Contents

Foreword xiii
Preface xvii

1 Industrial Milestones in Organometallic Chemistry 1
 Ben M. Gardner, Carin C.C. Johansson Seechum, and Thomas J. Colacot
1.1 Definition of Organometallic and Metal–Organic Compounds 1
1.1.1 Applications and Key Reactivity 1
1.1.1.1 Electronic Applications 1
1.1.1.2 Polymers 2
1.1.1.3 Organic Synthesis 2
1.2 Industrial Process Considerations 7
1.3 Brief Notes on the Historical Development of Organometallic
 Chemistry for Organic Synthesis Applications Pertaining to the
 Contents of this Book 8
1.3.1 Synthesis of Stoichiometric Organometallic Reagents 9
1.3.1.1 Conventional Batch Synthesis 9
1.3.1.2 Organometallics in Flow 10
1.3.2 Cross-coupling Reactions 10
1.3.2.1 C–H Bond Activation 12
1.3.2.2 Carboxylation 13
1.3.2.3 Catalysis in Water – Micellar Catalysis 13
1.3.3 Hydrogenation Reactions 14
1.3.4 Olefin Formation Reactions 15
1.3.4.1 Wittig Reaction 15
1.3.4.2 Metathesis Reactions 15
1.3.4.3 Dehydrative Decarbonylation 16
1.3.4.4 Olefins as Starting Materials 16
1.3.5 Poly- or Oligomerization Processes 17
1.3.6 Photoredox Catalysis for Organic Synthesis 17
1.4 Conclusion and Outlook 17
Biography 18
References 19
Design, Development, and Execution of a Continuous-flow-Enabled API Manufacturing Route

Alison C. Brewer, Philip C. Hoffman, Timothy D. White, Yu Lu, Laura McKee, Moussa Boukerche, Michael E. Kobierski, Nessa Mullane, Mark Pietz, Charles A. Alt, Jim R. Stout, Paul K. Milenbaugh, and Joseph R. Martinelli

Continuous-flow-Enabled Synthetic Strategy

Design and Scale-up of Chan–Lam Coupling

Development of Homogeneous Conditions

Application of a Platform Technology to Aerobic Oxidation

Optimization of Reaction and Workup Parameters

Safety Considerations for Aerobic Oxidation on Scale

Continuous Scale-up and Manufacturing

Design and Scale-up of a Buchwald–Hartwig Cross-coupling

Initial Screening

Synthesis and Isolation of Pd(dba)DPEPhos Precatalyst

Workup Procedure, Metal Removal, and Crystallization

Scale-up and Manufacturing

Impurity Control

Solubility and Impurity Spiking Studies

Conclusions

Biography

References

Continuous Manufacturing as an Enabling Technology for Low-Temperature Organometallic Chemistry

Andreas Hafner and Joerg Sedelmeier

Introduction

Organo-Li and Mg Processes in Flow Mode

Technological Advantages of Flow Technology Compared to Traditional Batch Operation

Temperature Profile of Continuous Flow Reactions

Flash Chemistry: Functional Group Tolerance

Flash Chemistry: Selectivity

Flash Chemistry: Stoichiometry and Chemoselectivity

Continuous Flow Technology

Clogging as a Major Hurdle in Flow Chemistry

Start-up and Shutdown Operation

Material of Construction

Safety Concept and Emergency Strategies

Development of a Flow Process

Screening Phase: Feasibility Study

Process Development Phase: Extended Evaluations Including Technical Feasibility

Literature Examples: Flow Processes on Multi 100 g Scale

Manufacture of Verubecestat (MK-8931)

Manufacture of Edivoxetine

Scale-up of Highly Reactive Aryl Lithium Chemistry
3.5.4 Synthesis of Bromomethyltrifluoroborates in Continuous Flow Mode 81
3.5.5 Two-Step Synthesis Toward Boronic Acids 82
3.5.6 Reaction Sequence Toward a Highly Substituted Benzoazole Building Block 84
3.6 Conclusion and Future Prospects 86

