Index

a
acid–base neutralization process 69
acrylamide 102, 106, 110
acrylic acid (AA) 79
activator-inhibitor network 27, 73
active buckling 47
active control, of active nanosystems 398
active flows 41, 46–47
active gels 21, 23, 40–48, 403
active gel theory 42–45
active nanosystems
 active control 398
 analyte concentration 382
 based on cytoskeletal filaments 395
biological components 384
 actin filaments 388
dynein 388
kinesin 387
microtubules 385, 386
myosin 389
biological importance 401
biology and soft matter physics 382
biosensors 396
cargo delivery 394–396
cargo transport 381–382
computation 382–384
design 381
dynamics 383
external control 383
filament response to external load 390
filament–cargo interactions 392
filament–filament interactions 392
force generation 382
force measurements 397
higher-order structure generation 399, 400–401
inverted configuration 383
inverted motility configuration 399
lifetime extension 398–399
molecular detection 382
motor–filament interactions 390–392
motor–surface interactions 393
native configuration 383
native motility configuration 401
native motor-on-filament configuration 402
optimization problems 384
packaging 384
passive control 397
performance 383
self assembly 401
surface characterization 396–397
activenematicgels 403
active self-assembly 148, 392, 399
actuatingnanotransducers 263
acylhydrazones 231, 233, 289
adaptive materials 8, 9, 150
adenosinetriphosphate (ATP) 2–3, 41–45, 167, 176–180, 194–202, 308
aldehyde reactivity, photomodulation of 282, 283
alpha-beta tubulin heterodimer 168, 385, 386
2-aminoethylbenzenesulfonyl fluoride (AEBSF) 104–106, 109
aminomethylcoumarin (AMC) 102, 111
anticooperative supramolecular polymerization 135
arsenite-iodate-chlorite oscillator 107
arsenite-iodate-chlorite reaction 73
artificial molecular devices 309
artificial regulatory networks 111
arylazopyrazole–β-cyclodextrin chemistry 258
arylazopyrazoles 256, 258
aster formation 41, 45, 46
atomic force microscopy (AFM) 136, 139, 141, 145, 149, 152, 153, 156, 173, 392, 397
ATP-fueled motor proteins 293
autocatalytic decomposition-product 62
autonomous chemically fueled catenane rotary motors 327–331
autonomous chemically-fueled synthetic motor 381
autonomous light-activated motors 381
axonemal dynein motors 388
azo-surfactant 261, 266
azobenzene(s) 7, 241, 279, 280
bridged crown ether dimer 294
decorated nanoparticles 296
light-controlled complexation of 268
light-induced self-assembly 243
terminated ligands 265
azobenzene derivative (AzO) 145–146
b
Barton–Kellogg reaction 341, 346
base-catalyzed hydrolysis of glucolactone 74
Belousov–Zhabotinsky (BZ) reaction 62, 70, 91, 92, 150, 170
oscillator 4, 23, 28, 49
biocatalytic transient supramolecular polymer system 177
bioinspired self-regulation chemical systems
clock reactions 65–66
closed reactor, autocatalysis 66–69
collective behavior 77–78
coupled reactions and materials 78–79
far-from-equilibrium 69–71
feedback 63–65
Frank’s model 62
in polymerization and precipitation processes 79–81
kinetic switches 71–72
oscillators, design of 72–74
waves and pattern 74–77
biological homochirality 62
biological signaling reaction networks 1
biomolecular motors 13, 379–403
biotin-streptavidin interaction 392, 394, 397, 399
bipyridine-appended HBC molecule (HBC-BPy) 156
bis-arylazopyrazole crosslinker 258
bis-arylazopyrazole linker 256–258
biscarboxylate based amphiliphic motors 367
bistability 7, 32–36, 38, 40, 73, 91, 94, 97, 99, 107, 110–112
bistability or complex Turing patterns 4
bistable networks 34–35, 37–39, 102, 110, 116
bistable/toggle switch 72
(R,R)-BMC 133, 136, 138
Boltzmann distribution 169, 276, 278, 307, 338
Borromean rings 226
bromate-sulfite clock reaction 66
Brownian motion 93, 327, 352
BTA-Pep 151, 152
4-butyl-4′-(trimethylammoniumbutyloxy) azobenzene 261
4-butyl-4′-(trimethylammoniumhexyloxy) azobenzene 266
c
C–C bond formation 284–286
C16TACN 208
carbodiimides 173–175, 196
catalytic microparticles 77
catenanes 207, 224, 311
autonomous chemically fueled rotary motors 327–331
-based motors 290
composition 328
molecular switches and energy ratchets 325–327
vs. rotaxanes 324
CB[8] 265
cell differentiation 22
cell-free transcription-translation (TX-TL) systems 36, 39
Index

