Index

a
accelerate electron/ion transfer 200
active carbons 2
additive manufacturing 113–118
aminopropyltriethoxysilane (APS) 138, 141, 144
3-aminopropyl-trimethoxysilane (APTM) 126
ammonia borane 27
anode/separator interface 166
aqueous electrolyte 113, 218, 219, 222, 225, 230, 265
argon atmosphere 67
armchair graphene nanoribbons (AGNRs) 13
asymmetric supercapacitors (ASCs) 230–232
atomic force microscopy (AFM) 8, 223
Au clusters 42
Au-Ag thin foil 42

b
ball milling 17, 27, 77, 78, 194, 201, 252, 262
ball-milling graphite 252, 262
battery capacity attenuation 206–207
B-doping graphene 176
bicontinuous microstructure 49
bio-sources carbon precursor 64
blade-coating polyacrylamide-grafted graphene oxide molecular brushes (GO-g-PAM) 167, 168
blade coating strategy 172

p-block foreign atoms 74
boron co-doped monolithic graphene aerogels (BN-GAs) 226
boron-doped graphene composite electrode 197
boron-doped porous graphene 235
bottom-up approaches
epitaxy growth
direct thermal annealing 29
MBE 29
soluble salt template methods 32–33
calcination temperature 72
calcined mesoporous layered bimetallic hydroxide (MGallDH) 194
captured lithium polysulfide 207
carbon adatoms defects 9–11
carbon-carbon bonding 2, 3
carbon dioxide reduction reaction (CO₂RR) 245, 246, 255, 260, 264–266, 268
carbon-fiber-based materials 1
carbon-fiber-reinforced carbon materials 1
carbon fibers 1, 256
carbon material/inorganic metal compound composite 208–210
carbon materials 1–5, 33, 56, 64, 66, 67, 72, 102, 142, 193, 198, 199, 201, 207–208, 210, 216, 219, 221, 232, 245, 252, 256, 258
carbon materials, as coating layer
207–208

carbon nanotubes (CNTs) 3, 5, 14, 34,
102, 106, 109, 111, 193, 198, 199,
200, 201, 205, 206, 216, 245, 256

carbon nitride (g-C$_3$N$_4$) 257

carbon precursor/salt ratio 68, 72, 73

carbon precursors 33, 62, 73, 77, 78, 79, 81, 86, 226

carbon–sulfur composite 64, 83

carrier olefinic composite 202

casting/stamping/pyrometallurgy
processes 1

centrifuged graphene 196

current–discharge mechanism 216

chemical reduction 16, 28, 222

chemical vapor deposition (CVD) method
5, 6, 11, 14, 29–35, 41, 44, 45,
48–54, 63, 74, 82, 84, 95–97, 99,
101, 104, 107, 132, 136, 137, 142,
146, 194, 195, 200, 205,
222, 225

closed nanoreactor 79

1C magnification 206

CNTs un-zipping 33

commercial supercapacitors 215, 218

Co-MOF/three-dimensional graphene
network (Co-MOF/3DGN)
precursor 146

compaction density 124

composition homogenization annealing
41

conductive carbon black KetjenBlack
(CB) 208

conductive polymer materials 228

conductive polymers 15, 218, 228, 229,
233

Coulombic efficiency (CE) 124, 151,
164–166, 170, 172–174, 176–178,
180, 181, 191, 195, 198

