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Introduction*

“To see a World in a
Grain of Sand...”

–William Blake

Carbon

12.011

6

C

“Dimensionality” and “atomic ordering in finite structures” seem like rather odd
principles by which to organize thoughts on solid-state physics. Indeed, this is
not a historical approach to understanding solids at all. However, in learning
solid state today, we must embrace the historical orthodoxy of crystal lattices,
phonons, and band structure, as well as a whole zoo of emerging exotic materials
that range from fullerenes to organic superconductors.

How do we understand two-dimensional (2D) dichalcogenides, atomically
layered permanent magnets, perovskites, topological insulators, conducting
polymers, quantum dots, graphene, glassy carbon, etc.? And what of the
low-dimensional analogues of orthodox collective behavior: charge density
waves, excitons, spin waves, and the like? We know these things “live” in/on
such low-dimensional structures. An interesting and instructive way to build a
framework is to begin with the normative behavior of a special atom, carbon,
and the dimensionality of the structures it makes. Why carbon? Because among
the elements it is about the most robust at making compounds and structures.
It is extremely flexible in how it chooses to arrange itself. Why dimension?
Well, lower-dimensional materials offer new approaches to technology, holding

*Historical Note: some of the hand-drawn images of the text have their origins in the very first edition
of One-Dimensional Metals. They are an interesting and important reminder of what our state of mind
was at a time when dimensionality was a new and mysterious science.
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the key to everything from quantum computers to new medicines. But most
importantly, it introduces the idea of “topology.”

Look, the traditional story goes like this. We begin our description of solids
with an infinite mathematical construction (the lattice) given by specific point
group symmetries. Onto the lattice points we attach some arbitrary set of atoms
(generally picking something found in nature). We calculate specified properties
based upon idealizations of how free the electron may be at each lattice point or
how free the motion of the atom at the lattice point may be. We adiabatically add
interactions between vibrations, carriers, etc. of the lattice to get more interesting
phenomena.

Our story, though, is like a tale of die Brüder Grimm1: carbon is the central
atom of the universe.2 It forms more compounds in more ways than any other
atom. Thus, other atomic systems deviate from carbon by breaking its norms of
symmetry. Beginning with large carbon molecules, we form nanometer struc-
tures. As we add, subtract, or substitute C atoms in the structure, we design
materials with properties that can be examined through the dimensional change
we have brought out. It isn’t quite a chemical point of view, and it isn’t quite
solid-state physics in its purest form. It is the type of conversation you hear in
working research labs across the world: complementary and an enjoyable com-
promise between the perspectives.

1.1 Dimensionality

The concept of dimensionality has been with us for a while, and it is an intellectu-
ally appealing concept. Speaking of a dimensionality other than three will surely
attract some attention. Some years ago it was fashionable to admire physicists
who apparently could “think in four dimensions” in striking contrast to Marcuse’s
One-Dimensional Man (Figure 1.1) [1]. Physicists would then respond with the
understatement: “We only think in two dimensions, one of which is always time.
The other dimension is the quantity we are interested in, which changes with
time. After all, we have to publish our results as two-dimensional figures in jour-
nals. Why should we think of something we cannot publish?”

This fictitious dialogue implies more than just sophisticated plays on words. If
physics is what physicists do, then in most parts of physics there is a profound
difference between the dimension of time and other dimensions, and there is a
logical basis for this difference [2]. In general, the quantity that changes with time
and in which the physicist is interested is some intrinsic property of an object.

1 The Brothers Grimm wrote fairy tales in the southern part of Germany around the early 1800s. In
1812 they published their first collection of folk tales, Kinder- und Hausmärchen (Children’s and
Household Tales). Their hometown was only a short drive from the author’s laboratory at the
borders of the Black Forest (where many of their tales were set). They are responsible for almost as
many nightmares as organic superconductors!
2 This is clearly a biased and self-indulgent statement, and should only be taken metaphorically.
Si-based life forms would certainly have a different opinion. Note that when we say “Si-life” we do
not distinguish between that life based on a processor and life based on Si-regulated metabolic
mechanisms.
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Figure 1.1 Marcuse’s man. Simultaneously with Herbert Marcuse’s book One-Dimensional
Man, which widely influenced the youth movement of the 1960s. W.A. Little’s paper on
“Possibility of Synthesizing an Organic Superconductor” was published, motivating many
physicists and chemists to investigate low-dimensional solids.

The object in question is typically imbedded in a three-dimensional (3D) space.
Objects themselves, however, may be very flat such as flounders, saucers, or oil
films with greater length and width than thickness. In materials such as graphene
or MoS2, thickness can be negligibly small – atomic. Such objects can be regarded
as (approximately) 2D. Now, if the intrinsic property that the physicist wishes to
study is somehow constrained in behavior, in direct correlation to the dimension
of the object, like a boat on the 2D surface of the sea is hopefully constrained to 2D
motion, then we say the property is expressing the dimensionality of the object.
In our everyday experience one-dimensional (1D) and 2D objects and 1D and 2D
constraints are more common than you might think. Indeed, low dimensionality
should not be particularly spectacular to our expectations. For this reason too,
it is reasonable to introduce non-integer, or fractal, dimensions [3]. Not much
imagination is necessary to assign a dimensionality between one and two to a
network of roads and streets – more than a highway and less than a plane. It is a
well-known peculiarity that, for example, the coastline of Scotland has the fractal
dimension of 1.33 and the stars in the universe that of 1.23.

Solid-state physics treats solids both as objects and as the space in which
objects of physics exist, e.g. various silicon single crystals can be compared with
each other, or they can be considered as the space in which electrons or phonons
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move. The layers of a crystal, like the ab-planes of graphite, can be regarded as
2D objects with interactions between them that extend into the third dimension.
But these planes are also the 2D space in which electrons move rather freely.
Similar considerations apply to the (quasi) 1D hydrocarbon chains of conducting
polymers.

