Contents

Volume 1

Preface  xiii

Part I  Silicon Carbide (SiC)  1

1  Dislocation Formation During Physical Vapor Transport Growth of 4H-SiC Crystals  3
Noboru Ohtani

2  Industrial Perspectives of SiC Bulk Growth  33
Adrian R. Powell

3  Homoepitaxial Growth of 4H-SiC on Vicinal Substrates  47
Birgit Kallinger

4  Industrial Perspective of SiC Epitaxy  75
Albert A. Burk, Jr., Michael J. O'Loughlin, Denis Tsvetkov, and Scott Ustin

5  Status of 3C-SiC Growth and Device Technology  93
Peter Wellmann, Michael Schöler, Philipp Schuh, Mike Jennings, Fan Li,
Roberta Nipoti, Andrea Severino, Ruggero Anzalone, Fabrizio Roccaforte,
Massimo Zimbone, and Francesco La Via

6  Intrinsic and Extrinsic Electrically Active Point Defects in SiC  137
Ulrike Grossner, Joachim K. Grillenberger, Judith Woerle, Marianne E. Bathen,
and Johanna Mütting
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Dislocations in 4H-SiC Substrates and Epilayers</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Balaji Raghothamachar and Michael Dudley</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Novel Theoretical Approaches for Understanding and Predicting</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Dislocation Evolution and Propagation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binh Duong Nguyen and Stefan Sandfeld</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gate Dielectrics for 4H-SiC Power Switches: Understanding the</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Structure and Effects of Electrically Active Point Defects at the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4H-SiC/SiO₂ Interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gregor Pobegen and Thomas Aichinger</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Epitaxial Graphene on Silicon Carbide as a Tailorable</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Metal–Semiconductor Interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Krieger and Heiko B. Weber</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Device Processing Chain and Processing SiC in a Foundry Environment</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Arash Salemi, Minseok Kang, Woongje Sung, and Anant K. Agarwal</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Unipolar Device in SiC: Diodes and MOSFETs</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Sei-Hyung Ryu</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Volume 2</strong></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ultra-High-Voltage SiC Power Device</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Yoshiyuki Yonezawa and Koji Nakayama</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>13.2</td>
<td>Ultra-high-voltage SiC PiN diode and SiC-IGBT</td>
<td>355</td>
</tr>
<tr>
<td>13.3</td>
<td>Reverse Characteristics of SiC Bipolar Device</td>
<td>356</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Relationship Between Thickness and Density of Drift Layer and</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>Breakdown Voltage</td>
<td></td>
</tr>
<tr>
<td>13.3.2</td>
<td>Termination Structure of SiC Bipolar Devices</td>
<td>357</td>
</tr>
<tr>
<td>13.4</td>
<td>Carrier Lifetime Dependence on the Characteristics of Bipolar Device</td>
<td>358</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Forward Characteristics of pn Diode</td>
<td>360</td>
</tr>
<tr>
<td>13.4.1.1</td>
<td>Analysis of Characteristics Under Low-Level Injection</td>
<td>360</td>
</tr>
<tr>
<td>13.4.1.2</td>
<td>Analysis of Carriers in the Drift Layer Under High-Level Injection</td>
<td>362</td>
</tr>
<tr>
<td>13.4.1.3</td>
<td>Relationship Between Carrier Life, Drift Layer Thickness, and Drift Layer Voltage Drop</td>
<td>363</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Reverse Characteristics of pn Diode</td>
<td>365</td>
</tr>
</tbody>
</table>
13.4.2.1 Reverse Leakage Current Characteristics 365
13.4.3 Dynamic Characteristics of pn Diode 365
13.4.3.1 Reverse and Forward Recovery of Characteristics 365
13.4.3.2 Open-Circuit Voltage Decay 366
13.4.3.3 Comparison of Reverse and Forward Recovery Characteristics and OCVD 368
13.5 Design and Device Performance of Bipolar Device 370
13.5.1 Carrier lifetime dependence 371
13.5.2 Loss Estimation of Bipolar Device 373
13.6 Current Status of SiC Bipolar Device 377
13.6.1 Device Performance of 16 kV Class SiC-IGBT 378
13.6.2 Device Characteristics of higher-than-20 kV Class SiC-IGBT 382
13.6.3 Other Bipolar Devices Issues 383
References 384

