelin vs growth hormone receptor and new growth yield machine learning
model based on perturbation theory. Scientific Reports 6 (30174).

Rani, K. (2014). A brief review on convergence of diversifying fields of
nanotechnology and bio-informatics as an advanced revolutionized device for
betterment of humankind. International Journal of Pharma Research and Health
Science 2 (3): 197-202.

Salgado, J.E.L. (2018). The promises of synthetic biology: New bioartefacts and their
ethical and societal consequences. In: Spanish Philosophy of Technology, 179—-194.
Springer.

Sayes, C. and Ivanov, L. (2010). Comparative study of predictive computational
models for nanoparticle-induced cytotoxicity. Risk Analysis 30 (11):

1723-1734.

Serrate, D., De Teresa, ].M., Marquina, C. et al. (2012). Quantitative biomolecular
sensing station based on magnetoresistive patterned arrays. Biosensors and
Bioelectronics 35 (1): 206—212.

Sohail, A., Ahmad, Z., Anwar Bég, O. et al. (2017). A review on hyperthermia via
nanoparticle-mediated therapy. Bulletin du Cancer 104 (5): 452—461.

Sohail, A., Sherin, L., Li, Z., and Chauhdary, Q. (2018). Embodied modeling
approach to explore tumour cells drug resistance. Complex Adaptive Systems
Modeling 6 (1).

Suresh, S. (2007). Nanomedicine: elastic clues in cancer detection. Nature
Nanotechnology 2 (12): 748.

Tang, Y.-d., Flesch, R.C.C., Zhang, C., and Jin, T. (2018). Numerical analysis of the
effect of non-uniformity of the magnetic field produced by a solenoid on
temperature distribution during magnetic hyperthermia. Journal of Magnetism
and Magnetic Materials 449: 455-460.

Umemura, K. (2015). Hybrids of nucleic acids and carbon nanotubes for
nanobiotechnology. Nanomaterials 5 (1): 321-350.

Valverde, J. and Orozco, A. (2016). Bioinformatics and computational biology
systems design applied to nanobiotechnology. In: Central American and Panama
Convention (CONCAPAN XXXVI), 2016 IEEE 36th, 1-4. IEEE.

Vishinkin, R. and Haick, H. (2015). Nanoscale sensor technologies for disease
detection via volatolomics. Small 11 (46): 6142—6164.

21



22

Computational Approaches in Biomedical Nano-Engineering

Wong, D.T. (2006). Salivary diagnostics powered by nanotechnologies,
proteomics and genomics. The Journal of the American Dental Association
137 (3): 313-321.

Yue, T., Jia, X., Petrosino, . et al. (2017). Computational integration of nanoscale
physical biomarkers and cognitive assessments for alzheimera€™s disease
diagnosis and prognosis. Science Advances 3 (7): €1700669.

Zhang, Y.-D,, Chen, S., Wang, S.-H. et al. (2015). Magnetic resonance brain image
classification based on weighted-type fractional fourier transform and nonparallel
support vector machine. International Journal of Imaging Systems and Technology
25 (4): 317-327.

Zhang, R.X., Ahmed, T., Li, L.Y. et al. (2017a). Design of nanocarriers for nanoscale
drug delivery to enhance cancer treatment using hybrid polymer and lipid
building blocks. Nanoscale 9 (4): 1334—1355.

Zhang, Y., Yang, J., Wang, S. et al. (2017b). Pathological brain detection in mri
scanning via hu moment invariants and machine learning. Journal of
Experimental & Theoretical Artificial Intelligence 29 (2): 299-312.



