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Introduction

1.1 Global Challenges

Water, food, and energy security represent major challenges to the stability and
continuity of human populations. However, rapid population growth and steadily
improving living standards place enormous pressures on already stressed water
resource and agricultural systems. Large amounts of energy are consumed to
produce clean water and to treat wastewaters prior to their return to the environ-
ment, which inevitably leads to a considerable amount of carbon dioxide (CO2)
emissions as well as releasing other environmental pollutants.

At the global scale, about 2600 km3 of water are withdrawn to supply food-
driven irrigation needs every year. Viewed another way, agriculture consumes
nearly 70% of total human freshwater withdrawals. This number is to increase to
more than 83% by 2050 to meet the growing food demand by the rapidly growing
population.

In the last 25 years, access to water with potable quality has gone up from 75% to
90% of the world population, and, nevertheless, 884 million people nowadays still
lack access to adequate drinking water in many geographical regions [1]. Thus,
ensuring a stable and sustainable water, food, and energy supply into the future
is a priority for all nations.

Adding to an already dreadful situation, water pollution is becoming a major
global challenge [2, 3]. From the United Nations World Water Development
Report in 2018, it is said that more than 2 billion people lack access to safe drink-
ing water and more than double that number lack access to safe sanitation. With
a rapidly growing global population, demand for water is expected to increase by
nearly one-third by 2050 [4]. In addition, WHO estimated that 361 000 deaths
in children under five years due to diarrhea, representing more than 5% of all
deaths in this age group in low- and middle-income countries, could have been
prevented through reduction of exposure to inadequate drinking water [5]. Thus,
the ability to remove contaminants from these environments to a safe level and
do it rapidly, efficiently, and with reasonable costs is important.

With the nonrenewable and pollutant-laden fossil fuels dominating the global
energy supply, representing 78% of the world’s primary energy, air pollution is
worsening in many parts of the world especially where the economy is heavily
dominated by low-tech manufacturing. Millions of people die every year from
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diseases caused by exposure to outdoor air pollution [6]. Ninety two percent
of the global population, including billions of children, is exposed to hazardous
effects of air pollution at which levels exceed WHO limits. Air pollution causes
approximately 600 000 deaths in children under five years annually and increases
the risk of respiratory infections, asthma, adverse neonatal conditions, and con-
genital anomalies.

1.2 Conventional Technologies in Environmental
Science and Engineering

In the past century, the development in water and air treatment technologies by
environmental engineers has significantly improved the quality of water and air.
The research and relevant design of conventional water and air protection sys-
tems experienced its golden age in the first half of twentieth century and has
gradually reached their steady states. At the same time, with the ever-growing
population and ever-increasing life quality expectation, the demand for safe and
clean water and air has never dwindled in the course of human existence and is
gradually pushing existing technologies to their limits.

Conventional technologies, such as chemical coagulation [7], adsorptions
[8, 9], chemical treatment (e.g. advanced oxidation process [AOP]) [10–12],
membrane-based separation [13–15], and biological treatment [16, 17], are
based on bulk water chemistry.

Coagulation, which involves adding chemical coagulants into bulk source
water, is commonly used in drinking water plants. The particles in source
water that cause turbidity (e.g. silt, clay) are generally negatively charged,
while coagulant particles are positively charged. In coagulation and subsequent
flocculation, the formed particles in the form of flocs are settled out or later
removed by filtration. The effectiveness of the coagulation is controlled by bulk
water chemistry, such as dose of the coagulants added and pH, among others.

AOP, as a type of chemical treatment, involves accelerated production of
highly reactive hydroxyl free radical to degrade the organic pollutants [18–20].
The degradation rates can be affected by several factors from the bulk water
chemistry [21]. Adsorption is a process in which pollutants are adsorbed on
solid surfaces [9, 22]. Adsorption is a proven and much used water purification
technique due to its low energy consumption and maintenance cost, as well as its
simplicity and reliability. However, its performance relies on the concentration
of the to-be-removed substances, the presence of other competing species,
temperature, and pH of the bulk water.