14 SiC Reliability Aspects 387
Josef Lutz and Thomas Basler
14.1 Ruggedness and Overload Events 387
14.1.1 Short-circuit Ruggedness of SiC MOSFETs 387
14.1.2 Surge-current Ruggedness 394
14.1.3 Avalanche Capability 403
14.2 Cosmic-Ray Stability 412
14.3 Thermomechanical Reliability 414
14.3.1 Temperature-sensitive Electrical Parameters 416
14.3.2 Execution of Power-cycling Tests 419
14.3.3 Evaluation of SiC Power-cycling Tests 421
14.4 New Power-module Technologies with Sufficient Reliability 422
14.4.1 Improved Die-attach Technologies 422
14.4.2 Improved Top-Side Interconnections 424
Acknowledgments 426
References 426

15 Industrial Systems Using SiC Power Devices 433
Nando Kaminski
15.1 Introduction 433
15.1.1 Benefits of SiC Devices 433
15.1.2 Competition by Other Technologies 436
15.2 DC/DC Converters 437
15.3 Solid-State Transformer (SST) 443
15.3.1 Traction 443
15.3.2 Power Grid 444
15.4 Wireless Charging 445
15.5 Inductive Heating 446
15.5.1 Domestic Systems 446
15.5.2 Industrial Systems 446
15.6 Photovoltaic 447
15.6.1 Residential Systems 447
15.6.2 Commercial, Industrial, and Utility Size Systems 449
15.7 DC Grids 451
15.7.1 Low- and Medium-Voltage DC Grids 451
15.7.2 DC Breakers 452
15.8 High-Voltage DC (HVDC) 452
15.8.1 HVDC Transmission 452
15.8.2 HVDC Breakers 454
15.9 Drives 455
15.9.1 Industrial Drives 455
15.9.2 Wind Energy 457
15.9.3 Traction 458
15.10 Conclusions 459
Acknowledgements 460
References 460

16 Special Focus on HEV and EV Applications: Activities of Automotive Industries Applying SiC Devices for Automotive Applications 467
Kimimori Hamada, Keiji Toda, Hiromichi Nakamura, Shigeharu Yamagami, and Kazuhiro Tsuruta
16.1 Background (PDPlus LLC) 467
16.2 The Challenge of SiC Power Devices Introductions on Prototype HEVs and FCVs (TOYOTA MOTOR CORPORATION) 469
16.2.1 Progress of Electrification 469
16.2.2 Demonstration of Electrified Vehicles 470
16.3 Introduction of Boost Converter Using SiC Semiconductor for New FCV Drive (HONDA MOTOR CO., LTD.) 472
16.3.1 Introduction 472
16.3.2 Configuration of the Electric Power Plant System for New FCV 472
16.3.3 FCVCU 473
16.3.3.1 Circuit Configuration 473
16.3.3.2 Full SiC-IPM 473
16.3.3.3 Magnetic Coupling and Interleave Operation 474
16.3.3.4 Control Methods 475
16.3.3.5 Effects on Smaller Size and Higher Efficiency 477
16.3.3.6 Quietness 478
16.3.3.7 Noise Countermeasures 478
Part II  Gallium Nitride (GaN), Diamond, and Ga$_2$O$_3$  529

