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1.1 Introduction

Humans have been using a number of materials to improve their living stan-
dards since ages. In fact, the progress of human civilization has been classified
into three categories, popularly known as the Stone Age, the Bronze Age, and the
Iron Age, on the basis of materials only. Looking at the current rate of demand
and consumption of plastics, it would not be wrong if somebody categorizes the
present age as “The Age of Plastics” or “Plastic Age”. New materials form the
foundation for new technologies and help in understanding nature. The most
complex designs in the world can be of no use if suitable material is not used
during the fabrication of products with that design. In actual realization of a
design, the role of materials is quite indispensable. The limited availability of nat-
ural resources has forced material engineers to use materials in a more conscious
manner. Therefore, material scientists and engineers are trying to optimize the
use of materials in every possible field of application. In the present age, trans-
portation industry is the biggest contributor of carbon footprints in the envi-
ronment. Lower fuel consumption of automotive vehicles can lower the carbon
footprints. In the quest for achieving low fuel consumption, transportation indus-
try is leaning toward materials having high strength to weight ratio. Reinforced
polymer composites (RPCs), also known as fiber reinforced polymer composites
(FRPCs) are such promising materials for almost every industry looking for low
weight and high strength materials [1]. The application spectrum of FRPCs has
spread in almost every sector starting from engineered domestic products to the
highly sensitive biomedical industry. FRPCs are not only just a replacement for
conventional alloys but they also provide engineered properties. Rahmani et al.
[2] fabricated the carbon/epoxy-based FRPCs with 40 wt% of fiber. This system
of FRPCs was able to achieve a tensile strength of 2500 MPa, which is quite close
to the tensile strength of steel. The authors concluded that fiber orientation was
the most influencing factor among other factors, namely number of laminates
and resin type. The authors suggested the use of ±35∘ angle of plies to obtain
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better tensile properties along with good flexural properties. Modification in the
matrix material can enhance the overall properties of FRPCs. Islam et al. [3]
modified the epoxy matrix by incorporating nanoclay and multiwalled carbon
nanotubes (MWCNTs). The authors found significant improvement in the static
and dynamic mechanical properties of the developed carbon fiber-based FRPCs.
Cho et al. [4] enhanced the in-plane shear strength and shear modulus of car-
bon fiber reinforced epoxy composites by incorporating graphite nanoplatelets
in the epoxy matrix using the sonication method. Increasing the volume fraction
of reinforcement can increase the mechanical properties of the developed FRPCs.
Aramide et al. [5] fabricated glass fiber/epoxy-based FRPCs with varying volume
fraction of fibers from 5% to 30%. The authors found that the mechanical strength
increased as the fiber volume fraction increased up to 30%. Treinyte et al. [6]
fabricated poly (vinyl alcohol)-based pots. Forestry and wood processing waste
was used as filler in the matrix. The authors claimed that the manufactured pots
showed 45% lower water evaporation rate in comparison to regular peat pots.

Architecture of the reinforcement also affects the mechanical performance of
developed FRPCs products. A range of reinforcement architectures is available
in the market such as short fiber, unidirectional prepregs, 2D and 3D woven
mats, braided mats, and knitted mats. Every architecture has its own merits and
demerits – 2D woven mats show better in-plane mechanical properties but they
lack in out-of plane properties while 3D woven mats offer better out-of-plane
properties in comparison to others [7]. Erol et al. [8] investigated the effect of
yarn material and weaving pattern on the macroscopic properties of FRPCs and
concluded that weave pattern greatly influenced the tensile and shear proper-
ties of the developed composites. Some authors [9] have even used 3D and 5D
braided reinforcement for the development of FRPCs. The authors concluded
that braided architecture affects the fracture mechanism in a significant way.
Kostar et al. [10] used two-sided co-braided carbon and Kevlar hybrid reinforce-
ment for the development of FRPCs and concluded that the tensile strength and
modulus of hybrid reinforcement-based FRPCs were 13% and 80% higher than
those with simple reinforcement. FRPs have evolved over a long time period as
shown in Figure 1.1.

