Contents

Preface *xiii* Abbreviations *xv*

- 1 Introduction 1
- 1.1 Thin Film Technologies 1
- 1.2 Birth of Cat-CVD 3
- 1.3 Research History of Cat-CVD and Related Technologies 4

|v

- 1.4 Structure of This Book 7 References 8
- 2 Fundamentals for Studying the Physics of Cat-CVD and Difference from PECVD 11
- 2.1 Fundamental Physics of the Deposition Chamber 11
- 2.1.1 Density of Molecules and Their Thermal Velocity 11
- 2.1.2 Mean Free Path 13
- 2.1.2.1 Equation Expressing the Mean Free Path 13
- 2.1.2.2 Estimation of Diameter of Molecules or Species 14
- 2.1.2.3 Examples of Mean Free Path 15
- 2.1.2.4 Interval Time Between the First Collision and the Second Collision *16*
- 2.1.3 Collisions with a Solid Surface 17
- 2.1.3.1 Collisions with a Solid Surface 17
- 2.1.3.2 Comparison of Collisions of Molecules in Space with Collisions at Chamber Wall *18*
- 2.1.4 Residence Time of Species in Chamber 19
- 2.2 Difference Between Cat-CVD and PECVD Apparatuses 20
- 2.3 Fundamental Features of PECVD 21
- 2.3.1 Birth of PECVD 21
- 2.3.2 Generation of Plasma 22
- 2.3.3 DC Plasma to RF Plasma 23
- 2.3.4 Sheath Voltage 24
- 2.3.5 Density of Decomposed Species in PECVD 25
- 2.3.5.1 Number of Collisions Between Electrons and Gas Molecules 25
- 2.3.5.2 Number of Decomposed Species in PECVD 26

vi Contents

- 2.4 Drawbacks of PECVD and Technologies Overcoming Them 28
- 2.4.1 Plasma Damage 28
- 2.4.2 Increase of Frequency in PECVD 30
- 2.4.3 Power Transferring System 31
- 2.4.4 Large Area Uniformity for Film Deposition 31
- 2.5 Features of Cat-CVD as Technology Overcoming Drawbacks of PECVD 33
- 2.A Rough Calculation of Ranges $\langle R \rangle$ of Si and H Atoms and Defect Range $\langle R_{defect} \rangle$ Created by Si and H Atoms Implanted with Very Low Energy 35 References 38
- 3 Fundamentals for Analytical Methods for Revealing Chemical Reactions in Cat-CVD 41
- 3.1 Importance of Radical Species in CVD Processes 41
- 3.2 Radical Detection Techniques 42
- 3.3 One-Photon Laser-Induced Fluorescence 43
- 3.3.1 General Formulation 43
- 3.3.2 Validity of the Assumption of a Two-State System 45
- 3.3.3 Anisotropy of the Fluorescence 47
- 3.3.4 Correction for Nonradiative Decay Processes 47
- 3.3.5 Spectral Broadening 48
- 3.3.6 Typical Apparatus for One-Photon LIF and the Experimental Results *49*
- 3.3.7 Determination of Rotational and Vibrational State Distributions of Molecular Radicals 52
- 3.3.8 Estimation of Absolute Densities in One-Photon LIF 53
- 3.4 Two-Photon Laser-Induced Fluorescence 55
- 3.5 Single-Path Vacuum Ultraviolet (VUV) Laser Absorption 56
- 3.6 Other Laser Spectroscopic Techniques 58
- 3.6.1 Resonance-Enhanced Multiphoton Ionization 59
- 3.6.2 Cavity Ringdown Spectroscopy 60
- 3.6.3 Tunable Diode Laser Absorption Spectroscopy 63
- 3.7 Mass Spectrometric Techniques 63
- 3.7.1 Photoionization Mass Spectrometry 64
- 3.7.2 Threshold Ionization Mass Spectrometry 64
- 3.7.3 Ion Attachment Mass Spectrometry 66
- 3.8 Determination of Gas-Phase Composition of Stable Molecules 66
- 3.A Term Symbols Used in Atomic and Molecular Spectroscopy 67 References 69

4 Physics and Chemistry of Cat-CVD 77

- 4.1 Kinetics of Molecules in Cat-CVD Chamber 77
- 4.1.1 Molecules in Cat-CVD Chamber 77
- 4.1.2 Comparison with PECVD for Decomposition 80
- 4.1.3 Influence of Surface Area of Catalyzer 81
- 4.2 What Happens on Catalyzer Surfaces Catalytic Reactions 82