Biological treatments rely on bacteria, nematodes, or other small organisms
to break down organic wastes using normal cellular processes [23]. Biological
wastewater treatment is often a secondary treatment process, used to remove
remaining biodegradable organics after primary treatment. These processes
can be either anaerobic or aerobic. “Aerobic” refers to the condition where
oxygen is present, while “anaerobic” describes a biological process in which
oxygen is absent. To obtain an aerobic condition, huge amount of electricity is
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typically consumed to re-aerate the bulk wastewater, which can be completely
oxygen-depleted.

Membrane separation is a technology in which membrane acts as a selective
barrier allowing water flowing through while it catches suspended solids and
other substances. Membrane separation technology is commonly used for the
creation of process water from groundwater, surface water, or wastewater, and
it works without the addition of chemicals, with a relatively low energy use and
experiencing simple bulk water separation process [24].

Although these conventional technologies are crucial at providing quality water
especially at heavily populated areas, conventional water treatment and its infras-
tructure systems allow little flexibility in response to the changing demand for
water quality or quantity, leading to significant energy consumption, water loss,
and secondary contamination. For instance, coagulation itself results in the for-
mation of flocs, and thus additional treatment process is required to help the floc
to further aggregate and settle. Biological treatment method is at the cost of a long
time due to the slow biodegradation process [10]. On the other hand, impurities
and pollutants build up on the surface and clog the filtration membranes over
extended periods of use, and thus the flux of the wastewater across the filters
decreases, leading to higher energy requirements.

From air quality point of view, many prevention measures have been taken
in addressing air pollution problems: source control, development of clean
energy, filtration technologies, etc. [25] Among them, air filtration technology is
of great interest due to low equipment cost and low energy consumption. The
conventional fibrous membrane (e.g. glass, polyethylene [PE], polypropylene
[PP], polyester, and aramid fibers), as a kind of porous media, has been widely
applied in different filtration scenes, including disposable respirators, industrial
gas cleaning equipment, cleanroom air purification systems, automotive cabin
air filters, and indoor air purifiers [26]. Such fibrous media still suffer from
some structural and performance disadvantages, such as large fiber diameter,
nonuniform fiber diameter and pore size, relatively low filtration efficiency, high
basis weight, and poor high-temperature resistance [27].

While the conventional technologies are being pushed toward their capacity
limits, innovations in nanomaterials and more broadly nanotechnology have
been fueling advances in environmental science and engineering [28].

1.3 Nanotechnology

1.3.1 History of Nanotechnology Evolution

The term “nanotechnology” can be traced back in 1959 when it was first used by
Richard Feynman in his famous lecture entitled “There’s Plenty of Room at the
Bottom,” which is hailed by many as the herald of the era of nano [29]. Starting
1980s, two major breakthroughs sparked the growth of nanotechnology in the
modern era. First, in 1981, the invention of the scanning tunneling microscope
provided unprecedented visualization of individual atoms and bonds. Second,
fullerenes were discovered in 1985 by Harry Kroto, Richard Smalley, and Robert
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Curl, who together won the 1996 Nobel Prize in Chemistry [30, 31]. Initially,
C60 was not described as nanotechnology while the term was used regarding
subsequent work with related graphene tubes (called carbon nanotubes), which
suggested potential applications for nanoscale electronics and devices.

In the beginning of 2000s, there were commercial applications of nanotechnol-
ogy, although these were limited to the bulk application of nanomaterials and do
not involve atomic control of matter, such as using silver nanoparticles as antibac-
terial agent, nanoparticle-based transparent sunscreens, and carbon nanotubes
for stain-resistant textiles [32–34].

Nanotechnology is developing at a very fast rate, and its development is
regarded as another industrial revolution. It is anticipated that increasing
integration of nanoscale science and engineering knowledge promises mass
applications of nanotechnology in all fields of the industry [35].

1.3.2 Concept and Definition

Overall, nanotechnology is the manipulation of matter at an atomic, molecular,
and supramolecular scale. It is naturally very broad, including fields of science
as diverse as surface science, organic chemistry, molecular biology, semiconduc-
tor physics, energy storage, microfabrication, molecular engineering, etc. [36–39]
The associated research and applications are equally diverse, ranging from exten-
sions of conventional device physics to completely new approaches based upon
molecular self-assembly [40], from developing new materials with dimensions on
the nanoscale to direct control of matter on the atomic scale.