1.2 Approaching Dimensionality from Outside
and from Inside

There are two approaches to low-dimensional or quasi-low-dimensional systems
in solid-state physics: geometrical shaping as an external approach and increase
of anisotropy as an internal approach. These are also sometimes termed top-down
and bottom-up approaches, respectively. For the external approach, let us take a
wire and draw it until it gets sufficiently thin to be 1D (Figure 1.2). How thin

Figure 1.2 Wire puller. An “external approach” to one-dimensionality. A man tries to draw a
wire through a mandrel until it is thin enough to be regarded as one-dimensional. Metallic
wires can be made as thin as 1 μm in diameter like this, but this is still far away from being
one-dimensional. Lithographic processes using focused ion beams and focused electrons can
produce some metal and semiconductor structures that are narrow enough to exhibit
one-dimensional properties (∼nanometers).
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will it have to be to be truly 1D? This depends a little on exactly what property of
the structure is desired to express low-dimensional behavior. Certainly, thin com-
pared to some microscopic parameter associated with that property. For example,
for 1D electrical transport properties, the structure must have length scales such
that the mean free path of an electron or the Fermi wavelength is affected by
the physical confinement of the structure. We will discuss these concepts further
a little later on in the text. But surely the meaning is clear: some fundamental
aspect of an internal object responsible for the phenomenon of interest must be
dramatically altered by its localization within the structure.

Technology today has made it possible to approach such sizes using methods of
lithography as well as chemical assembly. Lithography is the top-down approach
to creating confining structures as it whittles away material until only very small
structures remain. Chemical assembly is the “bottom-up” approach, and it forms
the structure through chemical reactions. The two approaches offer very different
properties to the nanoscale structure created, both in terms of atomic ordering
and control over object placement.

To achieve “one-dimensionality” does the wire puller in Figure 1.2 have to draw
the wire so extensively that it is finally to become a monatomic chain? Well, the
Fermi wavelength, a fundamental property of the carrier electron responsible for
conductivity, becomes relevant when discussing the eigenstates of all the elec-
trons of the structure. If electrons are confined in a box, quantum mechanics tells
us that the electrons can have only discrete values of kinetic energy. The energetic
spacing of the eigenvalues depends on the dimensions of the box – the smaller
the box the larger the spacing (Figure 1.3):

ΔEL = h2∕2m(π∕L)2 (1.1)

whereΔEL is the spacing, L is the length of the box, m is the mass of the electrons,
and h is Planck’s constant. For a box containing multiple electrons, the Fermi
level is the highest occupied energy state (at absolute zero). The wavelength of
the electrons at the Fermi level is called the Fermi wavelength. At finite temper-
atures, if the energy difference between levels is much larger than the thermal
energy (ΔEL ≫ kT), there are only completely occupied and completely empty
levels (not accounting for spin). A thin wire is a small box for electronic motion
perpendicular to the wire axis, but it is a very large box for motions along the wire.
Hence, in two dimensions (radially), it represents an insulator, and in one dimen-
sion (axially), it is a metal! This is simply because the ΔEradially ≫ kT whereas
ΔElengthwise ≪ kT .

If there are only very few electrons in the box, the Fermi energy is small and the
Fermi wavelength fairly large. For real materials, these are the electrons that can
participate in bonding–antibonding orbitals. This is the case for semiconductors
at very low doping concentrations. Wires of such semiconductors are already 1D
if their diameter is on the order of hundreds of Ångstroms.

Such thin wires can be fabricated from silicon or from gallium arsenide by
lithographic techniques, and effects typical for 1D electronic systems have been
observed experimentally [4]. Systems with high electron concentrations have to
be considerably thinner if they are to be 1D. It turns out that for a concentration
of one conducting electron per atom, we really need a monatomic chain!
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Figure 1.3 Electrons in small and large boxes and energy spacing of the eigenstates. This is an
example of dimension based on confinement.

Experiments on single monatomic chains are very difficult to perform, so a
bundle of chains is usually used. An example of such a bundle is polyacetylene
fiber, consisting of some thousands of polymer chains, closely packed with a typ-
ical interchain distance of 3–4 Å. Certainly there are some interactions between
the chains; however, in the case of small interchain coupling, it can be assumed
that the net sum of the individual chains determines the properties of the bundle
(Figure 1.4). The experiment becomes one of an ensemble of 1D chains.

Another method of geometrical shaping employs surfaces or interfaces
(Figure 1.5). The surface of a silicon single crystal is an excellent 2D system,
and there are various ways of confining charge carriers to a layer near the
surface. Actually, the physics of 2D electron gases are an important part of
today’s semiconductor physics [5], and most of the 2D electron systems are
confinements to surfaces or interfaces. The most fashionable effect in a 2D
electron gas is the quantized Hall effect or von Klitzing effect [6]. A 1D surface,
i.e. the edge of the crystal, is much more difficult to prepare and hardly of any
practical use. But one can argue that exposing a sample to a magnetic field would
be an excellent example of a 1D electronic system since electrons can be forced
into motion along specific paths defined by the crystal and the field. In fact,
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Figure 1.4 Experiments on individual chains are difficult to perform. But bundles of chains are
quite common, for example, fibers of polyacetylene.

reducing von Klitzing’s sample to “edge channels” is one way of explaining the
von Klitzing effect [7].

The internal approach to 1D solids comprises the gradual increase of
anisotropy. In crystalline solids the electrical conductivity is usually different
in different crystallographic directions. If the anisotropy of the conductivity is
increased in such a way that the conductivity becomes very large in one direction
and almost zero in the two perpendicular directions, a nearly 1D conductor will
result. Of course, there is no simple physical way to increase the anisotropy.
However, it is possible to look for sufficient anisotropy in already existing solids
that could be regarded as (quasi) 1D. Some anisotropic solids are compiled
in the next chapter of this book. How large should the anisotropy be to meet
one-dimensionality? A possible answer is: “Large enough to lead to an open
Fermi surface.”