Environmental problems and difficulty in the recycling associated with
synthetic composites have led to the development of biocomposites/green
composites. Biocomposites are eco-friendly materials with adequate mechanical
properties. Fombuena et al. [11] fabricated biocomposites using bio-fillers
derived from sea-shell waste as reinforcement in bio-based epoxy matrix. The
authors found impressive improvement in mechanical properties of bio-based
epoxy when reinforced with bio-fillers. End of life (EOL) impact of synthetic
fibers and polymers is negative to the environment. Duflou et al. [12] showed
that low mechanical strength of flax fiber is an obstruction in the replacement
of glass fiber but it can be used in many applications where high mechanical
strength is not the primary requirement. Effect of moisture on the mechanical
performance of natural fiber-based biocomposites is yet another concern while
using biocomposites. Baghaei et al. [13] developed poly lactic acid (PLA)-based
biocomposites and analyzed the moisture absorption behavior. The authors
found that the moisture absorption characteristic of the developed composite
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Figure 1.1 Development stages of FRPs.

was reduced when the reinforcement was used in the woven form instead of the
nonwoven form.

Hybridization can improve the mechanical strength of green composites.
Hassanin et al. [14] developed a biocomposite particle board using a mixture
of wood particles and short glass fibers covered with an outer layer of jute
fabric. The particle board showed excellent mechanical and physical properties
in comparison to commercially available particle boards. Chaudhary et al. [15]
hybridized the reinforcement and found improved mechanical and thermal
properties of the developed biocomposites. The authors used three types of
woven fibers mats, namely jute, hemp, and flax, as reinforcement in epoxy matrix.

Chemical treatment of fibers/surface modification of fibers is also a promising
method for improvement in the mechanical properties of FRPCs. Alkali, acryl,
benzyl, and silane solutions are commonly used for the treatment of fibers [16].
Asaithambi et al. [17] treated banana fibers before using them as reinforcement
in PLA-based FRPCs. Banana fibers were first pretreated with 5% NaOH solution
at room temperature for around two hours, and then the chemical treatment of
the fiber was completed using benzoyl peroxide. Significant improvement in the
mechanical properties developed with treated FRPCs was found in comparison
to those developed with untreated FRPCs. Rahman and Khan [18] used ethylene
dimethyl acrylate (EMA) for the surface modification of coir fibers along with
UV treatment for the aging of fibers. The authors concluded that the mechani-
cal properties of FRPCs developed using treated fiber were better than those of
untreated fiber reinforced FRPCs.
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1.2 FRPCs

FRPCs are multiphase materials comprised of natural/synthetic fiber as rein-
forcement and thermoset/thermoplastic polymer as matrix, resulting in synergis-
tic properties that cannot be achieved from a single component alone. In general,
reinforcement is in the form of long continuous fibers but they can be used in
various other forms such as short fibers, fillers, or whiskers. The fibrous form
of reinforcement is used in composite materials because they are stronger and
stiffer than any other form [19]. Synthetic fibers (carbon, glass, aramid, etc.) can
provide more strength than most of the metals along with being lighter than
those materials. On the other hand, natural fibers are also being used in a num-
ber of structural as well as nonstructural applications due to the environmen-
tal problems associated with synthetic fibers. Matrix material, which is gener-
ally continuous in nature, protects the reinforcement from adverse environment
and transfers the load to reinforcement from the point of application of load
[12]. The matrix material holds the flexible reinforcements together to make it a
solid. Matrix material is also responsible for the finish and texture of the com-
posite material. The properties of composite materials depend on the disper-
sion and properties of the constituents and their interfacial interaction. Tailoring
the properties of a material according to the requirement of application can be
easily done in composite materials [20]. Table 1.1 shows the commonly used
natural and synthetic polymers and fibers used as matrix and reinforcement,
respectively.

1.2.1 Fabrication of Fiber Reinforced Composites

Fabrication methods of FRPCs still require a lot of attention in order to pro-
duce defect-free high quality products. Some unique features of primary and
secondary processing of FRPCs are tabulated in Table 1.2.