cellular metabolism 91, 93
cetyltrimethylammonium bromide (CTAB) 258–260
chaotic oscillations 107
chemical clock 93, 99
chemical energy 2, 21, 23, 38, 39, 42, 48, 191, 201, 205, 210, 215, 297–299, 309, 313, 315, 319, 379
chemical equilibrium 298, 305, 379
chemical fuel-driven supramolecular polymerization 166, 167, 169, 172
chemical oscillations 11, 63, 77, 79, 109, 113
chemical oscillations function 93
chemical oscillator 62, 79, 93, 102, 107, 108, 110, 183
chemical reaction networks (CRNs) 4, 174
AEBSF 105
autocatalysis 116–119
biochemical regulatory networks 93
bistability 91
challenges 119–120
chemotaxis 93
connectivity diagram 98
de novo design of 102–103, 107–111
de novo-designed reaction-diffusion networks 112–116
DNA computation 94
emergent properties 91
flow system 112
fundamental property of 93
orchestrate cellular metabolism 91
kinetics 96–98
patterns 92, 93
properties and functions 94, 95
sensitivity of 94
stoichiometry 96
chemically fueled DCC 231
chemically fueled dissipative supramolecular polymer systems
anionic carboxylate precursors 173
carbodiimides 175
cycle-dependent pathway selection 179
enzymes 176
high-energy carbodiimides 174
sodium dithionite 176
viologen redox chemistry 179
chemically fueled networks 172
chemically fueled self-assembly
activation and de-activation 206
catenane 206
characteristics of 206
dissipative conditions 199–201
experiment 191
gold nanoparticles 197–199
GTP-fuelled microtubule formation 208
kinetic asymmetry 208
out-of-equilibrium self-assembly 201–205
chemically fuelled systems, quality of 309
chemically gated photochromism 282
chemomechanical cycle, for myosin II 389
chemotaxis 92, 93
chiral bis(merocyanine) dye 136
chiral nematic LC 358, 359
chiroptical switch 359–360, 363
chlorite-iodide-malonic acid (CIMA) reaction 25, 28, 75, 77, 97, 114
cholesteric LC 358, 360
cholesteric pitch 358
chymotrypsin 102, 111, 119
α-chymotrypsin transacetylation 175, 177
cis-trans isomerization, of double bond 231
clock reactions 11, 65–67, 73, 74, 78
closed batch reactor 66, 72
co-conformations 319–323, 327
colloidal micron-sized particles 268
combinatorial chemistry 215–236
compartmentalization of DCLs 235
competitive autocatalysis 62
concurrent impetus 5
concurrent polymerization 2, 132
π-conjugated molecule-based monomers 135
continuous stirred tank reactor (CSTR) 70–73, 77, 79–80, 98, 101–102, 106, 109–110, 112, 120
continuously-fed Unstirred Reactor (CFUR) 76
contractions 2, 41, 44–46, 76, 355–356, 367, 379, 382, 388
cooperative supramolecular polymerization 166, 168, 170, 176
Index

copper catalysed click reaction 355
corrugations 41, 47–48
coumarin-based system 250
coumarin-driven reversible bond formation 267
coumarin-functionalized nanoparticles light-induced self-assembly 251
crazy clocks 66
creatine phosphokinase (CPK) 178, 180, 194
critical gelation concentration (cgc) 176, 196
cryogenic transmission electron microscopy (cryo-TEM) 137, 148, 366
crystallization 81, 113, 147, 153, 225–227
in metallosupramolecular library 225