The Fermi surface is a surface of constant energy in reciprocal space or momen-
tum space. While the Fermi surface and reciprocal space will be discussed in
detail later, for the discussion here, it is sufficient to imagine this surface as
describing all of the electron states within the solid that are available to take
part in electrical transport. For an isotropic solid, the Fermi surface is spherical,
meaning that electrons can move in any direction of the solid equally well.

If the electrical conductivity is large in one crystallographic direction and small
in the other two, the Fermi surface becomes disklike. The kinetic energy of the
electrons can then be written as E = p2/2m*, resembling the kinetic energy of
a free particle (p = momentum, m = mass), with the exception that the mass
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Figure 1.5 The crystal cutter. Crystal surfaces are excellent two-dimensional (2D) systems. The
cutter here tries to improve the crystal face by mechanical polishing, but the qualities
achieved by this method are not sufficient for surface science. Surface scientists cleave their
samples under ultrahigh vacuum conditions and use freshly cleaved surfaces for their
experiments – leaving large 2D planes of atoms. Another approach is to use highly oriented
and polished crystals that are then sputtered with high current ion beams and annealed at
high temperatures to reform the surface.

has been replaced by the effective mass m*. The effective mass indicates the ease
with which an electron can be moved by the electric field. If the electrons are
easy to move, the conductivity is high. Easy motion is described by a small effec-
tive mass (small inertia), and p must also be small to keep E constant. If it is
infinitely difficult to move an electron in a specific direction, its effective mass will
become infinitely large in this direction, and the Fermi surface will be infinitely
far away. However, the extension of the Fermi surface is restricted: if the Fermi
surface becomes too large in any direction, it will merge with the Fermi surface
generated by the neighboring chain or plane (“next Brillouin zone” in proper
solid-state physics terminology) assuming this hypothetical solid is made up of
stacked structures of some sort. This merging “opens” the Fermi surface, similar
to a soap bubble linking with another bubble (Figure 1.6).

1.3 Dimensionality of Carbon: Solids

As promised, we now want to put these structures in the context of carbon. But
again, why carbon? How will it be different from other atoms? Let’s contrast
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Figure 1.6 Open Fermi surfaces, analogous to merged soap
bubbles, as a criterion of low dimensionality. The Fermi
surface belongs to a solid that is essentially
two-dimensional. The solid will have no electronic states
contributing to electrical conductivity along the axial
direction but will easily conduct radially, normal to the axis.

it for a moment with a similar element silicon – the basis for much of today’s
technology. Silicon is unique among solids [8]: it is the most perfect solid pro-
ducible. That is, there are fewer imperfections in a silicon single crystal than
there are gas atoms in ultrahigh vacuum (per unit volume). It is the solid we
know most about, and it is the solid that has largely influenced the vocabulary
of solid-state physics. Carbon is located directly above silicon in the periodic
table of the elements, and just as silicon is outstanding among the solids, car-
bon is outstanding among the elements. Carbon forms the majority of the known
chemical compounds. Much of organic chemistry simply involves arranging car-
bon atoms (with hydrogen not having any specific properties but just fulfilling
the task of saturating dangling bonds). In our context, carbon has the remarkable
property of forming 3D, 2D, 1D, and zero-dimensional (0D) solids. This is related
to the fact that carbon is able to form single, double, and triple bonds. This ability
of carbon to form many types of bonds, at many different bonding angles, sets
it aside from silicon in another important way; it leads to biology rather than
technology.
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1.3.1 Three-Dimensional Carbon: Diamond

Beginning with an example from silicon, diamond appears as the trivial solid
form of carbon (Figure 1.7). Diamond has similar semiconducting properties to
silicon. Both substances share the same type of crystal lattice. The lattice param-
eters are different (a = 5.43 Å in silicon and 3.56 Å in diamond), and the energy
gap between valence and conduction band is larger in diamond, 5.4 eV, compared
with 1.17 eV in silicon. Diamond is more difficult to manufacture and more diffi-
cult to purify than silicon, but it has better thermal conductivity and can be used
at high temperatures. Since the costs for raw material change the final price of
electronic equipment only slightly, some people believe that diamond is the semi-
conductor of the future. Silicon is typically used with added dopants to modify
its electronic behavior. Doping diamond has proven to be far more difficult how-
ever. Here we mean doping to be a substitution of a lattice atom: in Si it would
be Si, and in diamond it would the substitution of a C, with another atom of dif-
ferent valency. The substituted atom adds carriers to the materials, changing its
electrical properties. However, the potential dopant atom must fit into the lattice
in some way, and this process must be better understood in diamond before the
realization of high-quality diamond electronics.

Sometimes, semiconductors and metals are mentioned interchangeably in this
book although they are quite different. The reason stems from the idea that a
doped semiconductor can be regarded as a metal with low electron concentra-
tion. Here, “metal” is essentially used as a synonym for “electrically conductive,
solid-state system.”

1.3.2 Two-Dimensional Carbon: Graphite and Graphene

In diamond the carbon atoms are tetravalent, that is, each atom is bound to
four neighboring atoms by covalent single bonds. Another well-known naturally
occurring carbon modification is graphite (Figure 1.8). Here all atoms are triva-
lent, which means that in a hypothetical first step only, three valence electrons
participate in bond formation and the forth valence electron is left over. The
trivalent atoms form the planar honeycomb lattice, and the residual electrons

616 pm

Figure 1.7 The diamond lattice. The diamond lattice can be seen as a “wavy” set of carbon
planes connected together by carbon–carbon bonds.
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Figure 1.8 The graphite
lattice. A layered structure
with very little interlayer
interactions; graphite can
have high in-plane
conductivity of carriers and
heat.