Table 1.1 Matrix and reinforcement materials used in reinforced polymer composites.

Matrix Natural Synthetic
Polysaccharides such as
homoglycans, cellulose, chitin,
chitosan, heteroglycans, such as
alginate, agar, and agarose,
carrageenan, pectins, gums, and
proteoglycans, protein, peptides,
and enzymes

Polyolefins, poly(tetrafluoroethylene)
(PTFE), poly(vinylchloride)(PVC),
silicone, methacrylates, aliphatic
polyesters, polyethers, poly(amino
acids), polyamides, polyurethanes,
epoxy, polycarbonates

Reinforcement Natural Synthetic
Animal-based – silk, wool, hair;
Plant-based – bast fibers (jute,
flax, ramie, hemp, kenaf, roselle,
etc.), leaf fibers (sisal, banana,
agava, etc.), seed, fruit, wood, and
stalk fibers

Carbon, glass, Aramid/Kevlar,
graphite, aromatic polyester fibers,
boron, silica carbide
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1.2.2 Present Status of FRPCs

RPC products such as pipes are being used in various adverse conditions such as
in offshore and marine applications. These pipes are exposed to severe climatic
conditions ranging from −40 to 80 ∘C [21]. Benyahia et al. [21] tested the
mechanical properties of a filament wound glass/epoxy pipe of 86 mm diameter
and 6.2 mm thickness. The authors estimated that there was degradation of
mechanical properties at higher temperatures. Ellyin and Maser [22] investigated
the effect of moisture at elevated temperature on the mechanical properties of
glass fiber reinforced polymer (GFRP) composite tubes. At lower temperature,
the ductility of the specimen was found to be decreased drastically and the
stiffness was increased. Above the glass transition temperature, there was sudden
degradation in the mechanical properties of composite pipes. In recent progress,
shape memory alloy (SMA) wires are being incorporated into the FRPCs as
reinforcement to increase the functionality of the developed composites such
as shape recovery, high damping capacity, generation of high recovery stresses,
and controlled overall thermal expansion. SMA wires not only improve the
functionality of the FRPCs but also offer improved mechanical properties [23].
Paine and Rogers [24] concluded that the low velocity impact properties of
FRPCs can be improved by incorporating SMA wires. Incorporation of just
2.8% volume fraction of SMA wires as reinforcement was able to increase the
impact delamination resistance by 25% in comparison to the FRPCs without the
SMA wire reinforcement. Pappada et al. [25, 26] fabricated hybrid glass fiber
reinforced vinyl ester-based FRPC material and incorporated SMA wires in two
forms, namely unidirectional SMA wires and knitted SMA wires. The authors
assessed impact properties and found that FRPCs reinforced with SMA wires
achieved higher impact properties than FRPCs with unidirectional SMA wires.

Polymer nanocomposites are also a relatively new class of materials. Nanocom-
posites are generally fabricated by incorporating one or more constituents of
the size of the order of nanometers. These constituents are generally inorganic
in nature and known as fillers, and not as reinforcement, due to their small size.
Various researchers have reported impressive properties of nanocomposites such
as high modulus and strength, high resistance to heat, and reduced flammability.
However, effective dispersion of the nano-sized fillers throughout the polymer
matrix is still a challenge, and moreover this dispersion controls and determines
the physical, chemical, and mechanical properties of the developed FRPC
products [27–29]. The authors have used an in situ approach to homogenize
the dispersion of nano-sized fillers. In this approach, nano-fillers are directly
synthesized with the polymer using some suitable precursor [30, 31]. Although
the in situ approach provides controlled dispersion of nano-fillers, it involves
complex procedures and processing steps along with expensive reactants [32, 33].
Various researchers used the ball milling method to fabricate nanocomposites.
In this method, first both the constituents, polymer and nano-fillers, are mixed
with each other in solid state using ball mills and then the mixture is melted
to polymerize. Although the morphology of the fillers changes in the ball mill,
this change positively affects the composites by enriching the filler compatibility
with the polymer. The ball milling method is not just an alternative to ex situ
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Table 1.2 Primary and secondary processing methods for FRPCs.