Biography 86
References 87

4 Development of a Nickel-Catalyzed Enantioselective Mizoroki–Heck Coupling 91
Jean-Nicolas Desrosiers and Chris H. Senanayake

4.1 Introduction 91
4.1.1 Nonprecious Metal Catalysis Advantages for Industry 91
4.1.2 Mizoroki–Heck Couplings in Industry with Palladium 92
4.1.3 Emergence of Nickel-Catalyzed Mizoroki–Heck Couplings 93
4.1.4 Enantioselective Nickel-Catalyzed Couplings 94
4.1.5 Synthesis of Oxindoles via Mizoroki–Heck Cyclizations 96
4.2 Development of a Nickel-Catalyzed Heck Cyclization to Generate Oxindoles with Quaternary Stereogenic Centers 97
4.2.1 Precedents and Challenges 97
4.2.2 Optimization of Reducing Agent and Base 97
4.2.3 Ligand Screening 98
4.2.4 Impact of Aryl Electrophile and of Stereochemistry of Alkene Moiety 100
4.2.5 Exploration of the Substrate Scope 102
4.2.6 Limitations of the Methodology 104
4.2.7 Mechanistic Considerations 104
4.3 Development of First Enantioselective Nickel-Catalyzed Heck Coupling 107
4.3.1 Ligand Screening 107
4.3.2 Impact of Alkene Stereochemistry 107
4.3.3 Neutral vs Cationic Pathways 108
4.3.4 Nickel Precatalyst Complex Synthesis 109
4.3.5 Exploration of the Substrate Scope 110
4.3.6 Mechanistic Studies 110
4.4 Conclusions 113

Biography 114
References 115

5 Development of Iron-Catalyzed Kumada Cross-coupling for the Large-Scale Production of Aliskiren Intermediate 121
Srinivas Achanta, Debjit Basu, Uday K. Neelam, Rajeev R. Budhdev, Apurba Bhattacharya, and Rakeshwar Bandichhor

5.1 Introduction 121
5.2 Optimization of Grade and Equivalents of Mg Metal 123
5.3 Optimization of Equivalents of 1,2-Dibromoethane 123
5.4 Effect of Solvent Concentration on Preparation of Grignard Reagent and Kumada–Corriu Coupling 124
5.5 Effect of Alkyl Chloride 3 Addition Time on the Grignard Reagent Preparation 125
5.6 Stability of Grignard Reagent at 0–5 °C 125
5.7 Iron-Catalyzed Cross-coupling Reaction 127
5.8 Optimization of Equivalents of NMP and Fe(acac)3 129
5.9 Optimization of Equivalents of Substrate 4 and Its Rate of Addition 129
5.10 Execution at Pilot Scale and Scale-up Issues 129
5.11 Agitated Thin Film Evaporator (ATFE) for Purification of 2 131
5.12 Conclusion 132
Acknowledgments 133
Biography 133
References 135

6 Development and Scale-Up of a Palladium-Catalyzed Intramolecular Direct Arylation in the Commercial Synthesis of Beclabuvir 137
Collin Chan, Albert J. DelMonte, Chao Hang, Yi Hsiao, and Eric M. Simmons
6.1 Introduction 137
6.2 KOAc/DMAc Process 141
6.3 TMAOAc/DMF Process 141
6.4 TMAOAc/DMAc Process 149
6.4.1 Cyclization Reaction 151
6.4.2 Mechanistic Understanding of the Cyclization Reaction and Impurity Formation 159
6.4.3 Hydrolysis and Workup 162
6.4.4 Crystallization and Drying 164
6.5 Conclusion 167
Biography 168
References 169

7 Ruthenium-Catalyzed C—H Activated C—C/N/O Bond Formation Reactions for the Practical Synthesis of Heterocycles and Pharmaceutical Agents 171
Anita Mehta, Naresh Kumar, and Biswajit Saha
7.1 Introduction 171
7.2 C—H Activation Followed by C—C Bond Formation 172
7.2.1 C—H Activation Followed by C—C Bond Formation: Biaryl/Heterobiaryl Synthesis in Organic Solvents 172
7.2.2 C—H Activation Followed by C—C Bond Formation: Biaryl/Heterobiaryl Synthesis in Green Solvents 181
7.3 Alkyl/Acyl/Alkenyl Substitution on Heterocycles 185
7.4 C–H Activation Followed by C—O/N Bond Formation: Heterocycle Synthesis 187

