Contents

Preface xiii Abbreviations xv

- 1 Introduction 1
- 1.1 Energy Conversion and Storage: A Global Challenge 1
- 1.2 Development History of Electrochemical Energy Storage *3*

۱v

- 1.3 Classification of Electrochemical Energy Storage 4
- 1.4LIBs and ECs: An Appropriate Electrochemical Energy
Storage 6
- 1.5 Summary and Outlook *10* References *10*

2 Materials and Fabrication 15

- 2.1 Mechanisms and Advantages of LIBs 15
- 2.1.1 Principles 15
- 2.1.2 Advantages and Disadvantages 16
- 2.2 Mechanisms and Advantages of ECs 18
- 2.2.1 Categories 18
- 2.2.2 EDLCs 18
- 2.2.3 Pseudocapacitor 20
- 2.2.4 Hybrid Capacitors 21
- 2.3 Roadmap of Conventional Materials for LIBs 22
- 2.4 Typical Positive Materials for LIBs 23
- 2.4.1 LiCoO₂ Materials 23
- 2.4.2 LiNiO₂ and Its Derivatives 25
- 2.4.3 LiMn₂O₄ Material 26
- 2.4.4 LiFePO₄ Material 27

vi Contents

- 2.4.5 Lithium–Manganese-rich Materials 28
- 2.4.6 Commercial Status of Main Positive Materials 28
- 2.5 Typical Negative Materials for LIBs 29
- 2.5.1 Graphite 29
- 2.5.2 Soft and Hard Carbon 31
- 2.6 New Materials for LIBs 33
- 2.6.1 Nanocarbon Materials 33
- 2.6.2 Alloy-Based Materials 35
- 2.6.3 Metal Lithium Negative 39
- 2.7 Materials for Conventional ECs 39
- 2.7.1 Porous Carbon Materials 40
- 2.7.2 Transition Metal Oxides 41
- 2.7.3 Conducting Polymers 42
- 2.8 Electrolytes and Separators 42
- 2.8.1 Electrolytes 42
- 2.8.2 Separators 45
- 2.9 Evaluation Methods 46
- 2.9.1 Evaluation Criteria for LIBs 46
- 2.9.2 Theoretical Gravimetric and Volumetric Energy Density 46
- 2.9.3 Practical Energy and Power Density of LIBs 47
- 2.9.4 Cycle Life 48
- 2.9.5 Safety 48
- 2.9.6 Evaluation Methods for ECs 49
- 2.10 Production Processes for the Fabrication 50
- 2.10.1 Design 50
- 2.10.2 Mixing, Coating, Calendering, and Winding 51
- 2.10.3 Electrolyte Injecting and Formation 51
- 2.11 Perspectives 51 References 53
- **3 Flexible Cells: Theory and Characterizations** 67
- 3.1 Limitations of the Conventional Cells 67
- 3.1.1 Mechanical Properties of Conventional Materials 67
- 3.1.2 Limitations of Conventional Architectures 68
- 3.1.3 Limitations of Electrolytes 69

- 3.2 Mechanical Process for Bendable Cells 69
- 3.2.1 Effect of Thickness 70
- 3.2.2 Effect of Flexible Substrates and Neutral Plane 71
- 3.3 Mechanics of Stretchable Cells 72
- 3.3.1 Wavy Architectures by Small Deformation Buckling Process 72
- 3.3.2 Wavy Architectures by Large Deformation Buckling Process 74
- 3.3.3 Island Bridge Architectures 75
- 3.4 Static Electrochemical Performance of Flexible Cells 76
- 3.5 Dynamic Performance of Flexible Cells 77
- 3.5.1 Bending Characterization 78
- 3.5.2 Stretching Characterization 78
- 3.5.3 Conformability Test 79
- 3.5.4 Stress Simulation by Finite Element Analysis 79
- 3.5.5 Dynamic Electrochemical Performance During Bending *83*
- 3.5.6 Dynamic Electrochemical Performance During Stretching *85*
- 3.6 Summary and Perspectives 90 References 90
- 4 Flexible Cells: Materials and Fabrication Technologies 95
- 4.1 Construction Principles of Flexible Cells 95
- 4.2 Substrate Materials for Flexible Cells 95
- 4.2.1 Polymer Substrates 96
- 4.2.2 Paper Substrate 97
- 4.2.3 Textile Substrate 98
- 4.3 Active Materials for Flexible Cells 98
- 4.3.1 CNTs 98
- 4.3.2 Graphene 99
- 4.3.3 Low-Dimensional Materials 99
- 4.4 Electrolytes for Flexible LIBs 101
- 4.4.1 Inorganic Solid-state Electrolytes for Flexible LIBs 102
- 4.4.2 Solid-state Polymer Electrolytes for Flexible LIBs 104