critical point dryer (CPD) 97

crystallinity of carbon materials 221

cyclic voltammogram (CV) 126, 218,
219, 228, 231, 264

d

3D bimodal porous carbon 43, 44

1D carbon nanotubes (CNTs) 5, 205

2D carbon nanosheets (CNs) 64, 66, 72,
85

3D duct-like graphene (3D-DG) 31, 55,
231

“dead lithium” 192

dealloying approach 41

dealloying method 41–43, 54

dendritic electro-deposition 164

dendritic Li growth 164–166, 169, 174,
175, 183

density functional theory (DFT) 43, 47,
128, 140, 252, 253, 258, 263, 265

2D ferrite/carbon composite nanosheets
74

2D ferrite/carbon nanosheets 74

3D graphene aerogel microlattices
(GAMs) 15

3D graphene architectures (3D) 12,
14–15

3D graphene foam (3D GF) 15, 17, 32,
95, 102, 109, 111, 128, 150

3D graphene-based materials 79

different dimensional graphene 12–15

diffusion coefficient 169

3D interconnected cubic NaCl particles
72, 82

Dirac points 6, 9

dirac quasiparticles 7

direct thermal annealing 29

dispersed single/few-layer graphene 25

2D monolayer films 34

3D monoliths 103, 113, 118

3D nanoporous graphene 42–57, 113,
178

3D nanoporous graphene based
composite materials 49

3D nanoporous graphene films 42,
46–48, 54, 113

3D nanoporous graphene lattices 46

3D nanoporous graphene oxide 48

2D nanosheet-shaped carbon materials
64, 66
dopamine hydrochloride (DA) 64, 66, 72
dopant-free carbon nanocages 263
double-layer templated graphene (DTG) 194, 195
3D porous graphene (3DPG) 14, 41, 62, 64, 71, 78–86, 117, 118, 127, 133, 227, 230
3D porous graphene-like networks (3D GNs) 127
2D porous graphitic carbon nanosheets 70, 76
3D PPy coated porous graphene (PPy/PG) composites 15
3D rebar ultrastiff GF (ruGF) 102, 103
3D salt templating assembly technique 71, 80, 85
DTG-sulfur composites (DTG/S) 194
dynamic floating electrodeposition method 16
e
edge-halogenated graphene nanomaterials 248, 252
dynamic floating electrodeposition method 16
f
facile molten-salt pathway 73
Fermi level 74
ferrite nanocrystals 73, 74, 76
electrochemical CO₂ reduction (ECR) 264–266
electrochemical processes 28, 260
electrodeposition of, inorganic nanomaterials 16, 256
electrodes of, supercapacitors 2
electrolyte decomposition 193
electrolyte dielectric constant 220
assembly technique 71, 80, 85
electrolyte permeability 195
electron conductivity 71, 81, 201, 256
electrospinning process 133
electrostatic interaction 126, 131, 138, 141, 147, 149, 151
energy overconsumption 245
ether electrolyte 190
ethylene thermal 63
ethylenediaminetetraacetic acid disodium zinc salt 68
exfoliation
liquid exfoliation 26–27
extrinsic defects 9, 11–12
exfoliation
extrinsic defects 9, 11–12
extrinsic defects 9, 11–12
f
facile molten-salt pathway 73
Fermi level 74
ferrite nanocrystals 73, 74, 76
ferrite/carbon nanosheets 73, 74, 76
freeze-drying process 81
freeze-drying treatment 71, 81, 127
g
galvanostatic charge/discharge test 218
gaseous raw materials 34
Gibbs free energy 47, 260
graphene
applications 17–18
history of 5–6
different dimensional graphene 12–15
3DG 14–15
graphene nanoribbons 13–14
property of 7–9
structure defects 9–12
carbon adatoms defects 10–11
of graphene 9–10
<table>
<thead>
<tr>
<th>Graphene-based</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic defects</td>
<td>11–12</td>
<td></td>
</tr>
<tr>
<td>Structure of</td>
<td>6–7</td>
<td></td>
</tr>
<tr>
<td>Alloying-type composites</td>
<td>Metal/graphene alloy-type composites 131–136</td>
<td></td>
</tr>
<tr>
<td>Nonmetal/graphene alloy-type composites</td>
<td>136–138</td>
<td></td>
</tr>
<tr>
<td>Conversion-type composites</td>
<td>Transition metal oxides/graphene composites 139–142</td>
<td></td>
</tr>
<tr>
<td>Conventional metal sulfides/graphene composites</td>
<td>142–146</td>
<td></td>
</tr>
<tr>
<td>2D metal disulfides/graphene composites</td>
<td>146–150</td>
<td></td>
</tr>
<tr>
<td>Electro catalysts, application of</td>
<td>for CO₂RR 264–266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for NRR 266–268</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for ORR 262–264</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for water splitting 260–262</td>
<td></td>
</tr>
<tr>
<td>Hosts for, Li storage free-standing 3D graphene-based hosts</td>
<td>169–174</td>
<td></td>
</tr>
<tr>
<td>With high SSA</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Insertion composites</td>
<td>TiO₂/graphene composites 125–130</td>
<td></td>
</tr>
<tr>
<td>for electrocatalysis</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Edge and defects sites</td>
<td>253–256</td>
<td></td>
</tr>
<tr>
<td>As, supports</td>
<td>256–259</td>
<td></td>
</tr>
<tr>
<td>Heteroatom doping graphene-based materials</td>
<td>247–248</td>
<td></td>
</tr>
<tr>
<td>Multidoping graphene</td>
<td>252–253</td>
<td></td>
</tr>
<tr>
<td>Single doping graphene</td>
<td>249–252</td>
<td></td>
</tr>
<tr>
<td>Template method synthesis</td>
<td>259–260</td>
<td></td>
</tr>
<tr>
<td>Graphene-based nanoscale layers</td>
<td>166–169</td>
<td></td>
</tr>
<tr>
<td>Supercapacitor performance improvement</td>
<td>composition on, graphene 226–230</td>
<td></td>
</tr>
<tr>
<td>Graphene synthesis</td>
<td>Bottom-up approaches CNTs un-zipping 33 CVD 29–30</td>
<td></td>
</tr>
</tbody>
</table>
CVD, on nanoporous metal template
epitaxy growth 29
laser ablation 34
molecular self-assembly 33–34
powder metallurgy template method 31–32
pyrolysis solid carbon sources 34–35
soluble salt template methods 32–33
top-down approaches
exfoliation 26–29
mechanical cleavage 25–26
graphene-transition metal oxide electrode materials 228
graphite anodes 163
“growth” process 25

