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Fundamentals of Piezoelectricity

1.1 Introduction

In 1880, Pierre Curie and Jacques Curie discovered the (direct) piezoelectric effect in
quartz (SiO2) and other single crystals, which generates an electric charge propor-
tional to a mechanical stress. The converse piezoelectric effect, a geometric strain
proportional to an applied voltage, was also soon realized. Since then, quartz has
been one of the most well-known and widely used piezoelectric materials. Many
decades later, polycrystalline piezoelectric ceramics (oxides) have been discovered.
The first one is BaTiO3 that was discovered during the World War II, which was
used as dielectric materials for solid condensers at first [1]. In 1947, Roberts found
that BaTiO3 ceramics (polycrystals) showed good piezoelectricity, about 100 times
higher than that of quartz, after they were poled under a high voltage [2]. Since
then, BaTiO3 ceramics have been widely applied to transducers, sensors, and fil-
ters, particularly in Japan. In 1952, Shirane et al., reported that solid solutions can
be formed between PbTiO3 and PbZrO3 [3, 4]. One year later, ferroelectricity and
antiferroelectricity were found in the solid solutions [5]. In 1954, Jaffe et al. studied
the piezoelectric properties of PbTiO3–PbZrO3 solid solution ceramics, and found
that its piezoelectric constants were twice as high as that of BaTiO3, and its Curie
temperature (above which the piezoelectricity disappears) was over 300 ∘C [6]. Now,
the PbTiO3–PbZrO3 solid solutions, abbreviated as PZT, are the most widely used
piezoelectric ceramics [7–10]. The PZT ceramics show greatly enhanced piezoelec-
tric and dielectric properties when the Zr/Ti ratio is close to 52/48, where exists a
morphotropic phase boundary (MPB) separating the rhombohedral and tetragonal
regions [7]. It is generally understood that the piezoelectricity enhancement stems
from the effect of phase coexistence enabled by the existence of MPB.

Despite the facts that BaTiO3 is lead-free and was also discovered before PZT, the
markets of piezoceramic applications have been dominated by PZT-based ceram-
ics mainly because of its following advantages compared with BaTiO3: (i) excellent
and adjustable piezoelectric properties, (ii) relatively high Curie temperature, and
(iii) relatively low sintering temperature. Recently, environmental protection has
become a major global concern, and environmental-friendly materials and technol-
ogy are one of the main tasks to be resolved in this new century. The manufacturing,
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handling, and disposal of PZT ceramics, which contain >60 wt% of lead, pose harm-
ful influences on the workers’ safety and soil environment as well as water supply.
That is why many countries have incentivized the development of lead-free piezo-
electric materials [11–18].

For the R&D of lead-free piezoelectric materials, it is very important to get a full
understanding of piezoelectric principles and the piezoelectric mechanisms of exist-
ing piezoelectric materials, especially PZT ceramics. However, because PZT ceram-
ics have many important applications, and in some sense, its application research
has moved faster compared with the fundamental research on its piezoelectric mech-
anism, there are still a lot of things remaining very unclear. For example, the phase
diagram of PZT around the MPB has been renewed even after half a century passed
since the discovery of PZT [19–21], and rigorous descriptions still lack for unambigu-
ous understanding of the MPB’s contribution to piezoelectricity. The fundamental
structure–property mechanisms revealed in lead-containing piezoelectric materials
can be also operational in lead-free systems and at a minimum, should be consid-
ered as starting guidelines for the development of lead-free piezoelectrics from the
aspects of composition modification, microstructure tailoring, property characteri-
zations, device applications, etc.

1.2 Piezoelectric Effects and Related Equations

The piezoelectric effect or piezoelectricity is the generation of electric charges on
the surface of certain non-conducting materials in response to applied mechanical
stress, or conversely, the generation of a mechanical strain in such materials when
they are subjected to an electric field, as schematically shown in Figure 1.1 [17].
The piezoelectric effect is a reversible process, so the materials exhibiting the direct
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Figure 1.1 (a) The direct piezoelectric effect provides an electric charge upon application
of a mechanical stress, whereas (b) the converse piezoelectric effect describes the situation
where strain develops under an applied electric field. Source: Reproduced with permission
from Roedel and Li [17]. Copyright 2018, Cambridge University Press.
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piezoelectric effect also exhibit the converse piezoelectric effect. As such, piezoelec-
tricity is referred to as both direct and converse effects, even though the word “piezo-
electricity” often leads us to the meaning of the direct piezoelectric effect of the
internal generation of electrical charges resulting from an applied mechanical force.