4.5	Electrolytes for Flexible ECs 104
4.6	Nonconductive Substrates-Based Flexible Cells 107
4.6.1	Paper-Based Flexible Cells 108
4.6.2	Textiles-Based Flexible Cells 112
4.6.3	Polymer Substrates-Based Flexible Cells 117
4.7	CNT and Graphene-Based Flexible Cells 121
4.7.1	Free-standing Graphene and CNTs Films for SCs 121
4.7.2	Free-standing Graphene and CNT Films for LIBs 122
4.7.3	Flexible CNTs/Graphene Composite Films for the
	Cells 125
4.8	Construction of Stretchable Cells by Novel
	Architectures 127
4.8.1	Stretchable Cells Based on Wavy Architecture 127
4.8.2	Stretchable Cells Based on Island-Bridge
	Architecture 129
4.9	Conclusion and Perspectives 130
4.9.1	Mechanical Performance Improvement 131
4.9.2	Innovative Architecture for Stretchable Cells 132
4.9.3	Electrolytes Development 132
4.9.4	Packaging and Tabs 132
4.9.5	Integrated Flexible Devices 133
	References 133
5	Architectures Design for Cells with High Energy
-	Density 147
5.1	Strategies for High Energy Density Cells 147
5.2	Gravimetric and Volumetric Energy Density of
	Electrodes 149
5.3	Classification of Thick Electrodes: Bulk and Foam
	Electrodes 151
5.4	Design and Fabrication of Bulk Electrodes 153
5.4.1	Advantages of Bulk Electrodes 153
5.4.2	Low Tortuosity: The Key for Bulk Electrodes 155
5.5	Characterization and Numerical Simulation of
	Tortuosity 157
551	Characterization of Tortuosity by X-ray Tomography

5.5.1 Characterization of Tortuosity by X-ray Tomography 157

- 5.5.2 Numerical Simulation of Tortuosity on Rates by Commercial Software 158
- 5.6 Fabrication Methods for Bulk Electrodes 159
- 5.7 Thick Electrodes with Random Pore Structure 160
- 5.7.1 Pressure-less High-temperature Sintering Process 160
- 5.7.2 Cold Sintering Process 161
- 5.7.3 Spark Plasma Sintering Technology 162
- 5.7.4 Brief Summary for Sintering Technologies 165
- 5.8 Thick Electrodes with Directional Pore Distribution 165
- 5.8.1 Iterative Extrusion Method 165
- 5.8.2 Magnetic-Induced Alignment Method 168
- 5.8.3 Carbonized Wood Template Method 168
- 5.8.4 Ice Templates Method 172
- 5.8.5 3D-Printing for Thick Electrodes 173
- 5.8.6 Brief Summary for Bulk Electrodes 175
- 5.9 Carbon-Based Foam Electrodes with High Gravimetric Energy Density *178*
- 5.9.1 Graphene Foam 179
- 5.9.2 CNTs Foam 181
- 5.9.3 CNT/Graphene Foam 181
- 5.10 Carbon-Based Thick Electrodes 182
- 5.10.1 Low Electronic Conductive Material/Carbon Foam 182
- 5.10.2 Large Volume Variation Materials/Carbon Foam 186
- 5.10.3 Compact Graphene Electrodes 188
- 5.10.4 Summary for Carbon Foam Electrodes 189
- 5.11 Thick Electrodes Based on the Conductive Polymer Gels 191
- 5.12 Summary and Perspectives *193* References *195*