heteroatom-doped 2D porous carbon nanosheets (CNs) 64
for uniform lithium nucleation 174–178
heteroatom-doped graphene nanoribbons (GNRs) 14, 175
heteroatom doping 68, 71, 74, 177, 196, 224–225, 232, 247–248, 252, 253, 256, 263
heteroatomic doped 2D nanocarbons/graphene 68
heteroatoms-doped 3D nanoporous graphene
Li metal anode application 48
N and Ni single atoms co-doped 3D nanoporous graphene 47–48
N-doped 3D nanoporous graphene 44–46
N, S co-doped 3D nanoporous graphene 46–47
N, S, P tri-doped 3D nanoporous graphene 47
hierarchical carbon nanostructures 82
hierarchical nanoporous graphene (hnp-G) films 49
hierarchical porous carbons 68, 70
high-energy ball-milling 194, 201
high-energy-density batteries 170
high oriented pyrolytic graphite (HOPG) 25, 26, 250
high-quality 3D nanoporous graphene 43, 54
high-speed deep charge-discharge cycles 215
hot and cold rolling process 41
hydrogen evolution reaction (HER) 46, 47, 245, 246, 250–252, 255–258, 260–262, 267, 268
hydrothermal reaction 127, 128, 144
hydrothermal reduction 15, 170
hydrothermal synthesis 15, 16, 47
hydroxylamine hydrochloride (HAH)-assisted hydrothermal method 149