In a narrow sense, piezoelectricity can be understood as a linear electromechan-
ical interaction between the mechanical and the electrical states. The constant
for such a linearly proportional relation is defined as the piezoelectric coefficient
d, which is a third-rank tensor coupling the first-rank tensor or vector (electric
displacement or field) and the second-rank tensor (stress or strain). Hence, the
piezoelectric equations may be written in the following form (i, j, k = 1, 2, 3) [22]

Dk = dkijTij (1.1)

Sij = dkij
∗Ek (1.2)

where Di is electric displacement (C/m2), Ei is electric field component (V/m), Sij
is strain component, Tij is stress component (N/m2), and dkij or dkij

* is component
of the piezoelectric charge or strain constant. It should be noted that the subscripts
of piezoelectric constant are commonly expressed using the reduced Voigt matrix
notation dkm, where k denotes the component of electric displacement D or field
E in the Cartesian reference frame (x1, x2, x3), and the index m = 1, …, 6 is used
to define the mechanical stress or strain. In this case, m = 1, 2, and 3 correspond
to the normal stresses along the x1, x2, and x3 axes, respectively, whereas m = 4, 5,
and 6 stand for the shear stresses T23, T13, and T12, respectively. Both d and d* are
called the piezoelectric constant or coefficient, but they have different units, which
are pC/N and pm/V (here, p stands for 10−9), respectively. It follows from thermo-
dynamic considerations that dkm = dkm

*, namely, the coefficients that connect the
field and strain are equal to those connecting the stress and the polarization.

In addition to the piezoelectric charge or strain constant, other forms of piezo-
electric constants are also used in specialized design cases. Totally, there are four
piezoelectric constants including the abovementioned piezoelectric charge or strain
coefficient d, which are listed in Table 1.1 with their names and definitions [22].
These piezoelectric constants are defined as partial derivatives evaluated at constant
stress (subscript T), constant electrical field (subscript E), constant electrical dis-
placement (subscript D), or constant strain (subscript S). These conditions can be
regarded as “mechanically free,” “short circuit,” “open circuit,” and “mechanically
clamped,” respectively.

1.3 Ferroelectric Properties and Its Contribution
to Piezoelectricity

Since most high-performance piezoelectric materials are also ferroelectric mate-
rials, it is necessary to review ferroelectric properties and their contribution to
piezoelectricity [23–28]. Ferroelectricity is a character of certain materials that have
a spontaneous electric polarization that can be reversed by the application of an
external electric field. As illustrated in Figure 1.2, dielectrics are the big family
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Table 1.1 Piezoelectric constants.

Symbol Name Definition

d Piezoelectric charge coefficient
or piezoelectric strain coefficient

dij =
(

𝜕Di

𝜕Tj

)
E
=
(

𝜕Sj

𝜕Ei

)
T

g Piezoelectric voltage coefficient
(voltage output constant)

gij = −
(

𝜕Ei

𝜕Tj

)
D
=
(

𝜕Sj

𝜕Di

)
T

e Piezoelectric stress coefficient eij = −
(

𝜕Tj

𝜕Ei

)
S
=
(

𝜕Di

𝜕Sj

)
E

h Piezoelectric stiffness coefficient hij = −
(

𝜕Ei

𝜕Sj

)
D
−
(

𝜕Tj

𝜕Di

)
S
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Figure 1.2 The relationship among dielectric, piezoelectric, pyroelectric, and ferroelectric
materials.