670 pm

are shared by all atoms in the plane similarly to the sharing of the conduction
electrons by all atoms of a simple metal (e.g. sodium or potassium). The various
graphite layers only interact by weak van der Waals forces. In a first approxi-
mation graphite is an ensemble of nearly independent metallic sheets. In pure
graphite they are about 3.35 Å apart but can be separated further by intercalat-
ing various molecules. Charge transfer between the intercalated molecules and
the graphitic layers is also possible. Graphite with intercalated SbF5 shows an
anisotropy of about 106 in electrical conductivity, conducting a million times bet-
ter within a layer than between layers.

Diamond is a semiconductor and graphite is a metal (or semimetal). In dia-
mond there are very few mobile electrons; in an undoped perfect diamond single
crystal at absolute zero, there are exactly zero mobile electrons; and in graphite
there are many, one electron per carbon atom. This difference is not due to dimen-
sionality (three in diamond and two in graphite) but to single and double bonds.
Several attempts have been made to build 3D graphite [9]. Theoretically it seems
possible [10], but practically it has not yet been achieved.

Of course, since the layers of graphite are very weakly bound together, it is
rather easy to separate them mechanically to form graphene – a single sheet of the
honeycomb lattice. This lattice is truly 2D, since there is nowhere else for the elec-
trons to go except upon the sheet that essentially defines their “world” for them.
Notice though that this 2D sheet “samples” the 3D world in which it lives. If one
takes the sheet and bends it in the third dimension while applying a field across it,
one can induce phase accumulation in the wavefunction of its electrons – Berry’s
phase, which comes from the geometrical intersection of the 2D and 3D worlds.
Graphene has been studied extensively over the last few years, and transport in
graphene led to the 2010 Nobel Prize in Physics [11]. By numbers, the density of
graphene is 0.77 mg/m2. Its breaking strength is 42 N/m, the electrical conduc-
tivity is 0.96× 106 Ω−1 cm−1, and thermal conductivity is 10 times greater than
copper. We will return to graphene in later chapters.
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1.3.3 One-Dimensional Carbon: Cumulene, Polycarbyne, and Polyene

Carbon has an amazing ability to bond to itself in multiple ways. So “1D carbon”
comes in several varieties. Using double bonds one can image a monatomic chain
as Figure 1.9. (There are no dangling bonds in cumulene and in polycarbyne.) This
substance is called cumulene; the name refers to the cumulative (meaning consec-
utive) double bonds. Any organic chemist will tell you that double carbon bonds
can be isolated (separated by single bonds), conjugated (in strict alternation with
single bonds), or cumulated (placed adjacent to each other) for a wide variety of
compounds.

Cumulene has been synthesized for chains 5–10 carbons long [12]. While such
long molecules are interesting, they fall a little short of a 1D wire, and polymeric
cumulene has not been synthesized. Indeed, quantum chemistry predicts poly-
carbyne, an isomeric structure in which triple bonds alternate with single bonds,
is preferred over cumulene. Polycarbyne is shown in Figure 1.10, and it is of
particular interest to space scientists since it occurs in interstellar dust, mete-
orites, and in supernova remnants. It also is seen in trace amounts within natural
graphite [13].

If we accept the simplification that in carbon compounds, hydrogen atoms just
have the purpose of saturating dangling bonds (making them non-active) and
that otherwise they do not contribute to the physical properties of the material,
cumulene and polycarbyne are not the only 1D carbon solids. From this point of
view, all polymers based on chain-like molecules are 1D.

Let’s learn some organic chemistry. On naming conventions, the ending “-yne,”
as in polycarbyne, is used to indicate triple bonds. The ending “-ene” stands for
double bonds and “-ane” for single bonds. A polyane is shown in Figure 1.11. (To
add a little confusion to the subject, this substance is typically called polyethy-
lene, ending with “-ene” instead of “-ane.” The reason is simply that the names of
polymers are often derived from the monomeric starting material, which in this

C C C C C C- - - - - -

Figure 1.9 One-dimensional carbon example one: cumulene.

C C C C C C

Figure 1.10 One-dimensional carbon example two: polycarbyne.
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Figure 1.11 Polyethylene, as we might
imagine the (a) polymerization of ethylene
and (b) arrangement of bonding.
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Figure 1.12 Polyacetylene, the prototype
polyene, the simplest polymer with conjugated
double bonds.
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Figure 1.13 Polyacetylene using a simplified notation.

case is ethylene, H2C=CH2. Here the monomer contains a double bond, but dur-
ing polymerization the double bond breaks to link the neighboring molecules.)
Polyanes are insulators and of less interest in the context of this book. (Insulators
are large bandgap semiconductors. Because of the large bandgap, it is difficult
to lift electrons into the conduction band, and therefore the number of mobile
electrons is negligible.)

Figure 1.12 shows polyacetylene, the prototype polyene, the simplest polymer
with conjugated double bonds. The structure shown in Figure 1.12 is often sim-
plified to the one in Figure 1.13, since by convention carbon atoms do not have
to be drawn explicitly at the ends of the bonds and protons are neglected.