Nanomaterials are defined as the structures that can be produced in a
controlled manner in a size ranging from 1 to 100 nm in one, two, or three
dimensions [41]. Materials reduced to the nanoscale can show different prop-
erties compared with what they exhibit on a macroscale, enabling unique
applications. For instance, opaque substances can become transparent (copper);
stable materials, combustible (aluminum); and insoluble materials, soluble
(gold). A material such as gold, which is chemically inert at normal scales, can
serve as a potent chemical catalyst at nanoscales.

1.3.3 Fields of Current Applications

Nanotechnology is widely regarded as a powerful enabling platform, and it has
created many new materials and devices with a vast range of applications [42, 43].
The nanotechnology research has produced many scientific breakthroughs and is
fostering potentially endless possibilities. Some applications of nanotechnology
in the fields of nanomedicine, energy, and environment are briefed as follows.

Nanotechnology provides new options for drug delivery and disease therapies.
Nanosized drug carrier enables drugs to be precisely delivered to the right
location in the body and release drug doses on a predetermined schedule for
optimal treatment. The surgical nanorobot, programmed or guided by a human
surgeon, can act as a semiautonomous on-site surgeon inside the human body
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when introduced into the body through vascular system or cavities [44, 45].
Moreover, the integration of nanotechnology with molecular imaging provides
a versatile platform for novel design of nano-probes that have tremendous
potential to enhance the sensitivity, specificity, and signaling capabilities of
various biomarkers in human diseases.

Nanotechnology has potential in securing new sustainable energy sources
and in effective use of existing energy resources. It has reduced cost both of
solar cells and the equipment needed to produce and deploy them, making
solar power economical and hence a more useable alternative to fossil fuels.
There is a potential for nanotechnology to cut down on energy consumption
through lighter materials for vehicles, smart materials that lead to more effective
temperature control, advanced materials that increase the efficiency of electrical
components and transmission lines, and materials that could contribute to a new
generation of fuel cells and a step closer toward a hydrogen economy, among
numerous others [46, 47].

From an environmental engineering point of view, nanotechnology presents
new opportunities to improve how contaminants in the environment are mea-
sured, monitored, managed, and minimized, which will be discussed heavily in
the rest of the chapters.

Overall, nanomaterials have two primary advantages over conventional bulk
materials: (i) they have small size and thus big specific surface area, which
are beneficial to many interface-related applications, and (ii) their properties,
including chemical, physical, optical, electronic, mechanical, and magnetic prop-
erties, can be judiciously tuned by controlling their size, surface morphology,
shape and crystal orientation, etc. As a result, going to nanoscale has opened up
numerous new avenues that would otherwise be impossible with conventional
bulk materials.

1.3.4 Nanotechnology in Environmental Engineering

Applications of nanotechnology in environmental science and engineering
mainly include a high surface area for adsorption (nanoadsorbents), unique
surface functionalization properties, high activity for (photo)catalysis (environ-
mental catalytic materials), nanofiltration for wastewater treatment, nanofibrous
air filter, water purification and desalination membranes, and sensors for water
quality monitoring (Figure 1.1) [15, 48–52].

For example, nanoadsorbents offer significant improvements over conven-
tional adsorbents with their extremely high specific surface area and tunable
pore size and surface chemistry. The high surface area and size-dependent
surface structure at the nanoscale could create highly active adsorption sites
[53], resulting in higher adsorption capacity. Meanwhile, the surface of many
nanomaterials can be functionalized to target specific contaminants, achieving
high selectivity.

As for environmental sensors, the integration of nanomaterials and recog-
nition agents could yield fast, sensitive, and selective sensors for water quality
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Figure 1.1 Nanotechnology applications involving nanophotocatalysts, membrane
nanotechnology, and nanoadsorbents for a safe and sustainable water supply. Source: Qu
et al. 2012 [48]. Reprinted with permission of American Chemical Society.

monitoring [54]. Effective nanomaterials can improve sensor sensitivity
and speed and achieve multiplex target detection by utilizing their unique
electrochemical, optical, or magnetic properties.