with the core subset being ferroelectrics. Dielectric materials are basically electrical
insulators, which become polarized by the peripheral application of electrical field
when placed across the plates of a capacitor. Piezoelectric materials belong to the
dielectric group, but a stress can create a net separation of positive and negative
charges in a piezoelectric crystal that has a non-centrosymmetric crystal structure.
Pyroelectrics are those materials with the ability to generate a temporary voltage
when they are heated or cooled, since the polarization magnitude in a pyroelectric
crystal can be thermally changed by the temperature change. By comparison, for
a piezoelectric crystal, it is the mechanical stimuli resulting in the polarization
change and as a consequence, charges build up at its surfaces. Ferroelectrics are
an experimental subset of pyroelectric materials. All ferroelectric materials are
pyroelectrics, and all pyroelectrics are piezoelectric; however, not all piezoelectric
materials are pyroelectric and not all pyroelectrics are ferroelectric. It is known
that crystal symmetry governs the aforementioned categorization. All crystalline
substances belong to one of the 32 crystallographic point groups. There are 20
piezoelectric point groups and 10 ferroelectric point groups.
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The direction of electric dipoles in both piezoelectric and pyroelectric (but not
ferroelectric) materials cannot be changed, whereas it can be reversed by an electric
field for ferroelectric materials. Therefore, the distinguishing feature of ferroelectrics
is that the spontaneous polarization can be reversed by a sufficiently high applied
electric field along the opposite direction. Furthermore, the polarization is depen-
dent not only on the electric field but also on its history that the material has experi-
enced, thereby yielding a hysteresis P–E (polarization–electric field) loop, as shown
in Figure 1.3. Starting from point A, the polarization initially increases slowly with
E-field, but turns to a sharp rise when the applied field is sufficiently high. Then,
after a long and slow stage, the polarization reaches a saturation level (saturation
polarization, Ps). The Ps is normally estimated by intersecting the polarization axis
with the saturated linear part. The polarization does not go back to the starting point
after the removal of E-field but instead results into non-zero values, which is defined
as the remnant polarization, Pr. In order to reach a zero polarization state, an E-field
applied along the opposite direction is required. This E-field is named as the coercive
field, EC, which stands for the magnitude of the applied electric field to reverse the
direction of ferroelectric polarization.

The appearance of such a P–E loop is an important criterion to distinguish whether
a material is ferroelectric or not. Ferroelectric materials display such a hysteretic
behavior as a result of the response of electric domains to electric field, analogous
to that of magnetic domains of a ferromagnetic material against a magnetic field.
It should be emphasized that a polar material may be piezo-/pyro-electric but not
ferroelectric if the direction of its dipoles is not switchable even under exceedingly
high external electrical fields. For example, single crystalline quartz is a conventional
piezoelectric material, but has no ferroelectric properties. Similarly, ZnO is a piezo-
electric but non-ferroelectric material in general.

Figure 1.3 Polarization vs.
electric field hysteresis loop
in ferroelectric materials.
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Once a ferroelectric crystal is cooled across the Curie temperature, a polariza-
tion develops. The ferroelectric phase transition is a structural phase transition,
during which the displacements of ions produce lattice distortions and change the
symmetry of the crystal. The magnitude of the ion displacements along certain
crystallographic directions in the materials is specific to a given crystal structure and
composition. If the polarization develops uniformly throughout the whole crystal,
a depolarizing electric field will be produced. To minimize the electrostatic energy
associated with this field, the crystal often splits into regions, called domains; a
region in which the polarization is uniform is called a domain. The regions between
two adjacent domains are called domain walls. Their thickness is typically of the
order of 10–100 Å. Domain represents a region within a ferroelectric material in
which the direction of polarization is uniform. The saturation polarization, Ps,
corresponds to the total polarization at an extreme state where (almost) all domains
are aligned along the direction of applied electric field. Some of these domains stay
at the same direction even after the removal of electric field, resulting in the remnant
polarization. It can be readily envisaged that a ferroelectric material at a state with
remnant polarization can be used a piezoelectric material, since it can generate
electric charges when subjected to mechanical stress. In other words, if a ferroelec-
tric material, at least polycrystalline bulk materials should show no piezoelectric
response if it has not been subjected to an electric field. This is because the charges
will be canceled collectively if the domains are randomly distributed along different
directions, resulting in zero change when the whole material receives mechanical
deformation. As such, piezoelectricity can be regarded as one of the functionalities
of ferroelectric materials, and in general, ferroelectric materials need to be poled
before they can be used as piezoelectric materials. Therefore, electrical poling is
an indispensable process for ferroelectric piezoelectric materials. During poling,
a strong electric field is applied across ferroelectric materials and consequently, a
majority of the domains switch their pristine polarization and become aligned along
the electric field direction. Figure 1.4 schematically shows the poling process. The
virgin materials are subjected to an electric field, which should be sufficiently higher