1.3.4 Zero-Dimensional Carbon: Fullerene

If we work our way down in dimensionality from volume-diamond to
plane-graphite and graphene to lines-polymers, we will finally end up at
the point as a 0D object. Do 0D solids exist outside of the obvious (the atom)? In
semiconductor physics the “quantum dot” is well known [14]. Historically, this
is a small disk cut out of a 2D electron gas. It is small compared to the Fermi
wavelength, so that the electrons are restricted in all three dimensions of space
(the 1D analogue to a quantum dot is often called “quantum wire”). Following
the discussion in Section 1.2, a quantum dot is a 0D object. The present state
of the art is to fabricate quantum dots containing more than 1 but less than
10 electrons. Because of the low electron concentration in semiconductors,
such quantum dots can exhibit quite large diameters, up to several hundred
Ångstroms. More recently, quantum dots have been fabricated as chemically
assembled nanoparticles, wherein the structure defines the confinement. Metal
nanoparticles of Au, Ag, Cu, etc. have been created using a variety of chemical
synthesis routes, and confinement of the electrons occurs at particle diameters
of only a few nanometers. Likewise, quantum dots made from semiconductor
materials such as Si, Ge, and compounds such as CdS, CdSe, PdS, etc. have been
created. Following the rules we have already discussed, these nanoparticles can
be many nanometers in diameter and still exhibit confinement because there are
fewer electrons in the “box.” The ΔE between these electron states can be quite
large, leading to some fascinating optical properties that are quite different from
their bulk counterparts.

Carbon can form quantum dots in a number of ways – nanodiamonds,
nanoplatelets of graphene, and others – as would be expected from carbon’s
ability to bond in different ways. However, the most famous of these quantum
dots of carbon in solid-state physics are the fullerenes [15]. The 1996 Nobel Prize
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Figure 1.14 A fullerene molecule. This
is an example of a C60, but much larger
cages can be made.

in Chemistry was given to R.F. Curl, H.J. Kroto, and R.E. Smalley for their role in
the discovery of this class of molecules. Under certain conditions, carbon forms
regular, cage-like clusters of 60, 70, 84, etc. atoms. A C60 cluster is composed
of 20 hexagons and 12 pentagons and resembles a soccer ball (Figure 1.14),
all bonded together as in graphene. The diameter of a C60 ball is about 10 Å
and thus is considerably smaller than that of a semiconductor quantum dot.
However, in these carbon compounds, the electron concentration is higher than
in inorganic semiconductors: in a system of conjugated double bonds, there is
one π-electron per carbon atom! (More on π-electrons later.) In other words,
there are 60 π-electrons in a fullerene ball of 10 Å diameter, compared with
some five electrons on a 100 Å GaAs quantum dot. In quantum chemistry and
solid-state physics, 60 is already a quite large number (we are used to counting:
“one – two – many”). In fact, a 60-particle system is already a mini-solid, and a
fullerene ball plays a dual role in solid-state physics: it is a mini-solid. It can also
be a constituent of a macro-solid – fullerite.

We can study electronic excitations in the mini-solid and their mobility and
interaction with lattice vibrations. At the same time it is possible to examine
unexpected transport properties of the macro-solid, like superconductivity [16],
photoconductivity, and electroluminescence [17]. Figure 1.14 shows the graphic
representation of a fullerene mini-solid. Figure 1.15 schematically indicates the
fullerene macro-solid.

1.4 Something in Between: Topology

Conceptually, we might conceive of a solid that is a combination of dimensions.
Imagine, for instance, a single graphene sheet described in the section on
graphite. Roll this conductive sheet into a seamless tube in which each atom
is threefold coordinated as in the sheet. When the diameter of such a tube is
between 14 and 200 Å, we refer to the object as a carbon nanotube. For such
an object, the electron wavefunction is confined to boxlike states around the
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Figure 1.15 The fullerene crystal lattice: “fullerite.” These compounds have a rich chemistry.
They can be doped by placing atoms between the balls, inside the balls, etc.

circumference. Along the axis of the tube, the electrons move in essentially a
1D system. Normally, this would appear to be similar to the semiconductor
wires mentioned earlier. However, this circumference (or rolled-up) dimension
allows for a set of spiral-like classical trajectories of the electron as it moves
down the tube. In this way, if a 3D field (like a magnetic field) should penetrate
the tube, the phase of the electronic wavefunction would be altered, resulting
in Aharonov–Bohm effects. Thus, while the tube certainly has the character
of a 1D system, it also has a “little more.” It is clearly not quite 2D however.
For such systems, there is a topology that must be considered. That is to say,
the object is connected together in such a way as to introduce an additional
“dimensional” aspect. Here we mean a physical topology associated with a sheet
of atoms rolled into the third dimension from a 2D starting point. However, the
topological aspects of low-dimensional systems in general – or the way in which
their electronic states might be connected together to form closed manifolds
in space – will be a recurring theme. This is actually quite a natural outcome of
the whole idea of working with low-dimensional materials. By restricting spatial
dimension and confining the electronic wavefunction, we introduce boundary
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conditions that are necessarily related to the overall connectedness of the object
doing the confining.

1.5 More Peculiarities of Dimension: One Dimension

Aside from topological effects, when working with low-dimensional structures,
what should we expect? Theory predicts that strictly 1D systems (for instance)
will behave so unusually that the word “pathological” is often used. And if real
systems appear less pathological than predicted, this is because real systems are
only quasi and not strictly 1D. Real systems differ from ideal systems by having
chains of finite rather than infinite length, sheets of finite area. In addition, the
chains and sheets show imperfections such as kinks, bends, twists, or impurities.
They are contained in an environment other than perfect vacuum, with neighbor-
ing structures at a finite distance and thus a nonzero interaction between them.

So, if you have ever followed a slow truck on a narrow mountain road, you
have painfully experienced a very important aspect of one-dimensionality: obsta-
cles cannot be circumvented! (Figure 1.16). A rather famous demonstration of 1D
conduction studied by solid-state physicists is that of the monatomic metal wire.
If one takes a very large number of gold atoms and places them very close to
each other so as to form a wire, then the transmission of an electron down this
wire is rather easily calculated. Now, we offer a very subtle change to this wire
and replace in its center one gold atom for one silver atom and recalculate the

Figure 1.16 The road to Kirchberg. A very important aspect of one-dimensionality is that
obstacles cannot be circumvented.
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Figure 1.17 Bond percolation demonstration on a two-dimensional grid, where bonds are
successively cut in a random way. Source: After Zallen 1983 [19].

transmission probability of the electron traveling its length. What is found is that
even for very small variations in the periodic atomic potential, reflections of the
electron wave on the wire become large [18].

