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Introduction

1.1 Motivation and Applications

Exponential development of computing systems based on silicon materials and
binary algorithms formulated as the “Moore’s law” [1] (Figure 1.1) is coming
to the end being limited by further component miniaturization and by the
speed of operation. Conceptually novel ideas are needed to break through these
limitations. The quest for novel ideas in the information processing has resulted
in several exciting directions in the general area of unconventional computing
[2–4], including research in quantum computing [5] and biologically inspired
molecular computing [6–9]. Molecular computing systems, generally motivated
by mimicking natural biological information processing [10, 11], are not neces-
sarily based on biomolecules and could be represented by synthetic molecules
with signal-controlled switchable properties. Synthetic molecular systems and
nano-species have been designed to mimic the operation of Boolean logic
gates and demonstrate basic arithmetic functions and memory units. However,
despite progress achieved in assembling synthetic molecular systems performing
basic Boolean operations and simple computations, these systems have limited
complexity, and further increase of their complexity is very challenging. A new
advance in the development of molecular information systems has been achieved
with the use of biomolecular species [12] (Figure 1.2) such as DNA/RNA [13–16],
oligopeptides [17], proteins [18], enzymes [2, 19, 20], antigens/antibodies [21],
and even whole biological cells/organisms [22–24] capable of operating in
a biological environment [25], borrowing some ideas from systems biology
[26]. The advantage of the biomolecular computing systems is their ability to
be integrated in artificially designed complex reacting processes mimicking
multistep information processing networks. These systems are still far away from
the natural information processing in cells but are already much more complex
than pure synthetic molecular systems. In fact, biochemical reactions are at the
core of the mechanism of life itself, and therefore one could set rather ambitious
expectations for how far can (bio)chemical reaction systems be scaled up in
complexity, if not speed, for information processing. While in a long perspective
a “biocomputer” might become a reality [27], particularly for some special
applications, e.g., for solving complex combinatorial problems [28], potentially
promising to have an advantage over silicon-based electronic computers
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Figure 1.1 Moore’s law – exponential increase of transistors on integrated circuit chips. (The
plot shown in the figure is based on the data provided by Wikipedia:
https://en.wikipedia.org/wiki/Moore%27s_law.) Source: Katz 2018 [2]. Adapted with
permission of John Wiley and Sons.

Figure 1.2 Biomolecular computing systems mimicking operation of different Boolean logic
gates and circuitries can be based on various species including oligopeptides,
enzymes/proteins, DNA/RNA, antibodies, and even whole biological (e.g., microbial) cells.
Source: Katz 2018 [2]. Adapted with permission of John Wiley and Sons.

due to parallel computing performed by numerous biomolecular units, the
present level of technology does not allow any practical use of biomolecular
systems for real computational applications. For achieving any practical result
soon, some other applications, different from making a biocomputer, should be
considered using the (bio)molecular systems with a limited complexity. One of



1.2 Enzyme-Based Logic Gates and Short Logic Circuits 3

the immediate possible applications for molecular logic systems is a special kind
of biosensing [29–31] where the multiple input signals are logically processed
through chemical reactions resulting in YES/NO decisions in the binary (0,1)
format. In this subarea of biomolecular logic systems, practical results are already
possible at the present level of the system complexity, particularly for biomedical
applications [32, 33]. Overall, the research in molecular/biomolecular informa-
tion processing, which has been motivated originally to progress unconventional
computing applications, is broadly developing to areas not directly related to
computing in its narrow definition. This research is bringing us to novel areas in
sensing/biosensing [29–31], switchable “smart” materials controlled by logically
processed signals [34–36], bioelectronic devices (e.g., biofuel cells) controlled by
external signals [37, 38], signal-controlled release processes [39–43], etc.

1.2 Enzyme-Based Logic Gates and Short Logic Circuits

While the major research efforts have been directed to the DNA-based com-
puting systems [10, 13–15], mostly aiming at computing applications in their
direct narrow definition [27, 44–50] and expecting acceleration of the com-
puting process due to massively parallel data processing [28, 51], enzyme logic
systems [19, 20] received smaller attention since they are less promising for real
large-scale computational applications. Growing interest to the enzyme logic
systems is based on their activation with physiologically relevant biomolec-
ular signals (metabolites) appearing at physiological concentrations [52–54]
allowing low-scale information processing for biomedical applications, such as
binary (YES/NO format) biosensing [32, 33], signal-controlled materials, and
implantable bioelectronic devices [55].

Enzyme-based logic gates are usually realized through relatively sim-
ple enzyme-catalyzed reactions [19, 20] (Figure 1.3). Rapid progress in
enzyme-based information processing systems has resulted in the design
of biocatalytic cascades mimicking various Boolean logic gates, including
AND [52, 56–59], OR [59, 60], NAND [61], NOR [57, 61], CNOT [62], XOR
[57, 59, 63–65], INHIB [57, 59], Identity [57], and Inverter [57] gates. In order
to digitalize chemical processes, the reacting species considered as logic input
signals were applied at two levels of their concentrations: their physical absence
(zero concentration) was defined as logic 0 input, while logic 1 input was
defined as experimentally optimized and conveniently high concentration, thus
allowing significant separation in the produced output signals when inputs 0
and 1 were applied in different combinations. Depending on specific needs set
by applications, the input signals were defined as variable concentrations of
substrates and/or cofactors reacting with enzymes [57] or different concentra-
tions of the biocatalytic enzymes added to a “soup” of substrates/cofactors being
ready to react with the enzymes [59]. The non-variable part of the system was
considered as a “machinery” operating with the variable input signals applied
in various combinations. Multistep biocatalytic cascades activated by several
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Figure 1.3 Enzyme-based
Boolean logic gates – artistic
vision. Source: Katz 2018 [2].
Adapted with permission of
John Wiley and Sons.

(more than two) input signals have been assembled to mimic logic circuits
composed of concatenated logic gates [66–69]. Various reaction cascades have
been designed to mimic different combinations of concatenated logic gates;
however, they usually do not include more than three or four logic steps. Due
to noise formation and amplification through the reaction steps, the number of
logic steps is limited, and theoretical estimation limits the system complexity
by approximately 10 logic steps (which have never been realized experimentally
in those enzyme-biocatalyzed reactions) [70]. Complex branched biocatalytic
reactions realized in flow cell systems have been used to mimic operation of
reversible logic gates, such as Feynman gate, Double Feynman gate, Toffoli gate,
Peres gate, and Fredkin gate [71–74].

The following chapters present different logic systems based on the enzyme
reactions, their optimization, and applications. While the designed systems
demonstrated many different logic/computing processes, their operation pro-
vided only low-scale information processing, which is not sufficient for building
a biomolecular computer. However, the designed systems have found important
applications in various signal-controlled bioelectronic devices, biosensors, and
stimuli-responsive materials. The research in the biomolecular computing,
particularly using enzyme reactions for information processing, motivated
initially by computational goals and expected to compete with silicon-based
microelectronics, finally moved to signal-switchable devices processing a few
signals in limited complexity processes. Therefore, the results obtained in the
research area represent limited interest for pure computational applications but
offer highly promising applications in bioelectronics, particularly operating in
biological environment and being adaptive to biological processes.
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