(a) (b) (c)
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Figure 1.4 The schematic illustrations showing the alignment of ferroelectric domain and
macroscopic strains when a ferroelectric material is subjected to a poling treatment under
an electric field. (a) Virgin state. (b) Saturation state. (c) Remnant state.
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than the coercive field (EC), so that the domains can be re-orientated almost along
the same direction. As shown in Figure 1.4b, the poling process is accompanied with
an expansion of the poled materials or tensile strains, which is basically consistent
with the converse piezoelectric phenomenon. As shown in Figure 1.4c, although
most domains are kept along the poling direction, part of them revert back or change
their orientations after the removal of the poling electrical field in order to reduce the
mechanical strains. After the poling treatment, the material possesses a macroscopic
polarization, which is equal to the remnant polarization (Pr) in the P–E loop shown
earlier. Therefore, the poling process is very important for piezoelectric materials.
Even for the same materials, if not completely poled, the resultant piezoelectric
properties, especially piezoelectric charge coefficient (d33), will be very low. Also, it
is clear that the poling process is not applicable to non-ferroelectric materials. That is
why high-performance piezoelectric materials must be ferroelectric in the first place.

1.4 Piezoelectric Parameters

1.4.1 Piezoelectric Constants

1.4.1.1 Piezoelectric Charge (Strain) Constant
The piezoelectric charge coefficient relates the electric charge generated per
unit area with an applied mechanical force and is expressed in the unit of
Coulomb/Newton (C/N) [7, 22]. This constant is most frequently used to evaluate
the goodness of a piezoelectric material.

d =
Strain developed

Applied field
=

Charge density (open circuit)
Applied stress

(1.3)

The d constant is associated with three important materials properties through the
following the equation:

d = k
√

𝜀0kTsE (C∕N) (1.4)

where k is electro-mechanical coupling coefficient, kT denotes relative dielectric
constant at a constant stress, and sE is elastic compliance (10 m/N) at a constant
electrical field.

There are two important d constants:

d31 = k31

√
𝜀0kT

3 sE
11 (C∕N) (1.5)

d33 = k33

√
𝜀0kT

3 sE
33 (C∕N) (1.6)

It is useful to remember that large d constants relate to large mechanical displace-
ments, which are usually sought in motional transducer devices. Conversely, the
coefficient may be viewed as relating the charge collected on the electrodes, to the
applied mechanical stress. d33 applies when the force is along the three direction
(parallel with the polarization axis) and is impressed on the same surface from which
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the charge is collected. d31 applies when the charge is collected from the same sur-
face as with d33, but the force is applied at right angles to the polarization axis. It is
commonly known that they have the following empirical relation.

d33 ≈ −2.5 ⋅ d31 (1.7)

1.4.1.2 Piezoelectric Voltage Coefficient (G-constant)
The piezoelectric voltage coefficient is also called voltage output constant, which is
defined as the ratio of the electric field produced to the mechanical stress applied
and is expressed in the unit of voltage-meter/Newton (Vm/N).

g =
Strain developed

Applied charge density
=

Field developed
Applied mechanical stress

(1.8)

The g-constants are calculated from the piezoelectric charge (strain) constant (d)
and relative permittivity (𝜀) from the equation:

g = d
𝜀

(Vm∕N) (1.9)

Depending on the type of relative directions, the g constant can be categorized as
g33, g31, or g15, corresponding to d33, d31, or d15, respectively.