crystallization-driven self-assembly (CDSA) 147, 153–156

cucurbit[8]uril 265
Curtin–Hammett principle 221
cyclical heptamer 137
cyclical reaction network 63
cycloaddition reactions 222, 250, 252
cyclobis(paraquat-p-phenylene) (CBPQT) ring 313, 314, 316–317, 320–321
α-cyclodextrin 256–258
β-cyclodextrin 252, 256–258, 268
cystamine 104, 106, 117, 119
cytoplasmic dynein 388
cytoskeletal active gels, filaments and molecular motors 41
cytoskeletal systems in vitro, vesicle and droplet deformation and movement 47–48
cytoskeleton 2, 5, 13, 40, 41, 49, 168, 308, 379

d

d deactivating hydrolysis reaction 193
dead (equilibrium) responsive materials 7
de novo design CRN 11, 91–120
deoxyribonucleotides (dNTPs) 31, 38–39, 107

dextran-coated iron oxide nanoparticles 249–250

diarylthene(s) 279–281, 283–286, 290, 292
diarylthene-type photoswitches 285
dibenzo[24]crown-8 (DB24C8) based macrocycle 322
dibenzyamine (DBAm) 314–315
dibenzylammonium (DBA) 322–323
dicarboxylate peptide precursors 173–174
dicyanoformate 284
didodecylmethylammonium bromide 244
diffusion coefficient 24, 26, 28, 33, 35, 71, 76, 78, 113, 144
diffusion-coupled DCLs 235
dimethyl sulfate (DMS) 192
dinaphtho[24]crown-8 (DN24C8) 317

dioxygenphalene (DNP) 316, 321
dipolar merocyanine units 136
directed self-assembly 6
dissipative (D) state 6, 166, 230, 234, 277, 306, 308, 315, 317–319, 331
dissipative chemistry 230
dissipative DCC 230–234
dissipative self-assemblies 4–7, 12, 202, 207, 210
dissipative structures 3, 62, 70, 95, 97, 176, 201
disulfide (SS) blocking group 314
dithiothreitol (DTT) 148
DNA nanoscience 5
DNA strand displacement (DSD) 36–38, 94, 97, 109, 402
DNA/enzyme predator-prey (PP) oscillator 31
DNA/enzyme waves 31
DNA/RNA networks 109, 111, 120
DNA/RNA-based oscillators 107
double antibody sandwich assay 396
driving self-assembling systems 2
Drosophila blastoderm 35–36
1D supramolecular polymer 141–142, 144, 146, 151, 157, 193
dual-responsive nanoparticles 243, 246, 269
dynamic combinatorial chemistry (DCC) chemically fueled 231
description 216
kinetic control in 217–230
kinetically trapped self-assembly 223–225
light-driven 231–234
phase changes in 225–228
dynamic combinatorial library (DCL) 137, 147, 216
applications 216
compartmentalization 235
free energy landscape 216
irreversible reactions 217–218
multiple DCL members 221–223
specific library member 218–221
kinetic self-sorting 221
liquid-gas phase transitions 227
nitroline-imine exchange 222
self-sorting behavior 226
spatiotemporal pattern formation 229
under kinetic control 220
under non-equilibrium conditions 228–230
dynamic combinatorial resolution (DCR) process 219–220
dynamic instability 169, 209, 385, 386
microtubules 193, 385, 388
dynein 41–42, 45–46, 380, 384, 388, 392
dynein motors 168, 379, 388, 399, 401–402

enzyme-catalyzed reaction networks 63, 69, 71, 74
equilibrium model, cooperativity 32, 34
equilibrium self-assembly 5–7, 10
equipment-controlled supramolecular polymerizations 149, 151–153
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) 175, 196, 209
excitability 74, 76
excitation energy 276, 298