18  Ammonothermal and HVPE Bulk Growth of GaN  531
   Robert Kucharski, Tomasz Sochacki, Boleslaw Lucznik, Mikolaj Amilusik, Karolina Grabianska, Malgorzata Iwinska, and Michal Bockowski
18.1  Introduction  531
18.2  HVPE Method – History and State of the Art  533
18.3  Ammonothermal Method – History and State of the Art  536
18.4  HVPE-GaN-on-Ammono-GaN – State of the Art  542
18.4.1  Bulk Growth – Challenges  543
18.4.2  Doping  546
18.4.2.1  Doping with Donors  546
18.4.2.2  Doping with Acceptors  549
18.5  Summary  550
   Acknowledgments  551
   References  551

19  GaN on Si: Epitaxy and Devices  555
   Hidekazu Umeda
19.1  Introduction  555
19.2  GaN Epitaxy on Si Substrate  556
19.2.1  GaN Epitaxial Method and Doping  556
19.2.1.1  Metal–Organic Chemical Vapor Deposition (MOCVD)  556
19.2.1.2  N, P-Type Doping  556
19.2.1.3  Doping for Semi-insulation Layer  557
19.2.2  Substrates for GaN Epitaxy  557
19.2.2.1  GaN  557
19.2.2.2  Sapphire  558
19.2.2.3  SiC  558
19.2.2.4  Si  559
19.2.3  Epitaxial Growth Technology on Si Substrate  559
19.2.3.1  Crystal Orientation of Si Substrate  559
19.2.3.2  Nucleation Layer  559
19.2.3.3  Buffer Layer  560
19.2.3.4  AlGaN/GaN Active Layer with Polarization Effect  561
19.3  Lateral GaN Devices on Si Substrate  564
19.3.1  Device Structure and Fabrication Process  564
19.3.2  Structures for E-Mode Operation  566
19.3.3  E-Mode GaN Gate-Injection Transistor (GIT) on Si Substrate  567
19.3.3.1  Device Structure and Operational Principle  567
19.3.3.2  DC Performance of GIT  568
19.3.3.3  Switching Performance of GIT  570
20 Growth of Single Crystal Diamond Wafers for Future Device Applications 583

Matthias Schreck

20.1 Introduction 583

20.2 High-Pressure High-Temperature (HPHT) Synthesis 584

20.2.1 Basic Concepts and Technical Realizations 584

20.2.2 The Temperature Gradient Method 586

20.2.3 Chemical Purity and Classification 587

20.2.4 Morphology and Structural Quality 588

20.2.5 State of the Art in Crystal Size 589

20.2.6 Boron Doping 590

20.3 Chemical Vapor Deposition (CVD) 591

20.3.1 Basic Principles 591

20.3.1.1 The Mechanism of Diamond Growth by CVD 591

20.3.1.2 Gas Mixtures for Diamond CVD 593

20.3.1.3 The Role of Trace Gases 594

20.3.1.4 Experimental Setups 595

20.3.1.5 Growth Rate and Gas Temperature 598

20.3.1.6 Nucleation by Seeding 599

20.3.1.7 Bias-Enhanced Nucleation (BEN) 599

20.3.2 Examples of Polycrystalline CVD Diamond Layers 601

20.3.3 CVD Growth of Single Crystals 602

20.3.4 Homoepitaxy 603

20.3.4.1 Homoepitaxial Growth on Different Crystals Faces 603

20.3.4.2 Single Crystal Seed Recovery 604

20.3.4.3 Size Increase and Mosaic Growth 605

20.3.5 Heteroepitaxy 605

20.3.5.1 Growth Substrates for Heteroepitaxy 605

20.3.5.2 Bias-Enhanced Nucleation on Iridium: Phenomenology and Mechanism 607

20.3.5.3 Structural Improvement with Film Thickness 609

20.3.5.4 Multilayer Substrates for Scaling to Wafer Size 611

20.3.5.5 The State of the Art in Scaling and Mosaic Spread 613

20.3.5.6 Intrinsic Stress and Its Correlation with Dislocations 614

20.3.5.7 Heteroepitaxy on (111)-Oriented Substrates 614

20.3.5.8 The Microneedle Approach 615
20.3.6 Advanced Concepts for Structural Improvement 617
20.3.6.1 Epitaxial Lateral Overgrowth 617
20.3.6.2 Dislocation Stopping by W or Ta Atoms 618
20.4 State of the Art and Outlook 619
Acknowledgments 619
References 619