Membrane technology is a key component of an integrated water treatment
and reuse paradigm. However, current materials and fabrication methods for
membranes are largely based on empirical approaches and lack molecular-level
design, thus hampering membrane performance and increasing the cost of
water treatment [55]. A nanoscale membrane with molecular-level design can
potentially overcome some limitations in conventional membranes especially
permeability–selectivity trade-off and high fouling propensity [56].

Photocatalysis is the phenomenon of overcoming the activation energy or
temperature of a chemical reaction by light. AOPs paired with sunlight present
an attractive option for water treatment by the generation of OH radical [57].
Nanophotocatalysts can be used to break down a wide variety of organic materi-
als, organic acids, estrogens, pesticides, dyes, crude oil, microbes, and inorganic
molecules such as nitrous oxides. In combination with precipitation or filtration,
photocatalysis can also remove metals like mercury [58]. Photocatalytic oxida-
tion used in water treatment has an obvious advantage of high reaction rates due
to high specific surface areas and low mass-transfer restrictions unmatched by
other conventional methods, especially when there are high concentrations of
organic pollutants in water [59].

Overall, nanotechnology is actively pursued to both enhance the performance
of existing treatment processes and develop new processes. It is now a popular
belief that many of the solutions to the existing and even future environmen-
tal challenges are most likely to come from nanotechnology and especially novel
nanomaterials with increased affinity, capacity, and selectivity for environmen-
tal contaminants. The field of rational design of nanomaterials for environmental
engineering has grown significantly in the past two decades and is poised to make
its contribution to creating next-generation environmental technologies in the
years to come [7, 50, 60–64].
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1.4 Artificially Intelligent Materials

1.4.1 Artificial Intelligence (AI) and Nanotechnology

The first work that is now generally recognized as artificial intelligence (AI)
was McCullouch and Pitts’ 1943 formal design for Turing-complete “artificial
neurons” [65] The AI concept emphasizes the capability of manmade machines
to imitate intelligent human behavior to perform tasks normally requiring
human intelligence but without humanlike intervention [66]. Thus, the design
of AI machine necessitates proactive, instead of reactive, functionality, which
endows the machine with anticipatory, change-oriented, and self-initiated
behavior.

As a matter of fact, AI entered the general field of nanotechnology in the 1990s.
Nanomaterials with certain level of AI are entrusted with multiple, synergistic,
and proactive functionalities so that these “nanomachines” perceive their envi-
ronment and subsequently take automated actions or make self-adjustments for
the purpose of maximizing their possibility to achieve their desired goal [67].

For practical applications, it is desired to rationally integrate multiple syner-
gistic and advanced functions into one single material and to design the respon-
sive functions that can switch to a desirable function in a controlled fashion in
response to the external environmental stimuli. Following this line of thought, the
AI materials could provide unprecedented advantages over traditional materials.

Recently, there have been significant developments in the materials that are
integrated with “artificial intelligence.” These intelligent nanomaterials typically
have one or more of their properties (e.g. mechanical, thermal, optical, or electro-
magnetic properties) able to vary in a predictable or controllable way in response
to external stimuli, such as stress, light, temperature, moisture, pH, electric or
magnetic fields, etc.

1.4.2 Examples of Artificially Intelligent Nanomaterials

Generally, the response mechanism of intelligent nanomaterials lies in the
change in molecular movement in response to external stimuli, which brings
about the macroscopic property change of the materials. Some artificially
intelligent nanomaterials in engineering fields including energy nanogenera-
tor/nanosensor, shape-memory materials, and artificial muscles are presented
as follows.