7.4.1 C–H Activation Followed by C—O/N Bond Formation: Heterocycle Synthesis in Organic Solvents 187

7.4.2 C–H Activation Followed by C—O and C—N Bond Formation: Heterocycle Synthesis in Green Solvents 189

7.5 Conclusion 196

Biography 197

References 198

8 Cross-couplings in Water – A Better Way to Assemble New Bonds 203

Tharique N. Ansari, Fabrice Gallou, and Sachin Handa

8.1 Introduction 203

8.2 Transition Metal Catalysis in Organic Solvents vs Micellar Catalysis 204

8.2.1 Micellization 205

8.2.2 Surfactant Solution – A Highly Organized Reaction Medium to Enhance Reaction Rate 206

8.2.3 Reaction Temperature 207

8.2.4 Size of Micelles 207

8.2.5 Nature of Catalyst 208

8.2.6 Increasing the Efficiency in Micellar Catalysis 209

8.2.7 Order of Addition 210

8.2.8 Product Precipitation or Extraction 211

8.2.9 Trace Metal in the Product 211

8.3 Highly Valuable Reactions in Water 212

8.3.1 Suzuki–Miyaura Couplings 212

8.3.2 Heck Couplings 217

8.3.3 Negishi Couplings 219

8.3.4 C–H Arylations 221

8.3.5 Aminations 225

8.3.6 Borylation 228

8.3.7 Arylation of Nitro Compounds 228

8.3.8 Adoption of Micellar Technology by Pharmaceutical Industry 229

8.4 Conclusions 234

Biography 234

References 235

9 Aspects of Homogeneous Hydrogenation from Industrial Research 239

Stephen Roseblade

9.1 Homogeneous Hydrogenation: A Brief Introduction 239

9.2 Catalyst Selection by Effective Screening Approaches 240

9.3 Considerations for Reaction Scale-up 244
10 Latest Industrial Uses of Olefin Metathesis

John H. Phillips

10.1 Introduction 259
10.2 General Information 260
 10.2.1 Non-ruthenium Catalysts 260
 10.2.2 Ruthenium Catalysts 261
10.3 Industrial Uses 262
 10.3.1 Ring-closing Metathesis (RCM) 262
 10.3.2 Cross-metathesis (CM) 264
 10.3.3 Ring-Opening Metathesis Polymerization (ROMP) 268
10.4 Reaction Considerations 270
 10.4.1 Catalyst Choice 271
 10.4.2 Catalyst Loading 273
 10.4.3 Solvent 273
 10.4.4 Reaction Concentration 273
 10.4.5 Overall Handling 274
 10.4.6 Application Guide and Availability 274
10.5 Troubleshooting 275
 10.5.1 Catalyst Removal 275
 10.5.2 Functional Group Tolerance 276
 10.5.3 Substrate Purity 276
 10.5.4 Catalyst Decomposition – Isomerization 277
10.6 Conclusion 277
 Biography 277
 References 278

11 Dehydrative Decarbonylation

Alex John

11.1 Introduction 283
11.2 Use of Sacrificial Anhydride and Catalytic Mechanism 285
11.3 Rh-, Pd-, and Ir-Catalysis 286
 11.3.1 Early Studies 286
 11.3.2 Recent Studies 289
11.4 Milder Temperatures 291
 11.4.1 PdCl2/XantPhos/(tBu)3biphenol System 291
 11.4.2 Well-Defined Pd-bis(phosphine) Precatalysts 294
11.5 Nickel and Iron Catalysis 295
11.6 Ester Decarbonylation 297
11.7 Synthetic Utility: α-Vinyl Carbonyl Compounds 299
11.8 Conclusions and Future Prospects 300
Biography 300
References 301

Index 305