Processing
Fabrication
technique Features

Primary
processing
methods

Hand lay-up Minimum infrastructural requirement; low initial capital
requirement; only for thermosetting resins; lower
production rate; and low volume fraction of the
reinforcement

Spray lay-up Extension of hand lay-up technique; reinforcement in the
form of chopped fibers only

Compression
molding

Use of heat and pressure both simultaneously;
dimensionally accurate and finished products; process
parameters need to be optimized; both thermosetting and
thermoplastic polymers can be used; higher initial capital
requirement compared to hand lay-up

Injection
molding

Reinforcement only in the form of short fibers; damage of
fibers in barrel due to shearing action of screw. Highly
accurate dimensions of the product; used for mass
production

Pultrusion
process

Resin impregnated continuous fibers are passed through
a heating die for curing; automated process used for
continuous production; only products with constant
cross-sectional area depending on the die can be
manufactured

Resin transfer
molding

Liquid resin system is forced into the mold; high fiber
volume fraction can be achieved. Good surface finish
with minimum material wastage

Filament
winding

Continuous fiber strands as reinforcement; controlled
fiber orientation; high production rate; high capital
investment; not possible to produce female features of
products and expensive mandrel

Vacuum assisted
resin transfer
molding

Uses vacuum to ensure zero voids; superior quality
composites using autoclave (a strong heating container
that is used for applying heat and pressure at the time of
curing of the composite laminates)

Secondary
processing
methods

Conventional
machining

Drilling with twist drill is the most used conventional
method to produce holes in laminates. Requires milling
machine or drilling machine. Spindle speed, feed rate,
and drill geometry are influential parameters.
Delamination, fiber linting, and fiber pull-out are the
most common defects

Unconventional
machining

Abrasive water jet (AWJ) reduces the thermal damage
that could be generated in conventional machining.
Laser beam (LB) cutting is also being used for holes
generation in composite laminates. High energy input is
required.
Ultrasonic machining (USM) can also be used for hole
making in the composite laminates
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fabrication of FRPCs but is also an environment friendly and economical method
to produce nano-filler reinforced FRPCs [34]. Some authors [35] have also used
reinforcing metallic powders such as copper powder of 29.5 and 260 μm size in
the polyvinyl butyral (PVB) polymer matrix to fabricate polymer composites.
Fan and Wang [36] developed a transparent protective polymer composite
material with lightweight property, which could be used against high speed
impact loading.

The behavior and performance of FRPCs changes from application to applica-
tion. FRPCs exposed to various tribological environments lead to the necessity to
evaluate the tribological performance. Tribology of FRPCs is quite complex than
metal tribology due to the fact that polymers do not obey the well-established
laws of friction at high temperature [37]. Xue and Wang [38] studied the effect
of filler particle size on the wear and frictional properties of polymer compos-
ites. The authors concluded that addition of nano-sized SiC particles into the
polymer matrix effectively reduced the friction and wear of the neat polymer.
The nano-sized particles form a continuous and thin layer between the interface,
which results in reduction of friction and wear. Xing and Li [39] also confirmed
a similar behavior of FRPCs with the incorporation of nano-sized fillers. Gears,
bearings, shoe soles, and brake pads for automobile applications are some of the
mostly used tribological applications of FRPCs [40–42]. Researchers have sug-
gested a number of methods to reduce the friction and wear at the interface
between the FRPC product and the metal/nonmetal surface. Microencapsulation
of liquid lubricant was found to be an effective method to improve the tribo-
logical properties of polymers [43]. Guo et al. [44, 45] demonstrated that the
friction coefficient of epoxy-based FRPCs can be reduced up to 75% by incorpo-
rating just 10 wt% oil-loaded microcapsules. The authors have claimed to develop
self-lubricating polymer-based materials with the help of encapsulation method.
Khun et al. [46] and Imani et al. [47] added wax-loaded microcapsules in epoxy
matrix composites and found that friction and wear were very much reduced in
comparison to that in the neat epoxy polymer composite. In another study, Khun
et al. [48] used the two types of microcapsules in the polymer composite. One
type of microcapsules were loaded with wax and another type of capsules were
loaded with MWCNTs. The authors concluded that tribological and mechanical
properties were enhanced simultaneously. Wax-loaded capsules were found to
be responsible for improved tribological properties while MWCNTs loaded cap-
sules result in improved mechanical properties, which was achievable with only
wax-loaded capsules. Encapsulation may help in the development of self-healing
materials as explained by some authors [49].