1.4.2 Piezoelectric Coupling Coefficient

The piezoelectric coupling coefficient (sometimes referred as the electromechanical
coupling coefficient) is defined as the ratio of the mechanical energy accumulated
in response to an electrical input or vice versa. It also corresponds to the fraction of
electrical energy that can be converted into mechanical energy and vice versa. Thus,
the piezoelectric coupling coefficient can be expressed by the following equation:

x =

√
Mechanical energy stored
Electrical energy applied

=

√
Electrical energy stored

Mechanical energy applied
(1.10)

The coupling factor can be calculated based on the measured resonance and
anti-resonance frequencies of a piezoelectric element, depending on the vibration
mode at which the element is excited. The most used coupling factors are kp and kt
for the vibration along the radial and thickness directions in a circle-shaped disk,
respectively. In general, a useful parameter keff is frequently used to express the
effective coupling coefficient of an resonator with an arbitrary shape, either at its
fundamental resonance or at any overtone modes, and is expressed as follows:

k2
eff = 1 −

(
fr

fa

)2

(1.11)

where f r and f a stand for resonating frequency and anti-resonating frequency,
respectively. The coupling coefficients can be calculated for the various modes of
vibration from the following equations:

k2
p

1 − k2
p
=

(1 − 𝜎E)J1

[
𝜂1

(
1 + ΔF

Fr

)]
− 𝜂1

(
1 + ΔF

Fr

)
J0

[
𝜂1

(
1 + ΔF

Fr

)]
(1 + 𝜎E)J1

[
𝜂1

(
1 + ΔF

Fr

)] (1.12)
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where

J Bessel function of the first kind and zero order
J1 Bessel function of the first kind and first order
𝜎E Poisson’s ratio
𝜂1 Lowest positive root of (1+ 𝜎E)⋅J1𝜂 = 𝜂J0(𝜂)
Fr Resonance frequency (Hz)
Fa Anti-resonance frequency (Hz)
ΔF =Fa −Fr (Hz)

Assuming that 𝜎E = 0.31 for PZT ceramics and 𝜂1 = 2.05, the following simplified
equations holds:

k2
33 =

π
2

1 + ΔF
Fr

tan
π
2
ΔF
Fr

1 + ΔF
Fr

(1.13)

k2
31

1 − k2
31

= π
2

(
1 + ΔF

Fr

)
tan π

2
ΔF
Fr

(1.14)

1.4.3 Mechanical Quality Factor

The mechanical Qm (also referred to as Q) is the ratio of the reactance to the resis-
tance in the series equivalent circuit representing the piezoelectric resonator, which
is related to the sharpness of the resonance frequency. The mechanical Qm can be
calculated using the equation:

Qm =
fr

f2 − f1
(1.15)

where f r is the resonance frequency, f 1 and f 2 are frequencies at −3 dB of the maxi-
mum admittance. The mechanical Qm is also related to the electromechanical cou-
pling factor k, following the equation:

Qm = 1
2πFrZmC0

( F2
a

F2
a F2

r

)
(1.16)

where

Fr Resonance frequency (Hz)
Fa Anti-resonance frequency (Hz)
Zm Impedance at Fr (ohm)
C0 Static capacitance (Farad)
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1.5 Issues for Measuring Piezoelectric Properties

1.5.1 Measurement of Direct Piezoelectric Coefficient Using
the Berlincourt Method

One of the most crucial figures of merits characterizing a piezoelectric material
is the piezoelectric charge constant, also called the direct piezoelectric coefficient.
It reflects the internal generation of electrical charges resulting from an applied
mechanical force, as previously mentioned. Basically, the higher the piezoelectric
charge constant, the more active a piezoelectric material is. A fast and accurate
evaluation of the direct piezoelectric coefficient can be realized by the Berlincourt
method associated with a quasi-static piezo d33-meter [6, 28–31]. In this method,
sample size or geometric shape becomes a factor that need not be strictly taken
into account. Besides, the availability and convenient operation of a d33-meter are
obvious, which make it a predominantly used method in practice. However, the
name of “Berlincourt method” is often mistaken by some people nowadays as being
synonymous with the quasi-static measurements of the direct piezoelectric coeffi-
cient. The latter more broadly refers to the methods operating at low or quasi-static
frequencies, and its basic principle of was proposed in “Piezoelectric Ceramics”
by Jaffe et al. The name of “Berlincourt” actually derives from the researcher, Don
Berlincourt, who devoted a lot of effort to the development of the initial commercial
d33 apparatus based on the quasi-static measurement principle [28].