21 Diamond Wafer Technology, Epitaxial Growth, and Device Processing 633
Hideaki Yamada, Hiromitsu Kato, Shinya Ohmagari, and Hitoshi Umezawa
21.1 Diamond Epitaxial Growth and Wafers 633
21.2 n-Type Doping and Processing 638
21.3 p-Type Doping and Processing 642
21.4 Devices 645
References 650

22 Gallium Oxide: Material Properties and Devices 659
Masataka Higashiwaki
22.1 Introduction 659
22.2 Physical Properties of Ga₂O₃ 660
22.2.1 Polymorphs 660
22.2.2 Material Properties of β-Ga₂O₃ 660
22.3 Melt Bulk Growth 662
22.4 Epitaxial Growth 662
22.4.1 MBE 663
22.4.2 HVPE 664
22.4.3 MOCVD 664
22.4.4 Mist CVD 665
22.5 Vertical Diodes 665
22.5.1 SBD with HVPE-Grown Drift Layer 665
22.5.2 Field-Plated SBD 666
22.5.3 Field-Plated SBD with Guard Ring Formed by Nitrogen-Ion Implantation 666
22.5.4 Trench SBD 667
22.5.5 α-Ga₂O₃ SBD 667
22.5.6 Heterojunction p-Amorphous Oxide/n-Ga₂O₃ Diode 668
22.6 Lateral FETs 668
22.6.1 MESFET 668
22.6.2 Depletion-Mode MOSFET 669
22.6.3 Field-Plated MOSFET 671
22.6.4 Modulation-Doped FET 671
22.6.5 Normally Off FET 672
Contents

Volume 1

Preface  xiii

Part I  Silicon Carbide (SiC)  1

1  Dislocation Formation During Physical Vapor Transport
Growth of 4H-SiC Crystals  3
Noboru Ohtani
1.1  Introduction  3
1.2  Formation of Basal Plane Dislocations During PVT Growth of 4H-SiC
Crystals  5
1.2.1  Plan-View X-ray Topography Observations of Growth Front  5
1.2.2  Cross-Sectional X-ray Topography Observations of Growth Front  9
1.2.3  Characteristic BPD Distribution in PVT-Grown 4H-SiC Crystals  13
1.2.4  BPD Multiplication During PVT Growth  15
1.3  Dislocation Formation During Initial Stage of PVT Growth of 4H-SiC
Crystals  18
1.3.1  Preparation of 4H-SiC Wafers with Beveled Interface Between Grown
Crystal and Seed Crystal  18
1.3.2  Determination of Grown-Crystal/Seed Interface by Raman
Microscopy  19
1.3.3  X-ray Topography Observations of Dislocation Structure at
Grown-Crystal/Seed Interface  22
1.3.4  Formation Mechanism of BPD Networks and Their Migration into Seed
Crystal  23
1.4  Conclusions  28
References  30