ideal cyclic voltampere (CV) curve 126, 218, 219
impregnation diffusion method 67
impurity scattering 7
indium tin oxide (ITO) 17
inhomogeneous porous 166
in-plane flexible supercapacitors 235
in-plane introduced defects 12
in-plane supercapacitor 234, 235
in-situ fabricated MgO 84
intercalation exfoliation 26, 28–29
intercalation pseudocapacitance materials 218
intercalation/de-intercalation mechanisms 49
intrinsic (undoped) graphene 7
intrinsic 2D electronic characteristics 43
intrinsic defects 9, 12, 250, 263
intrinsic dispersibility 76
ionic liquid mixture 230
ionic surfactants 61, 147
iron oxide nanocrystals 76
<table>
<thead>
<tr>
<th>l</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>laser ablation</td>
<td>mesoporous cerium nitride</td>
<td>NaCl recrystallization</td>
</tr>
<tr>
<td>laser-induced graphene</td>
<td>micro-fabrication techniques</td>
<td>NaCl surfaces</td>
</tr>
<tr>
<td>laterally oriented graphene (LOG)</td>
<td>microporous structure</td>
<td>Na(^+) diffusion kinetics</td>
</tr>
<tr>
<td>Li dendrites</td>
<td>micro-supercapacitors</td>
<td>Na-ion batteries</td>
</tr>
<tr>
<td>Li deposition</td>
<td>molecular beam epitaxy (MBE)</td>
<td>nanocarbon based materials</td>
</tr>
<tr>
<td>Li-ion batteries</td>
<td>molecular self-assembly</td>
<td>nanoboxes</td>
</tr>
<tr>
<td>Li-ion distribution</td>
<td>molten-salt pathway</td>
<td>72, 82</td>
</tr>
<tr>
<td>Li-ion intercalation/deintercalation</td>
<td>mosaic-like flakes</td>
<td>167</td>
</tr>
<tr>
<td>Li metal anode (LMA)</td>
<td>MoS(_2) dispersion</td>
<td>150</td>
</tr>
<tr>
<td>Li metal oxidation</td>
<td>multiple vacancies</td>
<td>9</td>
</tr>
<tr>
<td>Li/Na nucleation</td>
<td>metal-air batteries</td>
<td>48, 264</td>
</tr>
<tr>
<td>Li plating process</td>
<td>metal/graphene alloy-type composites</td>
<td>131–136</td>
</tr>
<tr>
<td>liquid crystalline graphene oxide (LCGO)</td>
<td>metal-ion capacitor</td>
<td>232–233</td>
</tr>
<tr>
<td>liquid exfoliation</td>
<td>micro-supercapacitors</td>
<td>236–237</td>
</tr>
<tr>
<td>liquid-phase exfoliation process</td>
<td>molecular beam epitaxy (MBE)</td>
<td>29</td>
</tr>
<tr>
<td>Li-S batteries</td>
<td>molecular self-assembly</td>
<td>33–34</td>
</tr>
<tr>
<td>challenges of</td>
<td>molten-salt pathway</td>
<td>63, 68, 72, 73</td>
</tr>
<tr>
<td>development history of</td>
<td>mosaic-like flakes</td>
<td>167</td>
</tr>
<tr>
<td>graphene as host, for S</td>
<td>MoS(_2) dispersion</td>
<td>150</td>
</tr>
<tr>
<td>functionalized graphene</td>
<td>multidoping graphene</td>
<td>252–253</td>
</tr>
<tr>
<td>graphene used, in separator</td>
<td>multiple vacancies</td>
<td>9</td>
</tr>
<tr>
<td>206–210</td>
<td>working mechanism of</td>
<td>190–191</td>
</tr>
<tr>
<td>graphene-based composites</td>
<td>lithium-ion capacitors (LIC)</td>
<td>54, 232, 233</td>
</tr>
<tr>
<td>199–201</td>
<td>lithium metal anodes</td>
<td>191</td>
</tr>
<tr>
<td>heteroatom-doped graphene</td>
<td>lithium metal batteries (LMBs)</td>
<td>163–183</td>
</tr>
<tr>
<td>195–197</td>
<td>lithium metal electrode</td>
<td>169, 192</td>
</tr>
<tr>
<td>high quality graphene</td>
<td>lithium negative electrode</td>
<td>191, 192, 206, 209</td>
</tr>
<tr>
<td>194–195</td>
<td>lithiophilic materials</td>
<td>166, 178–182</td>
</tr>
<tr>
<td>metal compound anchored, on</td>
<td>lithiophilic seeds</td>
<td>181</td>
</tr>
<tr>
<td>graphene</td>
<td>lithiophilic transition of, graphene</td>
<td>176</td>
</tr>
<tr>
<td>metal compounds, anchored on</td>
<td>lithium corrosion</td>
<td>193</td>
</tr>
<tr>
<td>carbon composite material</td>
<td>lithium-ion batteries (LIBs)</td>
<td>2, 5, 123–126, 128, 131, 133, 134, 138, 139, 141–144, 146, 147, 150, 151, 190, 215, 218, 232</td>
</tr>
<tr>
<td>structure-designed graphene</td>
<td>NaCl recrystallization</td>
<td>70</td>
</tr>
<tr>
<td>197–199</td>
<td>NaCl surfaces</td>
<td>72, 81, 82</td>
</tr>
<tr>
<td>working mechanism of</td>
<td>Na(^+) diffusion kinetics</td>
<td>129</td>
</tr>
<tr>
<td>lithium-ion batteries (LIBs)</td>
<td>Na-ion batteries</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>nanoboxes</td>
<td>72, 82</td>
</tr>
</tbody>
</table>
nanoconfined nitrogen-sulfur co-doped 3D porous carbon microspheres
nanoindentation technique
nano-piezoelectric generators
nanopolymers
nanoporosity
nanoporous copper
continuously hierarchical nanoporous graphene
3D nanoporous graphene based composites
heteroatoms-doped 3D nanoporous graphene
ligaments
nano porous metal
nanoporous metal foil
nanoporous metal template methods
dealloying method, nanoporous metal foil preparation
nanoporous Cu
3D nanoporous graphene based composites
continuously hierarchical nanoporous graphene
heteroatoms-doped 3D nanoporous graphene
3D nanoporous graphene
nanoporous Ni
3D nanoporous graphene
3D nanoporous graphene based composite materials
3D nanoporous rGO
heteroatoms-doped 3D nanoporous graphene
nanoporous Ni foils
nanoporous nickel
nanoscale interfacial layers
nano-structured Cu scaffold (NCS-SG)
N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14-FSI)
N-doped carbon
N-doped carbon nanostructures
N-doped graphene coating
N-doped graphene nanosheets
N-doped graphene quantum dots
N-doped nanoporous graphene
N-doping effect
N-graphene hybrids
NiCo-layered double hydroxide (NiCo-LDH) nanoneedles
nitrogen atoms
nitrogen reduction reaction (NRR)
nitrogen-doped graphene
nitrogen-doped hierarchical porous carbons
n-layer graphene
N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide (PIP13-FSI)
non-carbonizable inorganic salts
non-ionic amphiphilic block copolymers
nonmetal/graphene alloy-type composites
nonuniform distributions
n-type semiconductor properties
numerical simulations
one-dimensional (1D) carbon allotrope
one-dimensional carbon nanofibers (CNFs)
one-pot hydrothermal method
one step electrodeposition
onion-like carbon shells
organic electrolyte
organic–inorganic hybrid 64
out-of-plane heteroatom introduced defects 11
oxidation-exfoliation-reduction 27–28
oxygen evolution reaction (OER) 47, 48, 245, 246, 252, 253, 255, 256, 260–262, 268
testing 44