- 4.3 Poisoning of Surface Decomposition Processes 83
- 4.4 Gas Temperature Distribution in Cat-CVD Chambers 85
- 4.5 Decomposition Mechanisms on Metal Wire Surfaces and Gas-Phase Kinetics *86*
- 4.5.1 Catalytic Decomposition of Diatomic Molecules: H_2 , N_2 , and O_2 86
- 4.5.2 Catalytic Decomposition of H₂O 89
- 4.5.3 Catalytic Decomposition of SiH₄ and SiH₄/H₂ and the Succeeding Gas-Phase Reactions 89
- 4.5.4 Catalytic Decomposition of NH_3 and the Succeeding Gas-Phase Reactions 90
- 4.5.5 Catalytic Decomposition of CH_4 and CH_4/H_2 and the Succeeding Gas-Phase Reactions 91
- 4.5.6 Catalytic Decomposition of PH_3 and PH_3/H_2 and the Succeeding Gas-Phase Reactions 92
- 4.5.7 Catalytic Decomposition of B_2H_6 and B_2H_6/H_2 and the Succeeding Gas-Phase Reactions 93
- 4.5.8 Catalytic Decomposition of H₃NBH₃ and Release of B Atoms from Boronized Wires 94
- 4.5.9 Catalytic Decomposition of Methyl-Substituted Silanes and Hexamethyldisilazane (HMDS) 94
- 4.5.10 Summary of Catalytic Decomposition of Various Molecules on Metal Wires 96
- 4.6 Si Film Formation Mechanisms in Cat-CVD 96 References 99

5 Properties of Inorganic Films Prepared by Cat-CVD 105

- 5.1 Properties of Amorphous Silicon (a-Si) Prepared by Cat-CVD 105
- 5.1.1 Fundamentals of Amorphous Silicon (a-Si) 105
- 5.1.1.1 Birth of Device Quality Amorphous Silicon (a-Si) 105
- 5.1.1.2 Band Structure of Amorphous Materials 106
- 5.1.1.3 General Properties of a-Si 109
- 5.1.2 Fundamentals of Preparation of a-Si by Cat-CVD 115
- 5.1.2.1 Deposition Parameters 115
- 5.1.2.2 Structural Studies on Cat-CVD a-Si: Infrared Absorption 115
- 5.1.3 General Properties of Cat-CVD a-Si 117
- 5.1.4 Deposition Mechanism of a-Si in Cat-CVD Process Growth Model *125*
- Crystallization of Silicon Films and Microcrystalline Silicon (μc-Si) 132
- 5.2.1 Growth of Crystalline Si Film 132
- 5.2.2 Structure of Cat-CVD Poly-Si 134
- 5.2.3 Properties of Cat-CVD Poly-Si Films 138
- 5.2.4 Si Crystal Growth on Crystalline Si 141
- 5.3 Properties of Silicon Nitride (SiN_x) 143
- 5.3.1 Usefulness of Silicon Nitride (SiN_x) Films 143
- 5.3.2 Fundamentals for the Preparation of SiN_x 144

- 5.3.3 SiN_x Preparation from NH₃ and SiH₄ Mixture 144
- 5.3.4 SiN_x Preparation from Mixture of NH₃, SiH₄, and a Large Amount of H₂ 150
- 5.3.5 Conformal Step Coverage of SiN_x Prepared from the Mixture of NH_3 , SiH_4 , and a Large Amount of H_2 153
- 5.3.6 Cat-CVD SiN_x Prepared from HMDS 155
- 5.4 Properties of Silicon Oxynitride (SiO_xN_y) 157
- 5.4.1 SiO_xN_y Films Prepared by SiH₄, NH₃, H_2 , and O₂ Mixtures 157
- 5.4.2 SiO_xN_y Films Prepared by HMDS, NH₃, H₂, and O₂ Mixtures 161
- 5.5 Properties of Silicon Oxide (SiO₂) Films Prepared by Cat-CVD *164*
- 5.6 Preparation of Aluminum Oxide (Al_2O_3) Films by Cat-CVD 166
- 5.7 Preparation of Aluminum Nitride (AlN) by Cat-CVD 168
- 5.8 Summary of Cat-CVD Inorganic Films *170* References *171*