far-from-equilibrium 5–7, 11, 69–71, 73, 76, 94, 216, 356
feedback-controlled redox oscillator 4
filament-cargo interactions 389, 392–393
filament-filament interactions 389, 392
first generation molecular motors
hydroxyl functionalized 346
McMurry reaction 346
360 unidirectional rotation mechanism 339
first-order reaction rate constant 24
flexural rigidity, of motor-propelled filaments 390
flow-distributed oscillations (FDO) 77
fluorescence spectroscopy 137, 174, 200, 318
Fmoc triptides fiber structures 174
Fmoc-protected aspartic acid 196
Fmoc-tripeptides 174
formose reaction 69
Frank’s model 62
frontal polymerization 80–81
frozen imine library 222

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) 175, 196, 209
excitability 74, 76
excitation energy 276, 298
gliding of fluorescently-labeled microtubules 396
glucose-oxidase catalyzed reaction 69
gold nanoparticles 12, 113, 197–199, 208, 249, 253, 257, 260, 297, 353, 394
Goodwin’s model for biological oscillations 74
gradient refractive index (GRIN) materials 81
Gray–Scott model of cubic autocatalysis 75, 77
GTP-fuelled microtubule formation 208
guanosine triphosphate (GTP) 2, 12, 41, 43, 45, 47, 167–169, 171, 182–183, 208, 215, 308, 385, 388
Hamilton wedge 261
HBC–F_r 156
HBC–F_s 156
helical twisting power 358–360
helicate formation, linear and circular 223
helix-sense-selective supramolecular polymerization 156
hemithioindigo-based molecular motor 344, 346
heptamer 137, 147, 224
hexabenzocoronene (HBC) derivative 156
hexammine macrobicyclic cage 218
hexamer 137, 147, 220, 224–225
hexokinase (HK) 178, 180, 194
hexylisocyanate polymerisation 362
histidine-containing amphiphile (C18H) 209
homeostasis 9, 62, 93, 101
Hopf instability 24
H2TPPS^{2+} 152
hydrazone (HY) blocking group 314
hydrolysis reactions 67, 69, 193, 286
hydrophobization 174, 259
2-hydroxypropyl-4-nitrophenyl phosphate (HPNPP) 197
2-hydroxypropyl p-nitrophenyl phosphate (HPNPP) templates 208
hypercycle 63
imine/ligand DCL 226
immobilization, of molecular motors 3D polymer networks 355–357
surface attached molecular motors 352–355
inorganic nanoparticles 241, 296
iodine clock 66
irreversible self-assembly, of nanoparticles 265–267
isodesmic model 134
Jacobian matrix 26, 27
Janus micromotors 267
KaiC protein 93
kinesin 45, 308, 379–380, 387, 403
motors 386, 387, 401
kinesin-1 motor protein 387
kinetic instability, microtubules 385
kinetic switches 71–72
kinetically controlled supramolecular polymerization 11, 131–157
Krebs citric acid cycle 62–63
L-alanine ethyl thioesters 106, 110, 119
Landolt clock reaction 66
Le Chatelier’s principle 217, 284–286
Lengyel–Epstein model 75, 77
Liesegang rings 93, 113, 115
Liesegang structures 81
light energy 255, 296, 310–311, 317
light or chemo-driven molecular motors 10
light-controlled self-assembly 253, 268
of non-photoswitchable nanoparticles 257, 260
light-driven chemical transport 294
light-driven DCC 231–234
light-driven molecular information ratchet 288
light-driven molecular walker 287, 289
light-driven proton pump 295
light-driven reactivity reversal mechanism 286
light-driven rhodopsin pumps 293
light-driven rotary molecular motors 338, 348