2  Industrial Perspectives of SiC Bulk Growth  33
Adrian R. Powell
2.1  Introduction  33
3 Homoepitaxial Growth of 4H-SiC on Vicinal Substrates 47
Birgit Kallinger
3.1 Introduction 47
3.2 Fundamentals of 4H-SiC Homoepitaxy for Power Electronic Devices 47
3.2.1 4H-SiC Polytype Replication for Homoepitaxial Growth on Vicinal Substrates 48
3.2.2 Homoepitaxial Growth by Chemical Vapor Deposition (CVD) Process 52
3.2.3 Doping in Homoepitaxial Growth 53
3.3 Extended Defects in Homoepitaxial Layers 55
3.3.1 Classification of Extended Defects According to Glide Systems in 4H-SiC 56
3.3.2 Dislocation Reactions During Epitaxial Growth 57
3.3.3 Characterization Methods for Extended Defects in 4H-SiC Epilayers 59
3.4 Point Defects and Carrier Lifetime in Epilayers 62
3.4.1 Classification and General Properties of Point Defects in 4H-SiC 62
3.4.2 Basics on Recombination Carrier Lifetime in 4H-SiC 64
3.4.3 Carrier Lifetime-Affecting Point Defects 65
3.4.4 Carrier Lifetime Measurement in Epiwafers and Devices 68
3.5 Conclusion 69
Acknowledgments 70
References 70

4 Industrial Perspective of SiC Epitaxy 75
Albert A. Burk, Jr., Michael J. O’Loughlin, Denis Tsvetkov, and Scott Ustin
4.1 Introduction 75
4.2 Background 76
4.3 The Basics of SiC Epitaxy 76
4.4 SiC Epi Historical Origins 78
4.5 Planetary Multi-wafer Epitaxial Reactor Design Considerations 80
4.5.1 Rapidly Rotating Reactors 81
4.5.2 Horizontal Hot-Wall Reactors 82
4.6 Latest High-Throughput Epitaxial Reactor Status 82
4.7 Benefits and Challenges for Increasing Growth Rate in all Reactors 86
4.8 Increasing Wafer Diameters, Device Processing Considerations, and Projections 86
4.9 Summary 89
Acknowledgment 90
References 90

5 Status of 3C-SiC Growth and Device Technology 93
Peter Wellmann, Michael Schöler, Philipp Schuh, Mike Jennings, Fan Li, Roberta Nipoti, Andrea Severino, Ruggero Anzalone, Fabrizio Roccaforte, Massimo Zimbone, and Francesco La Via
5.1 Introduction, Motivation, Short Review on 3C-SiC 93
5.2 Nucleation and Epitaxial Growth of 3C-SiC on Si 95
5.2.1 Growth Process 95
5.2.2 Defects 98
5.2.3 Stress 102
5.3 Bulk Growth of 3C-SiC 103
5.3.1 Sublimation Growth of (111)-oriented 3C-SiC on Hexagonal SiC Substrates 104
5.3.2 Sublimation Growth of 3C-SiC on 3C-SiC CVD Seeding Layers 105
5.3.3 Continuous Fast CVD Growth of 3C-SiC on 3C-SiC CVD Seeding Layers 110
5.4 Processing and Testing of 3C-SiC Based Power Electronic Devices 117
5.4.1 Prospects for 3C-SiC Power Electronic Devices 117
5.4.2 3C-SiC Device Processing 117
5.4.3 MOS Processing 118
5.4.4 3C-SiC/SiO₂ Interface Passivation 120
5.4.5 Surface Morphology Effects on 3C-SiC Thermal Oxidation 121
5.4.6 Thermal Oxidation Temperature Effects for 3C-SiC 122
5.4.7 Ohmic Contact Metalization 123
5.4.8 N-type 3C-SiC Ohmic Contacts 126
5.4.9 Ion Implantation 126
5.5 Summary 127
Acknowledgements 127
References 127

6 Intrinsic and Extrinsic Electrically Active Point Defects in SiC 137
Ulrike Grossner, Joachim K. Grillenberger, Judith Woerle, Marianne E. Batthen, and Johanna Mütting
6.1 Characterization of Electrically Active Defects 141
6.1.1 Deep Level Transient Spectroscopy 141
6.1.1.1 Profile Measurements 143
6.1.1.2 Poole–Frenkel Effect 143
6.1.1.3 Laplace DLTS 143
6.1.2 Low-energy Muon Spin Rotation Spectroscopy 144
6.1.2.1 μSR and Semiconductors 144
6.1.3 Density Functional Theory 145
6.2 Intrinsic Electrically Active Defects in SiC 146
6.2.1 The Carbon Vacancy, $V_C$ 147
6.2.2 The Silicon Vacancy, $V_{Si}$ 152
6.3 Transition Metal and Other Impurity Levels in SiC 153
6.4 Summary 159
References 163

