Contents

About the Authors xiii Acknowledgments xv

- 1 Introduction 1
- 1.1 Background 1
- 1.2 Types of 2D Materials 4
- 1.3 Perspective of 2D Materials 6 References 7

2 Electronic Structure of 2D Semiconducting Atomic Crystals 9

- 2.1 Theoretical Methods for Study of 2D Semiconductors 9
- 2.1.1 Density Functional Theory 9
- 2.1.2 Linear Scaling Three-Dimensional Fragment (LS3DF) Method 10
- 2.1.3 GW Approximation 10
- 2.1.4 Semiempirical Tight-Binding Method 10
- 2.1.5 Nonequilibrium Green's Function Method 11
- 2.2 Electronic Structure of 2D Semiconductors 11
- 2.2.1 Graphyne Family Members 11
- 2.2.2 Nitrogenated Holey Graphene 14
- 2.2.3 Transition Metal Dichalcogenides 15
- 2.3 Prediction of Novel Properties in 2D Moiré Heterostructures 19
- 2.3.1 MoS₂/MoSe₂ Moiré Structure 19
- 2.3.2 Graphene/Nitrogenated Holey Graphene Moiré Structure 26
- 2.3.2.1 Atomic Structure: Ordered Stacking Versus Moiré Pattern 26
- 2.3.2.2 Renormalized Fermi Velocity *31* References *33*
- 3Tuning the Electronic Properties of 2D Materials by SizeControl, Strain Engineering, and Electric Field Modulation35
- 3.1 Size Control 35
- 3.2 Strain Engineering 40
- 3.3 Electric Field Modulation 48 References 52

x Contents

4	Transport Properties of Two-Dimensional Materials:
	Theoretical Studies 55
4.1	Symmetry-Dependent Spin Transport Properties of Graphene-like
	Nanoribbons 55
4.1.1	Graphene Nanoribbons 55
4.1.2	Graphyne Nanoribbon 57
4.1.3	Silicene Nanoribbons 59
4.2	Charge Transport Properties of Two-Dimensional Materials 61
4.2.1	Phonon Scattering Mechanism in Transport Properties of
100	Graphene 61
4.2.2	Metal Dichalcogenides 63
4.2.3	Anisotropic Transport Properties of 2D Group-VA
	Semiconductors 67
4.3	Contacts Between 2D Semiconductors and Metal Electrodes 69
4.3.1	Carrier Schottky Barriers at the Interfaces Between 2D Semiconductors and Metal Electrodes 69
4.3.2	Partial Fermi Level Pinning and Tunability of Schottky Barrier at 2D
	Semiconductor–Metal Interfaces 70
4.3.3	Role of Defects in Enhanced Fermi Level Pinning in 2D
	Semiconductor/Metal Contacts 72
	References 75
5	Preparation and Properties of 2D Semiconductors 79
5.1	Preparation Methods 79
5.1.1	Mechanical Exfoliation 79
5.1.2	Liquid-Phase Exfoliation 81
5.1.3	Vapor-Phase Deposition Techniques 85
5.2	Characterizations of 2D Semiconductors 90
5.2.1	Surface Morphology (SEM, OM, and TEM) 90
5.2.2	Thickness (Raman, AFM, and HRTEM) 92
5.2.3	Phase Structure (HRTEM and STEM) 93
5.2.4	Band Structure (Optical Absorption and Photoluminescence, ARPES) 94
5.2.5	Chemical Composition and Chemical States (XPS and EDS) 94
5.3	Electrochemical Properties of 2D Semiconductors 96
	References 97
6	Properties of 2D Alloying and Doping 99
6.1	Introduction 99
6.2	Advantages of 2D Alloys 99
6.2.1	Adjustable Bandgap 100
6.2.2	Carrier-Type Modulation 103
6.2.3	Phase Change 104
6.2.4	Application of 2D Semiconductor Alloys in the Field of
	Magnetism 107
6.2.5	Improve Device Performance 108
	L

- 6.3 Preparation Methods for 2D Alloys 110
- 6.3.1 Chemical Vapor Transport (CVT) 110
- 6.3.2 Physical Vapor Deposition (PVD) 111
- 6.3.3 Chemical Vapor Deposition (CVD) 113
- 6.4 Characterizations of 2D Alloys *114*
- 6.4.1 STEM 115
- 6.4.2 Raman Spectroscopy 115
- 6.4.3 Photoluminescence (PL) Spectrum 119
- 6.5 Doping of 2D Semiconductors *119* References *121*

7 Properties of 2D Heterostructures 123

- 7.1 Conception and Categories of 2D Heterostructures *123*
- 7.2 Advantages and Application of 2D Heterostructures 125
- 7.3 Preparation Methods for 2D Heterostructures 129
- 7.3.1 Mechanical Transfer: Liquid Method and Dry Method 130
- 7.3.2 Chemical Methods 131
- 7.4 Characterizations of 2D Heterostructures *137* References *139*

8 Application in (Opto) Electronics 143

- 8.1 Field-Effect Transistors 143
- 8.2 Infrared Photodetectors 145
- 8.2.1 Figures of Merit 146
- 8.2.2 Photodetection Mechanism 147
- 8.2.2.1 Photothermoelectric Effect 147
- 8.2.2.2 Bolometric Effect 147
- 8.2.2.3 Photogating Effect 148
- 8.2.2.4 Photovoltaic Effect 148
- 8.2.2.5 Plasmonic Effect 148
- 8.2.3 Typical 2D-Based Infrared Photodetectors 149
- 8.2.3.1 Graphene Infrared Photodetectors 149
- 8.3 2D Photodetectors with Sensitizers 151
- 8.3.1 Graphene-based Hybrids Detectors 151
- 8.3.2 TMD-Based Hybrid Detectors 152
- 8.3.3 Plasmonic Sensitized Detectors 153
- 8.4 New Infrared Photodetectors with Narrow Bandgap 2D Semiconductors 155
- 8.5 Future Outlook 156
- 8.5.1 Optoelectronic Memory of 2D Semiconductors 156
- 8.5.2 Solar Cells 161 References 162
- 9 Perspective and Outlook 165

Index 167