Here, we consider a simple case of measuring the d33 value of a ceramic sam-
ple poled along the three-direction (z) to elucidate the mathematical basis for the
Berlincourt method. In the common case, the interaction between the mechanical
and electrical behavior can be described by the equation d33 = [𝛿D3/𝛿T3]E, where D3
denotes electric displacement along the three-direction (z) and T3 denotes applied
stress also along the three-direction (z). For the practical measurement of d33, this
equation can be altered as d33 = [(Q/A)· · ·(F/A)] = (Q/F), where F is applied force, A
is the acting area, and Q is charge developed. It is obvious that d33 can be determined
via measuring the charge induced by a certain force applied on the piezoelectric
samples, while the measurement of the areas can be neglected as they cancel out. It
should be noted that a constant electric field as fulfilled in the short-circuit condition
is the prerequisite of this measurement. To achieve this condition, a large capacitor
across the Device Under Test (DUT) or a virtual-ground amplifier is often embedded
in the test system.

Based on the aforementioned consideration, one can easily realize that the d33
meter must include at least two parts: the force loading system for applying a small
oscillating force, and the electronics for the circuit control and the charge measure-
ment. As shown in Figure 1.5, the force loading system can further be divided to
three parts, namely, contact probes, loading actuator, and reference sample [31]. The
loading actuator is usually in the form of a loudspeaker type coil, which is cheap and
easily controllable using electronic signals. The reference sample is used to monitor
the applied force. It should be a piezoelectric material with a known piezoelectric
coefficient and under the same force condition as the DUT. Thus, it is always put in
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Figure 1.5 Schematic illustration of the components in the force loading system. Source:
Modified from Cain [31].

the same loading line. PZT ceramics are usually served as the reference sample due
to their high sensitivity. When the DUT is stimulated under the oscillating force with
a certain frequency controlled by an amplified AC signal generated by the electron-
ics, the corresponding charge is simultaneously measured by the electronics and the
charge detected from the reference sample is converted to the actual force amplitude.
Root Mean Squared (RMS) values of these signals are collected to determine the d33
value. It is worth nothing that some means of calibration must be conducted to give
the correct value as the processing results from RMS signals are only proportional
to the d33. Thus, reference calibration sample with a certified value is usually used.
Finally, the electronics display a digital readout of the calculated d33 value.

The main advantage of the Berlincourt method lies in its simplicity. However, due
to its simplicity, anyone can design their own measurement systems and no uniform
standard about this method were established. We have found various commercial
systems with different measurement performance. Though it is still reliable to com-
pare the results measured in the same apparatus, large variabilities exist in the test
results from different measurement systems. There are several factors controlling
the accuracy and reliability of the results associated with the Berlincourt method.
This issue might be briefly introduced by taking, for example, the magnitude and
frequency of the applied AC load force. The magnitude of the force does not make
much difference as long as if the piezoelectric sample behaves linearly within the
stress range. Nonetheless, the increased magnitude of the force is expected to gen-
erate a larger charge signal, which helps increase the signal to noise ratio. It is thus
better to set the force to at high levels as long as it can still keep the piezoelectric oper-
ating in the linear regime. For a typical Berlincourt type instrument, the frequency
of the stimulus force usually ranges from 10 Hz to 1 kHz. This range is governed by
both the charge measurement system (for the lower limit) and the force loading sys-
tem (for the upper limit). The frequency for the mechanical or electrical resonance
should be avoided in case of the corresponding measurement anomalies. Thus, some
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specific frequencies are not used in some countries, such as 97 Hz in the United
Kingdom and 110 Hz in the United States. The frequency response also varies in dif-
ferent materials, which can result in a frequency dependent gain issue. At the low
frequency range, the measured d33 for “soft” piezoelectric materials usually show a
pronounced downturn behavior with increasing frequency. This can be attributed
to the inhibited domain movement induced by the increasing frequencies, which is
depicted by the Rayleigh law. In contrast, the measured d33 for “hard” piezoelectric
materials often appears to increase linearly with the frequency as the domain wall
motion is not dominant in the low frequency range. This latter behavior is tentatively
assumed to be influenced by the proximity to resonance peaks in the kHz region.

In summary, the quasi-static method is very simple and straightforward. If the
relative magnitudes of the charge output and the applied small oscillating force can
be measured, one can easily read d33 value by reference to a sample with a known
and certificated piezoelectric coefficient.