amplifying motor functions 350–352
design and synthesis 339–342
dynamic speed modification for 345
immobilization 352–357
as out-of-equilibrium systems 346–348
polymer doping 361–364
tune properties of 342–346
light-driven supramolecular pump 318
light-driven unidirectional molecular motor 290, 291
light-fueled systems 7
light-gated reactivity 282
light-induced adsorption, of photoswitchable molecules 256–261
light-induced chemical reduction, of nanoparticle-bound ligands 265
light-induced reactivity modulation 281
light-induced self-assembly of azobenzene-functionalized nanoparticles 243
of coumarin-functionalized nanoparticles 251
of pNIPAm-coated nanoparticles 262
of spiropyran-functionalized nanoparticles 249
light-responsive molecules 242, 252
light-responsive system, of non-photoswitchable nanoparticles 254
linear stability analysis 26
liquid crystals (LC) 358, 360
categories 358
chiral dopants 359
nematic vs. cholesteric phases, dynamic conversion 359
living polymers 140
living radical polymerization 132, d n 146
living supramolecular polymerization 139, 143
advantage of 140
Azo 145
CDSA 154
Cor 144
Cor–NMe 144
Cor_R and Cor_S 145
coupled preequilibrium 146
J- to H-aggregates 141
2PBI 142, 144
of 2PBI–OMe 144
3Por–OHex and 3Por–OHex 142
3Por–OMe 146
3Por–OMe 141, 146
3Por–OPh 146
seed 147
living systems 1–2, 4, 22, 24, 45, 61, 63, 69, 71, 167, 215, 235, 293
LiYF4-induced photoswitching 258
Lotka–Volterra model 99
of chemical oscillations 109
m
macrocyclic oligoimine libraries 222
macromolecule 4, 63, 67, 69, 132, 165, 171, 358
majority-rules effect 136–137
maleimide 102, 106, 110–111, 222, 285–286, 290
MAPK phosphorylation 105
McMurry reaction 340, 341, 346
mechanical switching 137, 327
mechanically interlocked molecules (MIMs) 13, 306, 311–312, 331
metal ion-directed synthesis, of molecular Solomon knot 226
metastable energy-rich state 2
metastable self-assembled states 5
6-methoxyquinoline 255
methylcyclohexane (MCH) 136, 138, 140, 144, 152, 252
methylidioide 192
methylstilbene unit (MS) 322
α-methyl stilbene gate 287, 288
“Michaelian” response 99
micron-sized beads 267
micron-sized silica colloids 267
microtubules 2, 308, 385, 386, 390, 397, 399
Min protein waves 23, 29–31
molecular motors 13, 41–42, 337–369, 379, 387, 394
role in biological systems
cargo transport 381–382
molecular photochromism 279
molecular motors 13, 41–42, 337–369, 379, 387, 394
role in biological systems
cargo transport 381–382
molecular photochromism 279
molecular switches 247, 254, 269, 312, 325–327, 338, 347
molecular–organic-framework (MOF) 356–357, 368
monobenzylammonium (MBA) units 322–323
Morita–Baylis–Hillman (MBH) reaction 219
morphogenesis 1, 9, 21–24, 31, 40–49, 61, 78
motor doped LC matrix 361
motor-filament interactions 389, 390–392
motor-surface interactions 389, 393
motorized metal-organic frameworks (moto-MOFs) 356, 357
motorized molecular nanocar 348, 349
motorized polymer gel 355
multi-stimuli responsive supramolecular polymerization 181
multimeric kinesin motors 403
MV$^{2+}$-decorated ZnO nanoparticles 265
myosin 2, 41, 43, 45–47, 379–381, 384, 388, 389, 392, 393, 396