Another more sophisticated conceptualization of dimensional restriction can
be made in terms of percolation. Percolation means macroscopic paths from
one side of the sample to the other and the threshold for bond percolation in
one dimension is 100%! Such macroscopic paths are necessary, for example, for
electrical conduction. The concept of bond percolation is quite different in two
dimensions as demonstrated by a grid (Figure 1.17) [19] where bonds are cut
at random. In this 2D square lattice, a few cuts yield little change in sample’s
conduction properties. In particular, the conductivity drops only slightly due to
the appearing holes. When 50% of the bonds are cut randomly, no path is left
that connects one side of the sample to the other, and the conductivity must be
zero. The percentage of intact bonds necessary to establish macroscopic paths is
the percolation threshold. The higher the dimensionality of the sample, the lower
the percolation threshold. For a 1D system the threshold – quite simply – is
100%: if we cut one bond, the sample consists of two disconnected pieces.

Another trivial aspect of 1D systems is the low connectivity. Each atom is
connected to two other atoms only: one to the left-hand side and one to the
right-hand side. In 3D solids there are connections to neighbors in the back
and front as well as to neighbors above and below. Connectivity is a topological
concept. Chemists usually speak of the coordination number, the number of
nearest neighbors. In a 1D chain the coordination number is 2.

A consequence of the low connectivity of 1D systems is the strong
electron–lattice coupling. If bonds are completely broken, a 1D system separates
into two pieces. Usually complete breaking of bonds does not happen, however.
Often bonds are only partially cleaved; for example, only one component of the
double bond in the system as in Figure 1.9 or Figure 1.13 is broken. In chemical
terms, this means that a bonding state is excited to form an antibonding state. In
semiconductor physics it would be described as an electron being lifted from the
valence band into the conduction band. Such manipulation of valence electrons
is quite common in semiconductors, and it is the first step for photoconductivity
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and photoluminescence. In a 3D semiconductor like silicon, the transfer of an
electron from the valence to the conduction band creates mobile charge carriers
(the electron in the conduction band and the “hole” left behind in the valence
band), but it does not change the arrangement of the atoms in the crystal. This is
due to the high connectivity of the silicon lattice, where breaking or weakening
one bond has not much effect. In low-connectivity 1D systems, where each atom
is held in place by two neighbors only, each change in bond strength leads to
a large distortion of the lattice. In conjugated polymers, the lattice distortion
shows a change in bond length when a double bond is partially broken to yield a
single bond.

With strong electron–lattice coupling, the electrons moving in the solid creates
a large distortion that polarizes the lattice. If the effect is distinct enough, the
electrons receive a new name: polarons – that is, the charge plus the distortion.
Depending on the strength of the coupling and the symmetry of the lattice, there
is a variety of quasiparticles resulting from electron–lattice coupling, the most
famous of which (and very typical for 1D systems) is the “soliton” [20]. We will
have a closer look at solitons and polarons a little later.

An important peculiarity of 1D systems for our discussions is band edge sin-
gularities in the electronic density of states. As we will see in later chapters, in a
solid, electrons cannot have any energy they wish (as they could have in vacuum).
There are only allowed energy regions (energy bands) separated by forbidden
gaps – energies they may not take on. The long-range ordering within the sys-
tem determines these forbidden and allowed energy bands for the carriers. The
density of states within a band of allowed energies is simply how closely packed
together the allowed states are in energy or the number of states per unit energy
interval. This density is not constant in a solid. The form of the density of states
function depends on the crystal structure, and surprisingly, near the band edge,
it reflects the dimensionality of the system. This is shown in Figure 1.18: in three
dimensions the density of state function N(E) is parabolic, in two dimensions it

1D

Dimensionality of a structure is
reflected in the structure’s density
of electronic states

2D

3D
E

N(E)

Figure 1.18 Density of states function at the band edge in three-, two-, and one-dimensional
electronic systems. Note the singularity that occurs in the one-dimensional case.
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is steplike, and in one dimension there is a square root singularity to infinity! In
real systems N(E) never reaches infinity, of course, but at least there is a very high
density of states.

One-dimensionality also differs from two- and three- dimensionalities in
random walk problems. In a higher dimension it is very unlikely that a random
walker will return to the place he/she started, whereas in one dimension this
happens quite often. Whether or not the random walker comes back to the point
of departure is important for discussing the recombination of photogenerated
charge carriers and thus for the time constants of transient photoconductivity
and of luminescence. Luminescent devices might turn out to be the most
important practical applications of 1D metals!

One-dimensional solids are particularly interesting in the context of fun-
damental studies on phase transitions. In fact, one motivation in the field of
1D conductors arises from the hope of finding the key to high-temperature
superconductivity. However, there is a famous theorem of Landau that suggests
phase transitions are impossible in 1D systems [21]: long-range order is unstable
with respect to the creation of domain walls, because the entropy term in the
free enthalpy will always overcompensate the energy needed to form new walls.
Whereas phase transitions are impossible, 1D systems might be “close” to a
phase transition even at fairly high temperatures. Fluctuations might “anticipate”
the phase transition and have already prompted speculation toward some tech-
nologically useful properties such as low-resistance charge transport. Perhaps
we could allow for “just a little bit” of three-dimensionality and thus obtain
a high-temperature superconductor? Organic superconductors are known,
but they are closer to two-dimensionality than to one-dimensionality. Their
superconducting transition temperatures reach 12 or 13 K (for fullerene even up
to 33 K), still far below the recently discovered inorganic oxide superconductors
with transition temperatures of 100 K and above [22].