1.4.2.1 Energy Nanogenerator/Nanosensor (Piezoelectric/Triboelectric
Materials)
Piezoelectric materials are crystalline materials exhibiting piezoelectric effect
[68–70] and mainly include inorganic semiconducting piezoelectric ZnO
nanowires, GaN nanowires, and lead-based and lead-free perovskite mate-
rials (e.g. Pb(Zr,Ti)O3, NaNbO3, KNbO3, BaTiO3, and ZnSnO3 [71–77])
and piezoelectric polymer (e.g. polyvinylidene difluoride [PVDF] and
poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)]) [78–80]. Piezo-
electric materials have been integrated along with sensors and actuators to
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Figure 1.2 (a) Climate sensor is situated onto the window outward. Inset: Enlarged illustration
of the rain sensor. (b) The output voltage generated from different types of sensors with
respect to patterns on the surface as dropping water droplet. Inset: Water droplets staying at
the sensor surface (scale bar: 10 mm). (c) Output voltage generated from sensors with respect
to patterns on the surface as stirring up the wind using an air gun. Inset: Wind speed was
recorded by an anemometer. Source: Lee et al. 2015 [85]. Reprinted with permission of John
Wiley and Sons.

make intelligent materials. For example, piezoelectric materials have been
used to capture and harvest mechanical energy wasted in nature (e.g. airflow,
raindrop, sound, human motion, and ocean waves) that can later be used as
portable, lightweight, and sustainable power sources [81–84]. Figure 1.2 presents
a self-powered pressure sensor based on piezoelectric effect to detect water
droplet and wind flow [85].

Triboelectric nanogenerator (TENG) has been produced to collect energy
from common environmental sources [86–88]. When contacting and separating
two different materials with oppositely charged surfaces, there is surface electron
transfer, which in turn creates an electric potential difference. By repeating the
contact and separation in a cyclic manner, electrons can be driven to flow
through external load, generating a continuous output. Wang’s group pioneered
and demonstrated many TENG designs that harvested multiple types of envi-
ronmental energy [89]. For example, a superhydrophobic and self-cleaning
PTFE-based TENG could harvest the water-related energy in the environment
[90]. The power generated from water drop could power 20 light-emitting diodes
(LEDs) (Figure 1.3). Such water-TENG can also serve as a sensor to detect
water/liquid leakage from a container/pipe [91, 92].

1.4.2.2 Shape-Memory Materials
Shape-memory materials are featured by their ability to recover their original
shape from a significant and seemingly plastic deformation when a particular
stimulus is applied [93–95]. Shape-memory materials can be inorganic or
organic materials [96]. Shape-memory metal alloys can change their shape
through microstructural transformation induced by temperature or magnetic
fields. On the other hand, shape-memory polymers are intelligent as they have
the ability to return from a temporary deformed shape to a memorized per-
manent shape upon external stimuli, including heat [97–100], light irradiation
[101, 102], solvent [103, 104], electrical current [105], and magnetic fields
[106]. Representative shape-memory polymers contain polyurethanes [107],
cellulose [103, 104], block copolymer of polyethylene terephthalate (PET) and
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Figure 1.3 (a) Output current density of the water-TENG generated from flowing tap water. (b)
The alternating current (ac) output transformed to unidirectional pulse output by a full-wave
rectifying bridge. (c) The image of the water-TENG used as a power source to light up 20 LEDs.
(d) The rectified output used to charge a commercial capacitor of 33 μF. Insets of (b) and (d) are
the sketches of the corresponding circuit connection polarities. Source: Lin et al. 2014 [90].
Reprinted with permission of John Wiley and Sons.

polyethylene oxide (PEO) [108], block copolymers containing polystyrene and
poly(butadiene) [101, 109], polynorbornene or hybrid polymers consisting of
polynorbornene units substituted by polyhedral oligosilsesquioxane (POSS)
[110], etc. Shape-memory polymers have several advantages over inorganic
materials. They have higher deformation strain, lower stiffness, density and
manufacturing cost, potential biodegradability and healability, and the capability
to be activated by various stimuli [111, 112]. Therefore, they have diverse
promising applications in areas of biomedical devices, the aerospace industry,
textiles, flexible electronics, and so forth [113–117]. Figure 1.4 presents a
healable shape-memory polymeric films that can heal the mechanical damage
and the fatigued shape-memory function [118].