n
N,N'-dibenzoyl-L-cystine (DBC) 192
nanocomposite tectons 255, 261
nanoflasks 246, 296
nanoparticle(s)
assembling using photodimerization reactions 250–252
doped hydrogels 254
irreversible self-assembly 265–267
nanoparticle surfaces 242–250
photoswitchable host–guest inclusion complexes on 256–258
nanoparticle-bound ligands
(de)protonation of 252–255
light-induced chemical reduction of 265
nanoparticles surface-functionalized with photoswitchable molecules
azobenzene-functionalized nanoparticles 242–247
spiropyran-functionalized nanoparticles 247–250
nanoroadster 349
nematic LC 358–359
N-isopropylacrylamide (NIPAMM) 79
nitroalcohol library 220
p-nitrophenol (NP) 175, 209
non-equilibrium dissipative (or active) assembly or transient 170
non-equilibrium supramolecular polymer system 178, 180–181
non-photoresponsive microgel particles 267
non-photoswitchable nanoparticles 257, 260
light-controlled self-assembly 253
non-stirred reactors 4
nonequilibrium self-organization 62
nonequilibrium thermodynamics 4, 7, 10, 94–95
nonselective adsorption of photoswitchable molecules 258–261
nucleation–elongation mechanism 12, 135, 166, 194, 220
nucleation–elongation process 135–137, 148, 150, 157
nucleation–elongation supramolecular polymerization 135
nucleoside triphosphate molecule 168