6 Miniaturized Cells 205

- 6.1 Introduction 205
- 6.1.1 Definition of the Miniaturized Cells and Their Applications 205
- 6.1.2 Classification of Miniaturized Cells 206
- 6.1.3 Development Trends of the Miniaturized Cells 207
- 6.2 Evaluation Methods for the Miniaturized Cells *209*

x Contents

I	
6.2.1	Evaluation Methods for Electric Double-layer m-ECs 210
6.2.2	Evaluation methods for m-LIBs and m-ECs 211
6.3	Architectures of Various Miniaturized Cells 212
6.4	Materials for the Miniaturized Cells 213
6.4.1	Electrode Materials 213
6.4.2	Electrolytes for the Miniaturized Cells 214
6.5	Fabrication Technologies for Miniaturized Cells 215
6.5.1	Fabrication of Miniaturized Cells with 2D Parallel Plate
	Configuration 216
6.6	Fabrication Technologies for 2D Interdigitated Cells 220
6.7	Printing Technologies for 2D Interdigitated Cells 222
6.7.1	Advantages of Printing Technologies 222
6.7.2	Classification of Printing Techniques 222
6.7.3	Screen Printing for Miniaturized Cells 224
6.7.4	Inkjet Printing 228
6.8	Electrochemical Deposition Method for 2D Interdigitated
	Cells 228
6.9	Laser Scribing for 2D Interdigitated Cells 231
6.10	In Situ Electrode Conversion for 2D Interdigitated
	Cells 234
6.11	Fabrication Technologies for 3D In-plane Miniaturized
	Cells 236
6.11.1	6 6
6.11.2	
6.12	Fabrication of Miniaturized Cells with 3D Stacked
	Configuration 240
6.12.1	
6.12.2	3D Stacked Configuration by Microchannel-Plated
	Deposition Methods 245
6.13	Integrated Systems 247
6.14	Summary and Perspectives 249
	References 250
7	Smart Cells 263

7 Smart Cells 263

- 7.1 Definition of Smart Materials and Cells 2637.1.1 Definition of Smart Cells 263

- 7.1.2 Definition of Smart Materials 263
- 7.2 Type of Smart Materials *264*
- 7.2.1 Self-healing Materials *264*
- 7.2.2 Shape-memory Alloys 265
- 7.2.3 Thermal-responding PTC Thermistors 266
- 7.2.4 Electrochromic Materials 267
- 7.3 Construction of Smart Cells 268
- 7.3.1 Self-healing Silicon Anodes 268
- 7.3.2 Aqueous Self-healing Electrodes 271
- 7.3.3 Liquid-alloy Self-healing Electrode Materials 273
- 7.3.4 Thermal-responding Layer 274
- 7.3.5 Thermal-responding Electrodes Based on the PTC Effect *276*
- 7.3.6 Ionic Blocking Effect-Based Thermal-responding Electrodes 278
- 7.4 Application of Shape-memory Materials in LIBs and ECs 280
- 7.4.1 Self-adapting Cells 280
- 7.4.2 Shape-memory Alloy-Based Thermal Regulator 281
- 7.5 Self-heating and Self-monitoring Designs 282
- 7.5.1 Self-heating 283
- 7.5.2 Self-monitoring 285
- 7.6 Integrated Electrochromic Architectures for Energy Storage *286*
- 7.6.1 Integration Possibilities 286
- 7.6.2 Integrated Electrochromic ECs 287
- 7.6.3 Integrated Electrochromic LIBs 289
- 7.7 Summary and Perspectives 291 References 292

Index 301