Self-reinforced composites (SRCs) are yet another category of FRPCs in which
only a single polymer is used. Hard/processed form of the same polymer is used
as reinforcement that is being used as matrix material [50]. Huang [51] developed
a polypropylene (PP)-based SRC using melt-flow induced crystallization. Li
and Yao [52] and Makela et al. [53] developed PLA polymer-based fibers that
could be used as reinforcement in the SRCs. Similarly, Tormala [54] developed
PLA-based SRCs for medical applications. In the same series, Hine and Ward
[55] developed PET-based SRCs, Gilbert et al. [56] developed polymethyl
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methacrylate (PMMA)-based SRCs, and Gindl and Keckes [57] manufactured
cellulose-based SRCs.

Gemi [58] developed glass and carbon-based hybrid composite pipes
and studied the effect of stacking sequence. The authors concluded that
glass–carbon–glass sequence of reinforcement during the winding of fibers
leads to no leakage property of pipes.

The superior electrical, mechanical, and thermal properties of graphene make
it very useful in the field of FRPCs [59]. Graphene, in the form of 3D foam and
gel is being used in FRPCs products in biomedical and electronics applications
[60, 61]. Various authors [62, 63] reported impressive improvement in the
mechanical properties of epoxy composites with the incorporation of 3D foam.
Sun et al. [64] reported that the incorporation of 3D graphene foam in polymer
significantly improved electrical properties. Jusza et al. [65] developed lumines-
cent composite materials for possible applications in opto-electronics, sensor
networks, and imaging field. Complex technology and expensive manufacturing
methods of optically active two-phase composite materials have made them
commercially unavailable.

Carbon nanotubes, popularly known as CNTs, are filler/reinforcement that are
being used in polymers to fabricate composites with improved physical, mechan-
ical, and electrical properties [66–69]. Nanomaterials are those materials that
have dimensions below 100 nm [70]. Several authors [71, 72] reported an incre-
ment of over 300% in the tensile strength of FRPCs reinforced with CNT-based
nano-fillers. Incorporation of nanocarbons resulted in the increment of electrical
properties up to over 14 orders of magnitude [73]. Carbon quantum dots (CQD),
a form of nanocarbon material, is also being used as reinforcement due to their
tunable optical and photochemical properties. Another emerging class of FRPCs
is thermally conductive polymer composites and nanocomposites [74]. Studies
[75, 76] have reported that polymers reinforced with aligned molecular chain can
obtain higher thermal conductivity than that of many metals. Rajapakse et al. [77]
prepared electronically conductive nanocomposites for potential application as
a cathode material.

Another advancement in the field of FRPCs is the production of shape mem-
ory polymer composites along with self-healing properties [78]. FRPCs are being
widely used in the field of electronics and biomedical and energy applications
from the last decades. However, low thermal conductivity and insufficient ther-
mal stability have restricted FRPCs usage to a limited number of applications [79].