7 Dislocations in 4H-SiC Substrates and Epilayers 169
Balaji Raghothamachar and Michael Dudley
7.1 Introduction 169
7.2 Dislocations in Bulk 4H-SiC 170
7.2.1 Micropipes (MPs) and Closed-core Threading Screw Dislocations (TSDs) 170
7.2.2 Basal Plane Dislocations (BPDs) 171
7.2.3 Threading Edge Dislocations (TEDs) 171
7.2.4 Interaction between BPDs and TEDs 171
7.2.4.1 Hopping Frank–Read Source of BPDs 171
7.2.5 Threading Mixed Dislocations (TMDs) in 4H-SiC 173
7.2.5.1 Reaction Between Threading Dislocations with Burgers Vectors of $-c+a$ and $c+a$ Wherein the Opposite $c$-Components Annihilate Leaving Behind the Two $a$-Components 174
7.2.5.2 Reaction Between Threading Dislocations with Burgers Vectors of $-c$ and $c+a$ Leaving Behind the $a$-Component 175
7.2.5.3 Reaction Between Opposite-sign Threading Screw Dislocations with Burgers Vectors $c$ and $-c$ 175
7.2.5.4 Nucleation of Opposite Pair of $c+a$ Dislocations and Their Deflection 175
7.2.5.5 Deflection of Threading $c+a$, $c$ and Creation of Stacking Faults 177
7.2.6 Prismatic Slip during PVT growth 4H-SiC Boules 180
7.2.7 Relationship Between Local Basal Plane Bending and Basal Plane Dislocations in PVT-grown 4H-SiC Substrate Wafers 181
7.2.8 Investigation of Dislocation Behavior at the Early Stage of PVT-grown 4H-SiC Crystals 181
7.3 Dislocations in Homoeptaxial 4H-SiC 184
7.3.1 Conversion of BPDs into TEDs 184
7.3.2 Susceptibility of Basal Plane Dislocations to the Recombination-Enhanced Dislocation Glide in 4H Silicon Carbide 184
7.3.3 Nucleation of TEDs, BPDs, and TSDs at Substrate Surface Damage 188
7.3.4 Nucleation Mechanism of Dislocation Half-Loop Arrays in 4H-SiC Homo-Epitaxial Layers 191
8 Novel Theoretical Approaches for Understanding and Predicting Dislocation Evolution and Propagation 199
Binh Duong Nguyen and Stefan Sandfeld
8.1 Introduction 199
8.2 General Modeling and Simulation Approaches 200
8.3 Continuum Dislocation Modeling Approaches 201
8.3.1 Alexander–Haasen Model 201
8.3.2 Continuum Dislocation Dynamics Models 202
8.3.2.1 The Simplest Model: Straight Parallel Dislocation with the Same Line Direction 203
8.3.2.2 The “Groma” Model: Straight Parallel Dislocations with Two Line Directions 203
8.3.2.3 The Kröner–Nye Model for Geometrically Necessary Dislocations 204
8.3.2.4 Three-dimensional Continuum Dislocation Dynamics (CDD) 204
8.4 Example 1: Comparison of the Alexander–Haasen and the Groma Model 206
8.4.1 Governing Equations 206
8.4.2 Physical System and Model Setup 206
8.4.3 Results and Discussion 209
8.5 Example 2: Dislocation Flow Between Veins 211
8.5.1 A Brief Introduction to Dislocation Patterning and the Similitude Principle 211
8.5.2 Physical System and Model Setup 213
8.5.3 Geometry and Initial Values 214
8.5.4 Results and Discussion 215
8.6 Summary and Conclusion 219
References 220