6 Organic Polymer Synthesis by Cat-CVD-Related Technology – Initiated CVD (iCVD) 179

- 6.1 Introduction 179
- 6.2 PTFE Synthesis by Cat-CVD-Related Technology 181
- 6.2.1 Select Characteristics and Applications of CVD PTFE Films 182
- 6.2.2 Influence of the Catalyzing Materials for PTFE Deposition 186
- 6.3 Mechanistic Principles of iCVD 187
- 6.3.1 Initiators and Inhibitors 188
- 6.3.2 Monomer Adsorption 189
- 6.3.3 Deposition Rate and Molecular Weight 191
- 6.3.4 Copolymerization 191
- 6.3.5 Conformality 193
- 6.4 Functional, Surface-Reactive, and Responsive Organic Films Prepared by iCVD *194*
- 6.4.1 Polyglycidyl Methacrylate (PGMA): Properties and Applications *203*
- 6.4.2 iCVD Films with Perfluoroalkyl Functional Groups: Properties and Applications 205
- 6.4.3 Polyhydroxyethylacrylate (PHEMA) and Its Copolymers: Properties and Applications 208
- 6.4.4 Organosilicon and Organosilazanes: Properties and Applications *212*
- 6.4.5 iCVD of Styrene, 4-Aminostyrene, and Divinylbenzene: Properties and Applications *217*
- 6.4.6 iCVD of EGDA and EGDMA: Properties and Applications 219
- 6.4.7 Zwitterionic and Polyionic iCVD Films: Properties and Applications 221
- 6.4.8 iCVD "Smart Surfaces": Properties and Applications 222
- 6.5 Interfacial Engineering with iCVD: Adhesion and Grafting 227
- 6.6 Reactors for Synthesizing Organic Films by iCVD 230
- 6.7 Summary and Future Prospects for iCVD 232 References 235

7	Physics and Technologies for Operating Cat-CVD
	Apparatus 249
7.1	Influence of Gas Flow in Cat-CVD Apparatus 249
7.1.1	Experiment Using a Long Cylindrical Chamber for Establishing
	Quasi-laminar Flow 249
7.1.2	Dissociation Probability of SiH ₄ Derived from a Cylindrical
	Chamber 251
7.2	Factors Deciding Film Uniformity 253
7.2.1	Equation Expressing the Geometrical Relation Between Catalyzer and Substrates 253
7.2.2	Example of Estimation of Uniformity of Film Thickness 254
7.3	Limit of Packing Density of Catalyzing Wires 255
7.4	Thermal Radiation from a Heated Catalyzer 256
7.4.1	Fundamentals of Thermal Radiation 256
7.4.2	Control of Substrate Temperatures in Thermal Radiation 257
7.4.3	Thermal Radiation in CVD Systems 260
7.5	Contamination from a Heated Catalyzer 261
7.5.1	Contamination of Catalyzing Materials 261
7.5.2	Contamination from Other Impurities 262
7.5.3	Flux Density of Impurities Emitted from Heated Catalyzers 265
7.6	Lifetime of Catalyzing Wires and Techniques to Expand Their
	Lifetimes 266
7.6.1	Introduction 266
7.6.2	Silicide Formation of W Catalyzer 266
7.6.3	Silicide Formation of Ta Catalyzer 273
7.6.4	Suppression of Silicide Formation by Carburization
	of W Surface 274
7.6.5	Ta Catalyzer and Method for Extension of Its Lifetime 275
7.6.6	Lifetime Extension by Using TaC 276
7.6.7	Lifetime Extension by Using Other Ta Alloys 277
7.6.8	Lifetimes of W Catalyzer in Carbon-Containing Gases 278
7.6.9	Long-Life Catalyzer Used in <i>i</i> CVD 280
7.7	Chamber Cleaning 281
7.8	Status of Mass Production Machine 283
7.8.1	Cat-CVD Mass Production Machine for Applications in Compound
	Semiconductors 283
7.8.2	Cat-CVD Mass Production Apparatus for Large Area
	Deposition 284
7.8.3	Cat-CVD Apparatus for Coating of PET Bottles 287
7.8.4	Prototypes for Any Other Mass Production Machine 288
	References 289
8	Application of Cat-CVD Technologies 293
8.1	Introduction: Summarized History of Cat-CVD Research and
	Application 293
8.2	Application to Solar Cells 295
8.2.1	Silicon and Silicon Alloy Thin Film Solar Cells 295