O
oligonucleotides 29, 31, 107, 109, 241, 245, 394–396, 398
Index

(S)-oligo(p-phenylenevinylene) (SOPV) 133–135, 138, 140
Onsager coefficients 44
out-of-equilibrium (OEQ) systems 9, 215
energy inputs 309–311
molecular systems 2
states 313
oxindole motors 344, 346
oxo-halogen oscillators 97–98, 107

\(p\)
papain-catalyzed ester hydrolysis 69
passive control, of active nanosystems 397
pattern formation 21, 22
chemo-mechanical and mechanochemical couplings link 22
by reaction-diffusion Turing instability 25
PEN DNA toolbox 31
PEN DNA/enzyme patterns 38
\((\text{SPepBnS})_6\), bearing benzyl side chains 147
\((\text{SPepCyS})_6\), bearing cyclohexylmethyl side chains 147
peptide assembly 5
peptide derivative 137, 174, 176, 177, 195
periodic process 62
perylene diimide derivative (PDI) 150, 177–179, 193–195
3,4,9,10-perylenediimide (PDI) 176, 195
pH clocks 67, 78
pH-dependent hydrolysis rate 193
phalloidin 41, 388, 399
phase changes, in DCC 225–228
phenylalanine-containing amphiphile (C18F) 209
4-phenylazoxyacetate 259
phosphocreatine (PCr) 178, 180, 194–195
phosphoryl transferase enzymes 194
photo-crosslinker 223
photoacids 12, 252–255, 259, 266–267, 269
photobases 12, 242, 252–255, 269
photochemical reactions 81, 279, 310, 321
photochemistry 275–276, 295
photochromic molecules 13, 245, 254, 276, 279, 282, 290
features 279
photodimerization reaction 12, 250–252, 267
photodynamic covalent bonds 232–233
photodynamic equilibrium 278–279
vs. thermodynamic equilibrium 277
photogated reactivity 284
photoinduced electron transfer 151, 264
photonic stimulation 310
photoredox catalysis 298
photoresponsive compounds 259
photoresponsive nanoparticles 242
photoswitchable ground-state catalysis 281, 282
photoswitchable host–guest inclusion complexes on nanoparticle surfaces 256–258
photoswitchable molecules 276, 279
light-induced adsorption 256–261
nanoparticles surface-functionalyzed with 242–250
nonselective adsorption 258–261
photoswitches 241, 278
challenges 299
photosynthesis 298
phototriggered supramolecular polymerization 146, 151
piperazine 81
plasmonic nanoparticles 249
phase transitions of thermoplastic polymers 261–263
platinum nanoparticles (PtNPs) 195
plug flow reactor (PFR) 77
pNIPAm-coated nanoparticles light-induced self-assembly 262
poly(N-isopropylacrylamide) (pNIPAm) 261, 262
poly(dimethylsiloxane) (PDMS) 112, 152–153
poly(ferrocenylsilane) (PFS) 153
poly(NIPA-co-MAA) 79
polydispersity index (PDI) 150, 176–179, 193–195, 224
polyethylene glycol (PEG) chains 182–184, 290, 292, 383, 397, 399
polyisocyanate 361–364
polyisoprene (PI) 153
poly(lactic acid) (PLA) 80
polymer doping 358–364
polymeric gel 355, 356
polymeric organogels 355
3Por-\textit{O}Ene 153
3Por-\textit{O}Me 140, 152
porphyrin derivative 140–141, 153
positional information 21–23, 27, 32–40
\textit{in vitro} feedback 3, 7, 63, 64, 69, 74, 97–99, 101, 107, 109, 119, 179, 194, 218, 235
potential energy diagrams 277, 281, 283
potential energy surfaces 13, 275–278, 317, 331
precipitation 79–81, 93, 113, 115, 227, 230, 242
predator-prey dynamics 31
predator-prey model 99
predator-prey oscillator 109
principle of detailed balance 278, 289
principle of microscopic reversibility 277–278, 287, 338
principle of minimum energy 275–276
propagating waves 74
protein kinase A (PKA) 176–177, 195
protofilaments 385–387, 392, 401
proton consumption 73
pseudorotaxanes 311, 312–319
based supramolecular pumps 312
semirotaxane-based molecular reservoirs 313–315
supramolecular pumps 315–319
\textit{P-SOPV}-3 138
\textit{P}-type photoswitch 279
purinergic signalling pathway 198
reaction-only mechanism 34
redox active supramolecular polymer 192–193
redox fuelling 179
redox reactions 23, 29, 67, 91, 97, 183, 298, 310
redox-drives supramolecular pump 316
responsive macromolecules 4
responsive materials 4, 7–9, 61, 79, 337, 338, 339, 352
reverse microemulsion 78
reversible equilibrium switches 4
reversible metastable switches 4
reversible photochemical process 310
RGB nanopixels 155
rhodopsin pumps, light-driven 293
ribonuclease 107
ring–chains supramolecular polymerization 135
RNA model substrate 197
rock-paper-scissors oscillator 109
Rondelez’s oscillator 107
rotaxanes 131, 218, 227, 311, 319–324, 327, 330
\(\beta\)-nitro styrene reduction 324
molecular ratchets 319–322
non-equilibrium states, generation of 322–324
property 319
structures 319
template-directed thermodynamically controlled synthesis 218