1.4.2.3 Actuator
Intelligent actuators is a generic term for a class of materials and devices that
can offer controllable mechanical responses (contract, expand, or rotate) toward
external stimuli, such as electric fields [119, 120], temperature [121, 122], solvent
[123], humidity [124–126], and light [127, 128],, and convert those input energies
into 2D or 3D movements. As energy transducers, actuators have numerous
promising applications, involving switches [129], microrobotics [126], artificial
muscles [130, 131], etc. Therefore, the fabrication of various actuators with
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Figure 1.4 (a) Polymeric films are fabricated by layer-by-layer assembly of branched
poly(ethylenimine) (bPEI)-graphene oxide (GO) complexes with poly(acrylic acid) (PAA).
As-prepared films exhibited the shape-memory function. The small piece of paper stuck on
the right side of the film was used to stretch the film during the shape-memory process. (b)
Schematic illustration of the shape-memory mechanism of the PAA/bPEI-GO film. The
humidity-induced healing and shape-memory behavior are due to the electrostatic and
hydrogen-bonding interactions induced by water between PAA and bPEI-GO complexes.
Source: Xiang et al. 2017 [118]. Reprinted with permission of American Chemical Society.

intelligent response has become a heated topic in scientific and engineering
fields.

In 2013, Ma et al. prepared a water-responsive artificial actuator that combined
both a rigid matrix (polypyrrole) and a dynamic network (polyol–borate). The
actuator could exchange water with the environment to induce its structural
expansion and contraction, resulting in rapid and continuous locomotion [125].
The film actuator of this type as an artificial muscle could generate contractile
stress up to 27 MPa, lift objects 380 times heavier than itself, and transport
cargo 10 times heavier than itself. Meanwhile, by associating with a piezoelectric
element, this film can be used as an energy generator driven by water gradients,
capable of outputting alternating electricity with a peak voltage of ∼1.0 V. Actu-
ator driven by light possesses distinctive advantages, involving remote control,
non-contact actuation, and high-level integration with other components as no
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Figure 1.5 The bilayer actuator was fabricated by exploiting the photothermal conversion and
humidity-sensitive properties of polydopamine-modified reduced graphene oxide (PDA-RGO).
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when NIR light is periodically turned on (1–4) and off (5–8). The walking device moves from
right to left. Source: Ji et al. 2014 [134]. Reprinted with permission of John Wiley and Sons.

wires or connections are required [132, 133]. Figure 1.5 presents a near-infrared
(NIR) light-driven bilayer actuator capable of reversible bending/unbending
motions [134].

1.5 Intelligent Environmental Nanomaterials

1.5.1 Overview

Given that there are inherent complexity and unpredictability and more particu-
larly varying and even quite contrasting application scenarios in environmental
problems, an ideal design of environmental nanomaterials should be proactive
with AI.

These nanomaterials work as “nanomachines” that, based on their environmen-
tal conditions, make self-adjustments to maximize their possibility to achieve
their desired goals [67]. Thus, these nanomaterials are “intelligent” based on the
previous definition. The key to a successful design of intelligent nanomaterials is
endowing the nanomaterials with proactive functionality that would lead to their
change-oriented and self-initiated behaviors during their applications. Given the
inherent complexity and stochastic nature of environmental problems, environ-
mental nanomaterials can greatly benefit from an intelligent design, i.e. the ability
to change its properties depending on the environmental conditions.

However, the development and application of intelligent nanomaterials in the
environmental field is comparatively sluggish and still at a very nascent stage,
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although its popularity is growing. However, over the years, there are indeed
some exciting exploratory works done in the intelligent environmental nanoma-
terials, many of which seemingly offer innovative and disruptive technologies.

1.5.2 Self-Propelled Nanomotors

Self-propulsion at nanoscale always represents a challenge. The latest self-
propelled nanomotors can draw in fuel from surrounding medium and gen-
erate remarkable thrust and force through the ejection of gas bubbles from
chemical reactions or fuel-free stimuli response like light [135–137], magnetic
fields [138–140], electric fields [141–143], ultrasound [144, 145], etc. The
self-propelled nanomotors that are able to autonomously transport remediation
agent throughout polluted samples/media with ultrahigh speed and to penetrate
inaccessible locations [146–148] have potential such environmental applications
as water quality screening [149–154], removal and degradation of pollutants
[155–158], removal of spilled oil [159–161], CO2 scrubbing [162], etc.