P
P-doped graphene 224, 251, 258
pentaerythritol tetraacrylate 168
phosphorus heteroatom co-doped graphene anode materials 232
planar graphene 10, 25
plasma discharge 194
plasma enhanced chemical vapor deposition (PECVD) method 30, 128
plasma-induced abundant defects 256
plating process 164, 166, 173, 174, 176
poly(3,4-ethylenedioxythiophene) (PEDOT) 15, 228, 229
poly(diallyldimethylammonium chloride) 138
poly(ethylene glycol)diacrylate 168
polyacrylonitrile (PAN) 15, 102
polyaniline (PANI) 15, 79, 218, 228–230, 235
polydopamine (PDA) 138, 252
polyethylene oxide 138
polymer-based nanocomposites 5
polypyrrole (PPy) 15, 218, 224, 228, 229
polythiophene (PTh) 228
polyvinyl alcohol 138, 226
porous graphitic carbon (PGC) 67, 83
porous materials 41, 222
porous metallic materials 41
porous non-metallic materials 41
powder metallurgy 15, 31–32, 95–118
powder metallurgy templates (PMT) methods 31, 32
additive manufacturing 113–118
basic synthesis procedure 96–97
carbon sources 102–103
cold-pressing pressure 105–106
CVD growth of graphene 97
3D bmG 101, 102
3D GM and its composites 108–113
heating temperature and heating method 104–105
mechanism of 106–108
metal powders 100
metal templates/carbon sources ratio 103–104
pristine graphite 5
protic solvents 27
proton-coupled multielectron transfer reaction 264
pseudocapacitance 147, 216, 218, 221, 224, 226, 234, 235, 238
pseudocapacitance mechanism 216, 218
pseudocapacitor electrode 218, 231
pseudocapacitors 218, 219, 230
pure ferrite/carbon nanosheets 74
pyrolytic graphite surface 5

q
quantum Hall effect (QHE) 6, 7
“quasi-graphene” character 34

r
Ragone plot supercapacitors 216
reduced graphene oxide (RGO/rGO) 48, 167, 229, 231
composite 125
rGO-CB composite interlayer 208
rinse/dry process 43

s
salt template methods 61, 62
acquisition method 68–72
effects of, different kinds of salts 62–68, 69
important influencing parameters 72–73
Index