S
Schulz distribution 385
Barton–Kellogg reaction 346
helicity 362
short half-lives 342, 343
360 unidirectional rotation mechanism 340, 341
seeded supramolecular polymerization 147–150
selective pathway activation 199
self-assembled systems 201, 364–368
self-assembling systems 2, 5–7, 148
self-assembly 296
activenanosystems 401–403
defined 364

r
radical polymerization 80, 132, 146, 252
reaction-diffusion (RD) system 7, 9, 11, 23, 24, 25, 30, 32, 76, 81, 93, 98, 112, 113, 115, 116, 151
reaction-diffusion mechanism 35, 113
of acid-coated nanoparticles 296
of silica nanoparticles 256
self-erasing materials 245
self-healing materials 337
self-organizing far-from-equilibrium systems 7
self-reverting photoswitches 7
self-sorting process 221
behavior 226
of DCL compositions 228
self-synthesizing materials 236
semirotaxane-based molecular reservoirs 313–315
sigmoidal switch 71
signal processing systems 9
single stranded DNA (ssDNA) 31, 102, 111, 115, 116
smart materials 337, 338, 344, 352, 356
Soai reaction 62
sodium dithionite 176, 178, 179
solvent-assisted linker exchange (SALE) 357
SOPV-x derivatives 138
spatial and time-reversal symmetries 4
spatial bistability 35, 36, 38, 40
spiropyran(s) 241, 247–250, 252, 253, 255, 259, 261, 267, 268, 279, 280, 295, 296
derived photoacids 255
merocyanine photoswitch 295, 296
spiropyran-functionalized nanoparticles 247–250
light-induced self-assembly 249
stationary concentration patterns 76–77
stationary pattern formation 81
stilbenes 279–280, 338
stomatocyte 195
strain-induced reactivity, of macrocyclic imines 229
substrate-depleted network 27
sulfonated hydroxy pyrene 255
supramolecular chirality 194, 358, 359
supramolecular electropolymerization 149, 151
supramolecular polymerizations 306
equipment-controlled 148–149, 151–153
living 139, 143
supramolecular polymers CDSA 153, 154
chemical fuel-driven 167, 169
chemically fueled dissipative 184
chemically fueled networks 172
covalent-bond-based counterpart 132
definition 131, 132, 165
dynamic and monomers exchange 169
kinetically controlled 133, 136–140
living 140–147
non-equilibrium dissipative (or active) assembly or transient 170
non-equilibrium kinetically trapped assembled structures 170
thermodynamic models for 133, 134–135
traditional covalent polymers 165
temporary 184
supramolecular pumps 312, 315–319
surface attached molecular motors 352–355
surface immobilization 352
surface mounted molecular motors 353
surfaceplasmonresonance (SPR) band 255, 257, 261, 263, 266
surface-adhered motor proteins 382, 394, 395
surface-assisted self-assembly 151
switchable self-assemblies 7
syncytial blastoderm 35
synthetic cage receptor 218
synthetic nitrone-based replicator 222
Systems Chemistry 1, 10, 24, 62, 235
taxol 41, 45, 380, 385, 390, 391, 399, 400
template-fueled formation, of macrocyclic receptor 231
temporal bistability 34–36
tetrahydrofuran (THF) 136, 152, 153, 250
tetrasulfonatedporphyrin {TPPS} 152
tetrathiafulvalene (TTF) 321
theory of nonequilibrium thermodynamics 4
thermal E-Z isomerization (TEZI) 340, 341
thermal Diels–Alder equilibrium 284
thermal Diels–Alder reaction 284
thermal feedback 63, 79, 80
thermal helix inversion (THI) 290, 291, 340–342, 347, 348, 352, 357, 360–365, 367
thermodynamic equilibrium 4, 12, 94, 131, 134, 169, 170, 204, 228, 275–278, 287, 305, 307, 312, 338, 347, 360, 369
thermoresponsive polymers, phase transitions of 12, 242, 261–263, 269, 398
Thioflavin-T (THT) assay 174
thiol oscillator 98, 102–106, 108–110, 117
thiolated gold nanoparticles 252, 266
third generation molecular motor 180 unidirectional rotation mechanism 341, 342
threaded supramolecular structure 311
time-lapse polymerization 78
TiO2 nanoparticles assembly 264, 265
toehold 36, 38
transcription factor 34, 39, 40
transcription-translation patterns 39–40
transientsupramolecular polymerization biocatalytic 176, 177
enzyme catalysis 181
hydrogels 182
pH triggered 182
pyridine-based amphiphile 184
thermoresponsive gels 181
triarylamine-based derivative TAA 151
1,4,7-triazacyclononane (TACN) 197, 199, 200, 208
triazolium (TRIA) station 314, 315
trimesoyl chloride (TMC) 81
tripodal molecular motor, for surface attachment 354
T7 RNA polymerase 107
Trommsdorf effect 79
trypsin oscillator 98, 102, 103, 104, 106–110
trypsinogen 102, 109, 111, 114, 115, 117
T-type photoswitch 279
tunable colloidal interactions 4
Turing instability 22, 24–32
and positional information 22
short mathematical analysis of 26–27
Turing patterns 4, 21, 24–29, 36, 49, 76, 93–95, 98, 113–115
in vitro 28
in vivo 27–28
formation, by positional information 32–40
reaction-diffusion waves in vitro 29–31
Turing’s model 76

U
ultrasensitive networks 99, 100
ultrasensitivity 7, 71, 93, 99, 106
uncatalyzed process 63
unidirectional threading-dethreading movement 313
Unimolecular Submersible Nanomachine (USN) 350, 351
2-ureidopyrimidin-4[H]-ones (UPy) 134
urease-catalyzed hydrolysis 69, 181
UV light induced photoisomerization 286, 289, 297
UV-irradiated azobenzene-functionalized nanoparticles 246

V
van der Waals (vdW) interactions 142, 165, 263, 265, 266

W
water-based photoresponsive medium 254
Watzky–Finke model 81

Z
Z-ring 29, 93
zero-order ultrasensitivity 99
zinc pillared-paddlewheeled MOF 356, 357