Along with their advantages, there are some disadvantages associated with
FRPCs as well. The disadvantage with FRPCs is the need for recycling and dis-
posal methods after the finite life of the FRPC product. Li et al. [80] investigated
the environmental and financial problems associated with the manufacturing
of carbon FRPCs. The authors suggested the use of mechanical recycling of
FRPCs instead of landfilling and incineration. Landfilling method for disposal
of FRPCs was found to be modest with moderate landfilling tax. However,
incineration method results in the production of greenhouse gases causing
severe damage to environment. Longana et al. [81] suggested another method
of recycling known as multiple closed loop recycling of carbon FRPCs. In
this method, reclaimed carbon fibers (rCF) are again used to remanufacture a
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number of products once a virgin carbon fiber (vCF) product has completed its
defined life.

1.3 FRPCs Applications and Future Prospects

The high strength to weight ratio of FRPCs makes them irreplaceable in a num-
ber of applications in the automobile and aerospace industries [82–86]. Dhruv,
the advanced light helicopter (ALH) manufactured by Hindustan Aeronautics
Limited for the service of the Indian army, has around 60% of structural area
made up of FRPC components and sandwich structures [87]. A number of prod-
ucts are being successfully used in various automotive and other applications as
reported in Table 1.3. A number of medical devices have been developed using
biodegradable polymers alone. Drug-eluting stents, orthotropic devices, dispos-
able medical devices, drug delivery devices, and stents for urological applications
are some biomedical applications of polymers [101]. Tian et al. [101] stated that
along with the nontoxic nature and low biodegradability of polymers, mechanical
strength is also required in a number of medical applications. To strengthen these
biodegradable polymers, fibers are being incorporated in the polymers accord-
ing to the requirement of application. Carbon fiber reinforced epoxy composite
materials are being used to fabricate external fixation equipment used for frac-
tured bones. Bone plates are being used for the development of internal fixation
equipment. The authors [102] have reported carbon fiber reinforced polyether
ether ketone (PEEK)-based composite as a biocompatible material for bone plate.
Lin et al. [103] proposed short glass fiber reinforced PEEK composite material for
the fabrication of intramedullary nails, which are generally used to fix fractures of
long bones. These nails are fixed in the intramedullary cavity using a screw mech-
anism. Kettunen et al. [104] used carbon fiber to fabricate composite material for
these nails. Some authors [105, 106] have successfully used FRPCs as bone graft-
ing materials. Carbon fiber-based FRPCs are intensively being used to fabricate
stems for total hip replacement [107, 108]. Deng and shalaby [109] used ultrahigh
molecular weight polyethylene (UHMWPE) to fabricate self-reinforced compos-
ite materials for possible application in knee replacement. In dental applications,
CF/epoxy-based FRPCs are being used to fabricate dental post [110]. Usually,
gold bridges were used to replace one or more teeth but their high cost and
time-consuming fabrication process have led to the development of FRPCs-based
bridges [111]. FRPCs are also being used to fabricate orthodontic arch-wires.
These wires are generally fitted over the teeth in order to align them [112, 113].
Artificial legs, used to support amputees during walk, were generally made of
metallic materials. Owing to the high weight of metals and low corrosion resis-
tance, FRPCs have replaced these metallic prosthetic limbs. As of now, all the
three components of prosthetic leg, namely shaft, socket, and foot, are being
manufactured using FRPCs [114–116]. Moving tables, used in CT and MRI scan-
ners, are being manufactured using FRPCs due to the requirement of lightweight
and high strength material [117]. Calcium phosphate (CaP)/polymer composite
materials are highly recommended materials in bone replacement due to high
compressive and flexural strength [118].
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1.4 Conclusion

RPCs are engineered materials used in a wide spectrum of applications ranging
from domestic products to biomedical devices. Natural and synthetic fibers
are both being reinforced in FRPCs according to the application. FRPCs offer a
number of advantages over conventional monolithic materials such as corrosion
resistance, light weight and high strength to weight ratio. Automobiles, aircrafts,
boats, ships, recreational goods, chemical equipment, and civil building and
bridges are some common applications of FRPCs. Biomedical applications
such as prosthetic legs and bone cement are relatively new applications of
FRPCs-based materials. The consumption of FRPCs in the near future is
expected to increase but a lot research is needed in the recycling and disposal
methods of synthetic FRPCs.
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