1.5.3 Intelligent Gating Membrane

Conventional filtration membranes can be imparted with responsive gates
that could self-regulate their permeation and species selectivity by intelligently
switching their on/off states, which offer certain hope toward differential water
quality or fit-for-purpose separation using the same separation membranes
[163]. A number of photothermal materials, when combined with membrane
distillation (MD), can harvest solar energy, generate heat locally only at the
membrane and bulk water interface, and thus lead to considerably improved
energy efficiency when compared with the conventional bulk water heating
scheme of the conventional MD processes [164–168].

1.5.4 Switchable Oil/Water Separation

In the field of oil spill cleanup, intelligent materials show tremendous advantages
over conventional methods. A bio-inspired intelligent membrane with super-
wetting behavior can easily realize gravity-driven oil/water separation, which is
of great importance to facilitate the oil spill cleanup, contributing to reduced
response time and operation cost [169–171]. Moreover, the intelligent materials
could be made to switch their oil and water wettability between two opposite
sides in response to external stimuli and offer self-controlled, on-demand, and
selective oil/water separation. The intelligent materials would allow for the
recovery of the collected oils as well as the reuse of the separating materials,
which the conventional materials largely fail to [170, 171].

1.5.5 Self-Healing Environmental Materials

Self-healing materials can self-recover their physical damages, self-restore
their lost functions, and self-clean their contaminated surfaces. The healing
property effectively expands the lifetime of the materials and reduces the overall
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operational cost. Recently, the self-healing materials have been preliminarily
extended into environmental areas of water filtration membranes and to fouling
resistance of oil/water separation materials with confirmed results at lab scales
[172–175].

1.5.6 Molecular Imprinting

Imprinting has always been seen as the nature of some intelligent animals,
which are capable to learn or “imprint” the characteristics of some external
stimulus. However, the artificial materials can be also imparted into such an
exciting gift to selectively recognize specific molecule, which is called “molecular
imprinting.” Molecular imprinting technique is to create the tailor-made and
template-shaped binding sites with the memory of the shape, size, and functional
groups of the specific template molecules. Molecularly imprinted materials can
be prepared by self-assembly of the functional monomers around the template,
followed by cross-linking them in the presence of template molecules. After
removing the template molecules, the formed cavities complementary in size,
shape, and chemical functionality to the template can selectively rebind the
template molecules, just like the model of key and lock. In the environmental
area, molecularly imprinted materials can selectively recognize and remove
specific pollutants from contaminated water [176–184].

1.5.7 Nanofibrous Membrane Air Filters

The nanofibrous membranes offer a multitude of attractive features such as
high specific surface area, high porosity, interconnected porous structure,
more active sites, easy functionalization ability, and good mechanical behavior
[26, 185–189]. Therefore, the nanofibrous membranes have great potential in air
filters that are capable of PM2.5 removal. The intelligently designed nanofibrous
membrane air filters can have multifunctions, such as high filtration capacity,
high transparency, large-scale production, high thermal stability, toxic gases
removal, and even self-powering capability, which have an eminent application
as personal protective equipment.

From these examples, it is clear that the design of intelligent environmental
nanomaterials is meant to create things. Therefore, it is expected that new designs
of intelligent environmental nanomaterials will continue to be produced.

1.6 Introduction to the Book Chapters

The purpose of this book is to provide a comprehensive review of the state-
of-the-art intelligent environmental nanomaterials, with a particular focus on
the design concepts and responsiveness of the materials.

We will present a broad collection of artificially intelligent materials and
systems that are used in environmental problem solving. The book covers the
following topics: (i) intelligent functional materials and responsive mecha-
nisms (Chapter 2), (ii) designing filtration membranes with responsive gates
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(Chapter 3), (iii) switchable wettability materials for controllable oil/water
separation (Chapter 4), (iv) self-healing materials for environmental applications
(Chapter 5), (v) emerging nanofibrous air filters for PM2.5 removal (Chapter 6),
(vi) self-propelled nanomotor for environmental applications (Chapter 7), (vii)
molecular imprinting in wastewater treatment (Chapter 8), and (viii) emerging
synergistically multifunctional and all-in-one nanomaterials and nanodevices
in advanced environmental applications (Chapter 9). We hope this book would
provide an inspiration for readers to further explore intelligent materials to solve
environmental problems.
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