Contents
2.3.2.1 Atom Transfer Radical Polymerization (ATRP) 45
2.3.2.2 Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization 47
2.3.2.3 Other Controlled Radical Polymerization Methods 50
2.3.3 Ring-Opening Polymerization (ROP) 50
References 54

3 Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS) and Copolymers: Methods and Advances 63
Huihui Shi, Jing Yang, Zibiao Li, and Chaobin He
3.1 Introduction 63
3.2 Synthetic Strategies for Functionalized POSS 64
3.2.1 Octafunctional POSS 65
3.2.1.1 Hydrolysis and Condensation from RSiX₃ Monomer 65
3.2.1.2 Modification of Substituents 66
3.2.2 Monofunctional POSS 71
3.2.2.1 Corner Capping of T₇R₇(OH)₃ 71
3.2.2.2 Modification of Substituents 73
3.2.3 Bifunctional POSS 73
3.2.3.1 Some Special Cases 73
3.2.3.2 Some Developing New Strategies 74
3.3 Synthetic Protocols for Hybrid POSS-containing Polymers 76
3.3.1 Preparation from Monomers 78
3.3.1.1 Radical Polymerization 79
3.3.1.2 Ring-Opening Polymerization 81
3.3.1.3 Step-Growth Polymerization 83
3.3.1.4 Other Polymerization Methods 86
3.3.2 Preparation from Polymers 87
3.3.2.1 By Conventional Organic Reactions 87
3.3.2.2 Some Advanced Methods 91
3.4 Conclusion 91
References 91

4 Nanostructured Self-assemblies from Silicon-containing Hybrid Copolymers 97
Hong Chi, Beng Hoon Tan, Fuke Wang, Chaobin He, and Zibiao Li
4.1 Introduction 97
4.2 Mechanism in Self-assembly of POSS and PDMS-Based Copolymers 99
4.2.1 Stimuli-Responsive Micelles 100
4.2.1.1 pH-Sensitive Micelles 100
4.2.1.2 Thermosensitive Micelles 103
4.2.1.3 Photoactive Micelles 104
4.2.2 Other Mechanisms in Different Assemblies 104
4.2.2.1 Micelles 104
4.2.2.2 Spheres 105
4.2.2.3 Sheets 106
4.3 Application 107
 4.3.1 Biomedical Applications 107
 4.3.2 Photodynamic Therapy 109
 4.3.3 Coating 111
 4.3.4 Optical Sensors 112
4.4 Conclusions and Perspectives 113
References 113

5 Superhydrophobic Materials Derived from Hybrid Silicon Copolymers 119
 Lu Jiang, Xian Jun Loh, Chaobin He, and Zibiao Li
5.1 Introduction 119
5.2 Hybrid Silicon Copolymer Materials with Superhydrophobic Property 120
 5.2.1 PDMS-Incorporated Hybrid Copolymer Materials 120
 5.2.2 POSS-Incorporated Hybrid Copolymer Materials 122
5.3 Application of Superhydrophobic Silicon Copolymer Materials 128
 5.3.1 Oil–Water Separation 128
 5.3.1.1 PDMS-Based Superhydrophobic Materials 131
 5.3.1.2 POSS-Based Superhydrophobic Materials 135
 5.3.2 Self-cleaning and Antifouling 136
 5.3.3 Anticorrosion 137
 5.3.4 Other Applications 138
5.4 Conclusion 140
References 140

6 Silicone Copolymers for Healthcare and Personal Care Applications 145
 Weiren Cheng, Dan Kai, Xian Jun Loh, Chaobin He, and Zibiao Li
6.1 Silicone Copolymers for Biomedical and Healthcare Applications 145
 6.1.1 Adsorption and Cell Interaction on Silicone Copolymer Surface 145
 6.1.1.1 Antifouling Effect of Silicone Copolymer Surfaces 148
 6.1.1.2 Antibacterial Effect of Silicone Copolymer Surfaces 148
 6.1.1.3 Silicone Copolymers in Tissue Engineering and Regenerative Medicine 150
 6.1.1.4 Silicone Copolymers Based Bio-coating 150
 6.1.2 Self-assembly with Silicone Copolymers 152
 6.1.2.1 Silicone Copolymers for Drug Delivery and Bioimaging 153
 6.1.2.2 Silicone Copolymers in the Construction of Artificial Cells 154
 6.2 Silicone for Personal Care Applications 157
 6.2.1 Silicone Oil Emulsions 157
 6.2.2 Silicone Copolymers as Surfactants 158
 6.2.3 Silicone for Hair Care 159
 6.2.4 Strategies for Depositing Silicone on Hair 160
 6.2.5 Silicone for Skin Care Applications 161
6.3 Conclusions 162
References 163
7 Construction of Organic Optoelectronic Materials by Using Polyhedral Oligomeric Silsesquioxanes (POSS) 167
Fuke Wang, Xuehong Lu, Zibiao Li, and Chaobin He
7.1 Unique Properties of POSS for Building Organic Optoelectronic Materials 167
7.2 POSS‐Based Organic Electroluminescence Materials 171
7.3 POSS as a Building Block for Electrochromic Materials 181
7.4 Other Applications of POSS in Organic Optoelectronic Materials 189
7.5 Conclusions 195
References 196
8 Hybrid POSS Nanocomposites: An Overview of Material Toughening and Fire Retardancy 201
Junhua Kong, Beng H. Tan, Xuehong Lu, Zibiao Li, and Chaobin He
8.1 Introduction 201
8.2 Polypropylene/POSS Composites 202
8.3 Polycarbonate/POSS Composites 206
8.4 Polystyrene/POSS Composites 211
8.5 Polyester/POSS Composites 216
8.6 Polyepoxides/POSS Composites 220
8.7 Summary 233
References 233
9 3D Printing Silicone Materials and Devices 239
Jayven Yeo, Junqiang Justin Koh, Fuke Wang, Zibiao Li, and Chaobin He
9.1 Introduction 239
9.2 Extrusion‐Based Printing 240
9.2.1 Fused Deposition Modeling (FDM) 240
9.2.2 Direct Ink Writing (DIW) 242
9.2.2.1 Rheology‐Controlled Shape Retention 242
9.2.2.2 Coaxial Printing 245
9.2.2.3 Embedded 3D Printing 245
9.3 Jetting‐Based Printing 247
9.3.1 Inkjet 3D Printing (IJP) 247
9.3.2 Aerosol Jet Printing (AJP) 249
9.4 Vat Photopolymerization/Light‐Based/Photocurable 3D Printing 251
9.4.1 Stereolithography (SLA) 252
9.4.2 Digital Light Processing (DLP) 252
9.4.3 Photopolymerization Process 252
9.4.3.1 Photoinitiator 253
9.4.3.2 Photocurable Polymers 254
9.5 Potential Applications 260
References 261
Index 265