salt template-directed graphene-based materials 73–78
2D graphene-based materials 73–78
3D porous graphene-based materials 78–86
“Sand’s time” model 169
sandwich-like graphene 170
sandwiched carbon/metal oxide structure 82
Sb/graphene composites 131, 134
scanning transmission electron microscopy (STEM) 42, 45, 46, 48, 53–55, 78, 228
SEI-coated graphene (SCG) 170
short-chain lithium polysulfide 191
shuttle effect 191, 194, 195, 206, 208
silicon carbide (SiC) 5, 6, 29
single doping graphene 249–252
single vacancies 9
single-atom (SA) Ni doping 175
single-atom (SA) Ni doping on nitrogen-doped graphene frameworks (SANi-NG) 175, 176
Sn ultra-small nanoparticles 133
Sn-Co nanoparticles 133
Sn/graphene/Sn heterostructures 131
SnSb nanocrystals 82
SnSb-nanoconfined ultrathin N-doped graphene walls 72, 82
sodium sulfate (\(\text{Na}_2\text{SO}_4\)) salt powder 74
sodium-ion batteries (SIBs) 123–152
soft templates 61, 62, 260
sol-gel method 17, 125
solid ball milling process 27
solid electrolyte interphase (SEI) layers 151, 164, 165, 168, 170, 171, 174, 181, 183, 192
solid exfoliation 26, 27
solid-state supercapacitors 51, 56
soluble salt template methods 32–33, 61–86
spatial inhomogeneous distribution 166
spray-drying process 72
stable P/graphene composites 138
stacked graphene (SG) 166, 167, 176
“state-of-the-art” mechanism 189
Stone-wales defect 9, 10, 253
stripping process 48, 52, 164, 167, 169–172, 181
sulfur-carbon composite positive electrode 207
sulfur/carbon nanocomposite cathode materials 190
sulfur-containing compounds 190, 192
sulfur-doped graphene (SG) host 176
sulfur nanoparticles 67, 83, 197, 201
sulfur positive electrode 193, 198, 204
supercapacitor 2, 215
advanced graphene-based supercapacitor ASC 230–232
electrolyte design 230
flexible supercapacitor 233–236
metal-ion capacitor 232–233
micro-supercapacitor 236–237
and Li-ion battery 218–219
fundamentals 215–216
future 237–238
graphene-based supercapacitor 221–237
advantages of 221–222
performance improvement 222–230
influencing factors carbon-based supercapacitor 219–221
mechanism 216–218
supercapacitor electric bus 215
superior lithiophilic surface 171
surface Faraday pseudocapacitance 218
synergistic effect 15, 47–49, 140, 141, 209, 252, 257

tetrabutyl titanate (TBOT) 17, 125
thermal conductivity 7, 8, 16, 17, 28, 61
Index

thermal conductivity (κ) 7, 8, 16, 17, 28, 61
thermal-induced expansion strategy 196
three-dimensional (3D) nitrogen 226
three-dimensional (3D) porous hosts 169
three-dimensional bi-functional modular graphene network (3D bmG) 100, 101
three-dimensional nitrogen-boron-doped graphene aerogel 197
three-dimensional structure, TiO$_2$ nanoparticles 125, 126, 128
TiO$_2$/graphene composite 16, 17, 49, 125–130
titanium dioxide layer 201
top-down approaches
 exfoliation
 intercalation exfoliation 28–29
 liquid exfoliation 26–27
 oxidation-exfoliation-reduction 27–28
 solid exfoliation 27
transition metal oxides (MO$_x$) 54, 139–142, 226
transition metal oxides/graphene composites 139–142
transition metal sulfides/graphene composites
 conventional metal sulfides/graphene composites 142–146
 2D metal disulfides/graphene composites 146–150
 trifunctional catalyst 255
 triple-doping carbon electrocatalyst 252, 253

u
ultrahigh mobility 7
ultrathin anatase TiO$_2$ nanosheets/rGO composites 126
undoped graphene composite 197
uniform lithium deposition 167

v
vacuum filtration 128, 133, 142, 231
vacuum permittivity 220
van der Waals force 25, 95
violent method 25
voltage window 125, 126, 138, 146, 220, 221, 225, 230, 232

w
water splitting 246, 260–262
water-bearing aluminosilicate 64
Wiedemann–Franz law 7

y
yielding micrometer-sized spheres 72
Young’s modulus 8, 17, 222