1.6 Summary

In summary, dimension, connectivity, and symmetry show up in many different
ways for the solid-state scientist. We note in this chapter that the unusual char-
acter of carbon with the many structures it is able to make allows us to capture
a remarkable number of ways in which a solid can behave in reduced dimen-
sion. Basically, the flexibility allows this atom to make a solid in any dimension
we might want and with plenty of variants. All of these different allotropes have
radically different properties – all based entirely on the organization of the atoms.

As can now be seen, our discussions here will be aimed at introducing both
basic and advanced models of solid-state physics in the context of standard
chemistry, physics, and materials science. However, dimensionality and topology
will continue to be a unifying language for the materials systems discussed with
carbon-based solids as our inspiration. Remember, if you didn’t get the full
meaning of everything in italics the first time around, don’t worry; we will come
back to it again and again.
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Synthetic Metals
TC πσπσ 1d

Kyoto thank we

Figure 1.19 Haiku
from the ICSM 1986
closing ceremony
session in Kyoto
[23].

To complete the present chapter however, we reprint in
Figure 1.19 a “haiku” that was used during the closing cere-
mony of the International Conference on Science and Tech-
nology of Synthetic Metals in Kyoto [23]. This forum has
traditionally focused on the field of conducting polymers,
conducting small molecules, low-dimensional organic struc-
tures, and similar topics. From it, an international group of
scientists formed a community that continues today.

Exploring Concepts

1 Carbon: The original identification of carbon, known at the discovery of met-
alworking, has been lost to history. Its electronic ground state configuration
is [He] 2s22p2, and so the outer shell’s four electrons have s and p charac-
ters. Its melting temperature is 3550 ∘C (6420 ∘F) and boiling temperature
is 4827 ∘C (8721 ∘F). And carbon is the world’s primary fuel source (energy
storage medium). More specifically, the CHx unit is the basis for most of the
energy-dense fuels that our planet uses. From gasoline to coal to animal fats,
mankind has recognized the extraordinary utility of this sub-compound of
carbon and exploited it. Take a little time and compare the energy density
(J/kg) of animal fat, oil, coal, a Li-ion battery, and TNT. Remember that the
carbon compounds must be oxidized, so when computing the energy released
by mass, you must also include the weight of the oxygen to get the true energy
density. Many references fail to do this: so don’t just go to Wiki.

2 The Euclidean dimension of an object: Dimension is informally thought of, in
physics, as the minimum number of coordinates that are needed to describe
any point on or within the object. Likewise, n-dimensional spaces extend this
idea to include all of the possible coordinate values needed to describe any
n-dimensional object within the space. However, for our purposes, this isn’t
quite complete. For example, imagine a ball. It sits in a 3D space, but if con-
fined to the surface of that ball, we are decidedly 2D, and indeed it takes only
two coordinates (with reference to some axis set attached to the ball’s surface)
to describe every point on the ball’s surface (longitude and latitude, or 𝜃, 𝜑).
If something from a third dimension were to intersect our ball, let’s say it is
a 2D plane, as seen here, then notice that using the ball’s coordinates I could
describe only the points of intersection and not anywhere else on the plane
(Figure EC1.1). This is similar if I took the point of view of the plane. More-
over, notice that the intersection is a 1D object generally (or 0D in the case of
a point). But the set of points that describe the intersection have symmetries
reflected in both the flatness of the plane and the spherical nature of the ball.
So something else is required to describe the symmetry of the intersection
line, and that something is related to higher-dimensional objects.
This notion is made quantitative in the topology and geometry of manifolds.
So this exercise takes you outside the text a bit. First read up on topology
and geometry and describe how topology is a subdiscipline of geometry.
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Figure EC1.1 The apparent lower
dimensional intersection between two
objects of higher dimension.

2D

2D

How does the topology of an object pertain to our discussions here? What
is meant by the concepts of connectedness and compactness in topology?
Imagine that we could take a single layer of graphene and connect it to itself
along one edge such that it formed a Möbius strip. What do you think this
would mean for the electrons in/on the strip?

3 Si and C both form “hybridized” bonding orbitals: You will learn more about
these in the coming chapters. For now however, you can just think of them
as orbitals that have very specific directions associated with them. But C is
able to allow its bonds to take on a number of different bonding angles (it
bends), whereas this is more difficult for Si. Why would you think this might
be? What are the ramifications of this for the formation of compounds and
crystals? (You may need to journey outside of the text for this one as well.)

4 Euler’s rule: In simply connected, volumetric polyhedron structures (as in
Figure EC1.2), there is a simple rule that must be obeyed before the struc-
ture can be constructed and closed using regular polygons (remember regular
polygons means the 2D structures have many sides but the sides all have the
same length).
Now typically, a polyhedron is just one piece. It can’t be made up of two (or
more) separate parts stuck together at an edge or a vertex or something. It is
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Close simple polyhedra

V = # vertices

F = # faces

E = # edges

Face

Edge

Vertex

Figure EC1.2 Simply connected polyhedra are simply closed structures with no holes through
them.

a “box” and its faces will be made of regularly shaped polygons. But here is
the rub. To get that box to close properly without bending the polygons etc.,
then

V − E + F = 2; (known as the Euler rule)

(a) Using this rule, determine how may pentagons plus hexagons of carbon it
will take to construct a C60 molecule.

(b) Is it possible to make a C70? If so, how many pentagons and hexagons
would this require? Draw out what you think this might look like.