1.5.2 Measurement of Converse Piezoelectric Coefficient by Laser
Interferometer

The displacement of piezoelectric materials under an electric field is concerned
as piezoelectric materials usually serve as actuators. However, the displacement
is too small to be easily measured in a routine method. With very high resolution
and no need for calibration on the length scale, optical interferometry provides
the chance for the precise measurement of small displacements within units of
nanometer [31–35]. Besides, optical interferometry can achieve the measurement
without mechanical contact. Interferometry techniques for the detection of strains
have been developed for nearly 50 years. However, at present, this method is still
mainly used in research laboratories due to its high price and the need of vibration
insulation system.

Piezoelectric coefficients can be measured using single beam, double beam, and
heterodyne laser interferometers. For simplicity, the principle for the case based on
a single beam laser interferometer is mainly discussed here.

Figure 1.6 depicts the schematic diagram of a Michelson interferometer. When a
monochromatic light of wavelength 𝜆 interferes with a reference beam, the interfer-
ence light intensity can be described as follows:

I = |Ep(t) + Er(t)|2 = |Ep0ei{wt−2k(d+Δd)} + Er0ei(wt−2kd)|2
= E2

p0 + E2
r0 + 2Ep0Er0 cos(2kΔd) = Ip + Ir + 2

√
IpIr cos(4πΔd∕𝜆) (1.17)

where Ip and Ir are the intensities of the probing and reference beams, respectively,
Δd is the optical path-length difference between the two beams, and k = 2π/𝜆 is
the wave number. Actually, the abovementioned relation can be converted into the
formula with the parameters, the maximum and minimum interference light inten-
sities Imax and Imin, which can be measured by a photo-detector.

I = 1∕2 (Imax + Imin ) + 1∕2 (Imax − Imin ) cos(4πΔd∕𝜆) (1.18)
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Figure 1.6 Schematic diagram of Michelson interferometer for the measurement of
displacement.

In a photodetector, the corresponding photodiode output is determined by the
light intensity related to the optical path-length Δd, which is directly related with
the sample displacement. An amplified output voltage signal corresponding to the
displacement can be obtained, which is usually monitored by an oscilloscope. A defi-
nite relationship exists between the voltage output and the displacement. According
to the relationship, interferometer sensitivity can be actually set to a specific value,
say, 10 nm/V. The changes of the sample dimension are induced by the connection
and the disconnection of voltage to the sample. The dimension changes by the identi-
cal applied voltage are measured multiple times. The averaged measured value and
the connected voltage are used to calculate the piezoelectric charge constant d33,
which is governed by the following equation:

d33 = Δl∕U (1.19)

where U is the applied voltage and Δl is the change of length determined by multi-
plying the voltage output of the interferometer and its sensitivity.

Single Beam Michelson interferometers are widely used by different research
groups to measure piezoelectric and electrostrictive strains. It should be noted that
there are various factors, including sample shape and optical alignment, which
can affect the measurement validity and accuracy. To obtain the actual value of
the sample dimension change parallel to the laser beam, it should be ensured that
only the front surface of a sample can move while the back surface of the sample is
fixed, and the sample dimension along the lateral direction can expand and contract
freely. Due to these requirements, the specimen shape and dimensions are limited.
The bulk sample is usually in the form of a cylinder or a thin plate with a suitable
ratio between the lateral dimension and the thickness. If this ratio is very large,
the clamping effect and the sample bending effect will become significant. One
should not neglect such an impact because the resultant errors can even surpass
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the longitudinal piezoelectric displacement. When measuring the d33 of a thin film
deposited on a very thick substrate, the clamping effect should be concerned as
the substrate bonding is usually assumed to be infinitely rigid. The measured d33
is actually the effective converse longitudinal piezoelectric coefficient d33,eff, which
can be determined as follows:

d33,eff = d33 − 2d31
sE

13

sE
11 + sE

12
(1.20)

where Sij is the mechanical compliance of the piezoelectric film and d31 is the trans-
verse piezoelectric coefficient.