x Contents

- 8.2.1.1 Introduction 295
- 8.2.1.2 Amorphous Silicon Solar Cells 296
- 8.2.1.3 Amorphous Silicon–Germanium Alloy Solar Cells 297
- 8.2.1.4 Microcrystalline Silicon Solar Cells and Tandem Cells 302
- 8.2.1.5 Nanostructured Solar Cells 304
- 8.2.2 Application to Crystalline Silicon (c-Si) Solar Cells 306
- 8.2.2.1 Introduction 306
- 8.2.2.2 Cat-CVD Silicon–Nitride (SiN_x)/Amorphous–Silicon (a-Si)-Stacked Passivation *307*
- 8.2.2.3 Cat-CVD SiN_x/a-Si-Stacked Passivation on Textured c-Si Substrates 310
- 8.2.3 a-Si and c-Si Heterojunction Solar Cells 312
- 8.2.3.1 Introduction 312
- 8.2.3.2 Surface Passivation on c-Si Solar Cells 312
- 8.3 Application to Thin Film Transistors (TFT) 314
- 8.3.1 Amorphous Silicon (a-Si) TFT 314
- 8.3.1.1 General Features of a-Si TFT 314
- 8.3.1.2 Cat-CVD a-Si TFT: Differences from PECVD a-Si TFT 316
- 8.3.2 Poly-Si TFT 319
- 8.4 Surface Passivation on Compound Semiconductor Devices 320
- 8.4.1 Passivation for Gallium–Arsenide (GaAs) High Electron Mobility Transistor (HEMT) 320
- 8.4.2 Passivation for Ultrahigh-Frequency Transistors 322
- 8.4.3 Passivation for Semiconductor Lasers 322
- 8.5 Application for ULSI Industry 323
- 8.6 Gas Barrier Films for Various Devices Such as Organic Devices 325
- 8.6.1 Inorganic Gas Barrier Films, SiN_x/SiO_xN_y , for OLED 325
- 8.6.2 Inorganic/Organic Stacked Gas Barrier Films 328
- 8.6.3 Gas Barrier Films for Food Packages 332
- 8.7 Other Application and Summary of Present Cat-CVD Application 335 References 336
- 9 Radicals Generated in Cat-CVD Apparatus and Their Application 343
- 9.1 Generation of High-Density Hydrogen (H) Atoms 343
- 9.1.1 Generation of High-Density H Atoms 343
- 9.1.2 Transportation of H Atoms 346
- 9.2 Cleaning and Etching by H Atoms Generated in Cat-CVD Apparatus 348
- 9.2.1 Etching of Crystalline Silicon 348
- 9.2.2 Cleaning of Carbon-Contaminated Surface 350
- 9.3 Photoresist Removal by Hydrogen Atoms 351
- 9.4 Reduction of Metal Oxide by H atoms 356
- 9.4.1 Reduction of Various Metal Oxides 356
- 9.4.2 Characteristic Control of Metal Oxide Semiconductors by H Atoms 357

- 9.5 Low-Temperature Formation of Low-Resistivity Metal Lines from Liquid Ink by H Atoms 358
- 9.6 Low-Temperature Surface Oxidation "Cat-Oxidation" 360
- 9.7 Low-Temperature Surface Nitridation "Cat-Nitridation" of Si and GaAs 365
- 9.8 "Cat-Chemical Sputtering": A New Thin Film Deposition Method Utilizing Radicals 372 References 374
- 10 Cat-doping: A Novel Low-Temperature Impurity Doping Technology 377
- 10.1 Introduction 377
- 10.2 Discovery or Invention of Cat-doping 378
- 10.3 Low-Temperature and Shallow Phosphorus (P) Doping into c-Si 380
- 10.3.1 Measurement of Electrical Properties of a Shallow-Doped Layer 380
- 10.3.2 Measurement of Concentration Profiles of Cat-Doped Impurities by SIMS 383
- 10.3.3 Estimation of Diffusion Constant 388
- 10.3.4 Properties of Cat-Doped P Atoms 389
- 10.3.5 Mechanism of Cat-doping 392
- 10.3.5.1 Possibility of Diffusion Enhancement by H Atoms 392
- 10.3.5.2 Vacancy Transportation Model 394
- 10.3.5.3 Si-Modified Surface Layer Model 397
- 10.4 Low-Temperature Boron (B) Doping into c-Si 398
- 10.5 Cat-Doping into a-Si 401
- 10.6 Feasibility of Cat-Doping for Various Applications 403
- 10.6.1 Surface Potential Control by Cat-doping Realizing High-Quality Passivation 403
- 10.6.2 Cat-doping into a-Si and Its Application to Heterojunction Solar Cells 405 References 407

Index 411