Contents

Preface xi

_	
1	Introduction 1
	References 1
2	Magneto-switchable Electrodes and Electrochemical Systems 5
2.1	Introduction 5
2.2	Lateral Translocation of Magnetic Micro/nanospecies on Electrodes and Electrode Arrays 5
2.3	Vertical Translocation of Magnetic Micro/Nanospecies to and from Electrode Surfaces 11
2.4	Assembling Conducting Nanowires from Magnetic Nanoparticles in the Presence of External Magnetic Field 24
2.5	Vertical Translocation of Magnetic Hydrophobic Nanoparticles to and from Electrode Surfaces 24
2.6	Repositioning and Reorientation of Magnetic Nanowires on Electrode Surfaces 45
2.7	Integration of Magnetic Nanoparticles into Polymer-Composite Materials 49
2.8	Conclusions and Perspectives 51
2.9	Appendix: Synthesis and Properties of Magnetic Particles
	and Nanowires 54
	References 62
	Symbols and Abbreviations 69
3	Modified Electrodes and Electrochemical Systems Switchable by
	Temperature Changes 71
3.1	Introduction 71
3.2	Thermo-sensitive Polymers with Coil-to-Globule Transition 72
3.3	Electrode Surfaces Modified with Thermo-sensitive Polymers
	for Temperature-controlled Electrochemical and Bioelectrochemical Processes 74
3.4	Electrode Surfaces Modified with Multicomponent Systems
	Combining Thermo-sensitive Polymers with pH-, Photo-
	and Potential-Switchable Elements 79
3.4.1	Temperature- and pH-sensitive Modified Electrodes 80

viii	Contents	
	3.4.2	Temp

3.4.2	Temperature- and Photo-sensitive Modified Electrodes 83
3.4.3	Temperature-sensitive Modified Electrodes Controlled by Complex
	Combinations of External Signals 89
3.5	Electrodes Modified with Thermo-switchable Polymer Films
0.0	Containing Entrapped Metal Nanoparticles – Inverted Temperature-
	dependent Switching 93
2.6	· ·
3.6	Conclusions and Perspectives 94
	References 96
	Symbols and Abbreviations 98
4	Madified Floatus des and Floatus described Contains Contains
4	Modified Electrodes and Electrochemical Systems Switchable
	by Light Signals 101
4.1	Introduction 101
4.2	Diarylethene-based Photoelectrochemical Switches 103
4.3	Phenoxynaphthacenequinone-based Photoelectrochemical
	Switches 120
4.4	Azobenzene-based Photoelectrochemical Switches 125
4.5	Spiropyran–merocyanine-based Photoelectrochemical Switches 141
4.6	Conclusions and Perspectives 158
	References 159
	Symbols and Abbreviations 167
5	Modified Electrodes Switchable by Applied Potentials Resulting
	in Electrochemical Transformations at Functional Interfaces 169
	References 175
	Symbols and Abbreviations 176
6	Electrochemical Systems Switchable by pH Changes 177
6.1	Introduction 177
6.2	Monolayer Modified Electrodes with Electrochemical
	and Electrocatalytic Activity Controlled by pH Value 178
6.3	Polymer-Brush-Modified Electrodes with Bioelectrocatalytic Activity
0.5	Controlled by pH Value 179
6.4	pH-Controlled Electrode Interfaces Coupled with <i>in situ</i> Produced pH
0.4	Changes Generated by Enzyme Reactions 186
<i>(</i>	
6.5	pH-Triggered Disassembly of Biomolecular Complexes on Surfaces
	Resulting in Electrode Activation 188
6.6	pH-Stimulated Biomolecule Release from Polymer-Brush Modified
	Electrodes 190
6.7	Conclusions and Perspectives 196
	References 197
	Symbols and Abbreviations 201
7	Coupling of Switchable Electrodes and Electrochemical Processes
	with Biomolecular Computing Systems 203
7.1	Introduction 203
7.1.1	General Introduction to the Area of Enzyme-based Biocomputing
	(Logic) Systems 203

7.1.2	General Definitions and Approaches Used in Realization of Enzyme- based Logic Systems 205
7.2	Electrochemical Analysis of Output Signals Generated by Enzyme Logic Systems 206
7.2.1	Chronoamperometric Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems 207
7.2.2	Potentiometric Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems 209
7.2.3	pH-Measurements as a Tool for Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems 209
7.2.4	Indirect Electrochemical Analysis of Output Signals Generated by Enzyme-based Logic Systems Using Electrodes Functionalized with pH-Switchable Polymers 212
7.2.5	Conductivity Measurements as a Tool for Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems 215
7.2.6	Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems Using Semiconductor Devices 218
7.3	Summary 220
	References 220 Symbols and Abbreviations 226
8	Biofuel Cells with Switchable/Tunable Power Output as an Example of Implantable Bioelectronic Devices 229
8.1	General Introduction: Bioelectronics and Implantable Electronics 229
8.2	More Specific Introduction: Harvesting Power from Biological Sources – Implantable Biofuel Cells 231
8.3	Biofuel Cells with Switchable/Tunable Power Output 236
8.3.1	Switchable/Tunable Biofuel Cell Controlled by Electrical Signals 236
8.3.2 8.3.3	Switchable/Tunable Biofuel Cell Controlled by Magnetic Signals 239 Biofuel Cells Controlled by Logically Processed Biochemical Signals 242
8.4	Summary 256 References 257 Symbols and Abbreviations 260
9	Signal-triggered Release of Biomolecules from Alginate-modified Electrodes 263
9.1	Introduction – Signal-activated Biomolecular Release Processes 263
9.2	Alginate Polymer Cross-linked with Fe ³⁺ Cations – The Convenient Matrix for Molecular Release Stimulated by Electrochemical Signal 264
9.3	Self-operating Release Systems Based on the Alginate Electrodes Integrated with Biosensing Electrodes 268
9.4	Conclusions and Perspectives 278 References 279 Symbols and Abbreviations 282

Contents

10	What is Next? Molecular Biology Brings New Ideas 285
10.1	Switchable Enzymes and Their Use in Bioelectrochemical
	Systems – Motivation and Applications 286
10.2	Electrocatalytic Function of the Ca ²⁺ -Switchable PQQ-GDH-CaM
	Chimeric Enzyme 287
10.3	Integration of the Ca ²⁺ -Switchable PQQ-GDH-CaM Chimeric Enzyme
	with a Semiconductor Chip 289
10.4	A Ca ²⁺ -Switchable Biofuel Cell Based on the PQQ-GDH-CaM
	Chimeric Enzyme 291
10.5	Substance Release System Activated with Ca ²⁺ Cations and Based
	on the PQQ-GDH-CaM Chimeric Enzyme 292
10.6	Summary 294
	References 294
	Symbols and Abbreviations 296
11	Summary and Outlook: Scaling up the Complexity of Signal-processing

Systems and Foreseeing New Applications 297
References 301

Index *303*