Proper mounting of the sample is also very important to obtain the actual piezo-
electric coefficients. It has been reported that the measured d33 of the same disk
specimen of PC5H (Morgan Electro Ceramics) showed different values ranging from
750 to 1250 pC/N when simply changing the way the sample was mounted [34]. The
accuracy is also strongly affected by small vibrations or abnormal conditions during
the measurement. Thus, the measurements using the laser interferometry should
be carried out with great caution and patience, though this type of measurement
method is simply based on acquiring the displacement value of the sample surface
induced by the corresponding applied voltage.

1.5.3 Resonance and Anti-resonance Method

Both the quasi-static method and the laser interferometry method are used for the
direct measurements of d33/d31. In contrast to the two aforementioned methods,
the resonance and anti-resonance method, or the frequency method can be applied
to determine the complete tensor matrix of the material coefficients [21, 36, 37].
These coefficients can be derived by the raw set of measured parameters including
resonant frequencies, density, and sample dimensions. The detailed procedure for
the determination of these coefficients can be found in the European standard EN
50324-2:2002 and the world standard CEI/IEC 60483:1976.

For this method, an accurate impedance analyzer is a crucial requirement as
use for the testing of the resonant frequencies f s and antiresonant frequencies f a
as well as the free capacitance CT at 1 kHz. The commercially available lineups of
impedance analyzers differ in terms of frequency range and sensitivity. The most
regularly used one are, for example, Agilent E4294A and Wayne Kerr 65120B,
produced by Agilent and Wayne Kerr, respectively. The other thing to notice is that
a set of samples in the forms of a disk, a plate, and a cylinder, which have different
vibration modes, should be prepared before the measurements are carried out.
Obtaining all the needed sample items from a single bulk material of appropriate
size is preferred. The sample dimensions should conform to the world standard
CEI/IEC 60483:1976.

Material constants such as piezoelectric coefficient d, dielectric coefficient 𝜀, and
elastic coefficient s are anisotropic in general. They are usually described by ten-
sor components written in a simplified matrix form according to the point-group
symmetry of the materials. For piezoelectric ceramics, the complete matrix of the
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coefficients of electromechanical properties can be written as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
S2
S3
S4
S5
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D2
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=
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11 sE

12 sE
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13 sE

13 sE
33
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d31
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55

sE
55

2 ⋅ (sE
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d15
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d15
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⋅
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T3
T4
T5
T6
E1
E2
E3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.21)

Based on the IEEE standards [22], the requirement of the sample dimensions and
the complete matrix of piezoelectric constants can be established as illustrated in
Figure 1.7 [37].

After acquiring the entry parameters, namely, resonant frequencies, antiresonant
frequencies, capacitance, density, and sample dimensions, we can calculate the
electromechanical coupling coefficients, according to which elastic coefficients sE

11,
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Cylinde: t > 2.5 ϕd

Thin disk: ϕd > 10t

Thin plate: I > 5(t, w) Thin plate: I > 3.5(t, w)
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Figure 1.7 Establishing the complete set of material coefficients defined by IEEE standards
[37]. Source: Reprinted with permission from Fialka and Benes [37]. Copyright 2013, IEEE.
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sE
12, sE

13, sE
33, sE

55, and sE
66 can be derived. As an example, the related formulas for the

calculation of the elastic coefficient sE
33, the piezoelectric charge coefficient d33,

and the piezoelectric voltage coefficient g33 for the longitudinal length mode in the
cylinder are deduced based on the IEEE standards as follows:

sE
33 =

sD
33

1 − k2
33

=

1
4⋅𝜌⋅f 2

p ⋅t2

1 − π
2
⋅ fr

fa
⋅ tan

(
π
2
⋅ fa−fr

fa

) (1.22)

d33 = k33( 𝜀T
33 ⋅ sE
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1
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g33 =
d33

𝜀T
33

=
d33

CT ⋅ t
π⋅d2

4

(1.24)

where f r is the resonance frequency, f a is anti-resonance frequency, and f p is
parallel resonant frequency.

The frequency method is advantageous since it can determine the complete
matrix of the material coefficients, though a complete set of samples needs to be
manufactured. The accuracy of the calculated coefficients depends on the overall
measurement accuracy of the initial parameters including resonant frequencies,
anti-resonant frequencies, density, and sample dimensions. Besides, it is worth
nothing that the measured samples should comply with a minimum aspect ratio
stipulated by the IEEE standards.
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