9 Gate Dielectrics for 4H-SiC Power Switches: Understanding the Structure and Effects of Electrically Active Point Defects at the 4H-SiC/SiO₂ Interface 225
Gregor Pobegen and Thomas Aichinger
9.1 Introduction 225
9.2 Electrical Impact of Traps on MOSFET Characteristics 225
9.2.1 Sub threshold Sweep Hysteresis 226
9.2.2 Preconditioning Measurement 231
9.2.3 Bias Temperature Instability 233
9.2.4 Reduced Channel Electron Mobility 235
9.3 Microscopic Nature of Electrically Active Traps Near the Interface 237
9.3.1 The P_{bc} Defect and the Subthreshold Sweep Hysteresis 237
## Contents

9.3.2 The Intrinsic Electron Trap and the Reduced MOSFET Mobility 238
9.3.3 Point Defect Candidates for BTI 240
9.4 Conclusions and Outlook 242

References 243

10 **Epitaxial Graphene on Silicon Carbide as a Tailorable Metal–Semiconductor Interface** 249

*Michael Krieger and Heiko B. Weber*

10.1 Introduction 249
10.2 Epitaxial Graphene as a Metal 249
10.3 Fabrication and Structuring of Epitaxial Graphene 250
10.3.1 Epitaxial Growth by Thermal Decomposition 250
10.3.2 Intercalation 251
10.3.3 Structuring of Epitaxial Graphene Layers and Partial Intercalation 252
10.4 Epitaxial Graphene as Tailorable Metal/Semiconductor Contact 253
10.4.1 Ohmic Contacts 254
10.4.2 Schottky Contacts 256
10.5 Monolithic Epitaxial Graphene Electronic Devices and Circuits 257
10.5.1 Discrete Epitaxial Graphene Devices 257
10.5.2 Monolithic Integrated Circuits 259
10.6 Novel Experiments on Light–Matter Interaction Enabled by Epitaxial Graphene 260
10.6.1 High-Frequency Operation and Ultimate Speed Limits of Schottky Diodes 260
10.6.2 Transparent Electrical Access to SiC for Novel Quantum Technology Applications 263
10.7 Conclusion 264

Acknowledgments 265

References 265

11 **Device Processing Chain and Processing SiC in a Foundry Environment** 271

*Arash Salemi, Minseok Kang, Woongje Sung, and Anant K. Agarwal*

11.1 Introduction 271
11.2 DMOSFET Structure 271
11.3 Process Integration of SiC MOSFETs 273
11.3.1 Lithography 283
11.3.2 SiC Etching 283
11.3.3 Ion Implantation and Activation Annealing 290
11.3.4 Oxidation and Oxide 293
11.3.5 Post Oxidation Annealing 296
11.3.6 Poly-Si Deposition 298
11.3.7 Backside Thinning and Waffle Substrates 300
11.3.8 Ohmic Contacts and Metallization 301
11.3.9 Polyimide Deposition 302
Part II  Gallium Nitride (GaN), Diamond, and Ga$_2$O$_3$  529

18  Ammonothermal and HVPE Bulk Growth of GaN  531
   Robert Kucharski, Tomasz Sochacki, Boleslaw Lucznik, Mikolaj Amilusik,
   Karolina Grabianska, Malgorzata Iwinska, and Michal Bockowski

19  GaN on Si: Epitaxy and Devices  555
   Hidekazu Umeda

20  Growth of Single Crystal Diamond Wafers for Future Device
   Applications  583
   Matthias Schreck

21  Diamond Wafer Technology, Epitaxial Growth, and Device
   Processing  633
   Hideaki Yamada, Hiromitsu Kato, Shinya Ohmagari, and Hitoshi Umezawa

22  Gallium Oxide: Material Properties and Devices  659
   Masataka Higashiwaki

Index  681