5 Fractals and dimension: Imagine that for any given Euclidean dimension, D,
we reduce the overall unit of measure by the factor 1/R. For R ∈ I we get the
schematic shown in Figure EC1.3. The measure of the object (that is its length,
area, or volume) increases as

N = RD

D = Log(N)∕Log(R)

This generalized notion of dimension D is known as the Hausdorff dimension,
and it doesn’t need to be an integer as it is in Euclidean geometry. Indeed, in
fractal geometries, it is fractional and can be used as an estimate of roughness.
This idea was eventually applied to the length of coastlines as in Figure EC1.4.
In fact, if we assume that the coastline’s “roughness” is reproduced at every
scale, say, it’s self-similar, then the processes of halving and then halving again
will converge to an estimate of the length of the coastline that is infinite. Thus,
such an estimate doesn’t make much logical sense. In other words, to describe
the coastline, we can’t just ask: “how long is it?” The answer to this ques-
tion doesn’t contain complete information. We need something more. L.F.
Richardson found a simple way to think of this as seen in Figure EC1.5.
The log–log plot linearity of length estimates in Figure EC1.5 is known
as the Richardson effect. Mandelbrot used this effectively to define a
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Figure EC1.3 Schematic of the changing unit measure.
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R = 2

Length ~ 8.5 units

Length ~ 19 units

What is a coastline's length?
What is its dimension?

Figure EC1.4 Estimating the length of a coastline. Notice the top estimate gives a length of
roughly 8.5 rulers in length. Now we halt the length of the ruler. We get a length estimate of
the coastline of roughly 19 rulers, not the 17 rulers we might expect. Imagine halving the
ruler’s length yet again. It is easy to see that more of the “nooks and crannies” of the coastline
will be measured, making the estimate require more than twice the last ruler length again.
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Figure EC1.5 The relationship between the length of coastline estimate and the length of
scale used to make that estimate of the coastline is linear on a log–log plot. Indeed, this is true
for many naturally occurring structures in the universe, not just coastlines. Of particular
interest to us might be polymer lengths, surface areas of rough crystals, and more. Source:
Mandelbrot 1983 [3a].

dimensional characteristic to what was being estimated. He assigned
the term (1−D) to the slope. This makes the fitted functions look like
Log[L(s)] = (1−D)Log(s)+ b where D is the fractal dimension.
Notice in the replotted data above that the UK has a (1−D)∼−0.24. So,
D = 1− (−0.24) = 1.24, a fractional value. The coastline of ZA is much
smoother. So, the slope above is very nearly zero so D∼ 1 (i.e. almost a
Euclidean object or a line with a dimensionality of one). Generally, the
rougher the line, the steeper the slope will be. This yields a larger fractal
dimension, as though this highly squiggly line is trying to fill space in a nearly
2D way but doesn’t quite make it!
In this exercise you will generate line segments of your own coastline. These
are a set of line segments that are self-similar over different length scales.
The Example
The Koch curve is constructed conceptually by taking a line segment (the
initiator) and removing the middle third of the line. The gap is then filled with
two line segments that are equal in length to the segments on either side of the
gap. This is shown in Figure EC1.6. The new structure is called the generator.
So, starting with these two structures, the rule says to take each line and
replace it with four lines, each one-third the length of the original. Notice
that as we do this, the “length” of the curve gets greater and greater until it
eventually diverges.

(a) As we noted the Koch curve length increases with each iteration, until it
diverges. So this means we can only deal with it in a treatment as we show
for the coastlines above: Figure EC1.5. Estimate the lengths for the next
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Initiator

Generator

Iteration 1

Iteration 2

Length = 1

Length = 4/3

Iteration 3

Length = 16/9

Iteration 4

Length = 64/27

Iteration 5

Length = ?

Figure EC1.6 The Koch curve. Starting with the initiator (iteration 1) and the generator
(iteration 2), the curve can be continued infinitely.

couple of iterations following the example in Figure EC1.6. Plot them as
seen in Figure EC1.5 and then make a determination of the fractal dimen-
sion of the Koch curve.

(b) Write a short Maple, MATLAB, or Mathematica program to produce the
Koch curve and estimate lengths for iterations up to 20 or so. How fast is
the length diverging? How fast does the fractal dimension converge to a
limiting value and how close was your estimate in (a)?

(c) Now let’s see how to use this and why we have placed this in a solid-state
book. Go to a local atomic force microscope (AFM). Get a sample of frac-
tured glass or metal of appropriate size. Image this sample observing the
roughness in the image and in individual line scans (see user’s manual for
your machine). The software of most AFMs allow for a roughness analysis
to be made; you just hit a key and it gives a number. There are a number
of different ways to define and calculate this roughness, but generally the
machine will determine the mean or average variation from a horizon line
defined by the image itself and call this the roughness. However you might
suspect that there is some relationship between this number and that of
the fractal dimension, and with a few small limitations and caveats, there
is. Using MATLAB or one of the other symbolic math programs, write
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out a code to load one of the line scans into the program and then overlay
line segments to determine length in methods similar to that of the above
Richardson plot. From this determine the fractal dimension.

Now change the imaging conditions including the size of the scan area, the
speed of scanning, etc. (we are assuming you know what an AFM is here
of course). Repeat what you have just done. Is the answer different? Yes! Of
course it is. But do you know why? How many scales would I need to scan
over to ensure that I have a reasonable correlation between what we will call
surface roughness and fractal dimension?
Note to the reader about our problem sets: Ever notice how some texts end
their chapters with problem #1 derive equation 2.7… problem #7 repeat
problem #4 for all these different lattice parameters… and on they go. Well,
our problems don’t work that way. Following the lead of great works like
Kittel, we assume that our readers are living and breathing their desire to
become true solid-state physicists. So, they are not opposed to reaching
outside of the text to understand a concept through a reference or per-
forming an experiment or two to test our conjectures. Occasionally easily
accessed references just don’t provide enough discussion, and so we walk
you through that concept in the problem. In other cases, gems are lying upon
the ground waiting to be read and appreciated. We encourage the reader to
try all of our problems first alone and then within study groups and with
their instructors. They are not homework, they are home entertainment,
and they are opportunities to go well beyond what we have covered in
the text.
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