Index

a
AA′BO$_3$ perovskite electrodes 162–165
ABB′O$_3$ perovskite electrodes 168–170
ABO$_3$ electrodes 145, 147–151
adhesives 3, 25, 56–63
adhesive conductive film 61
Adler’s molecular model 30
agglomeration 142, 144, 159, 210, 213, 258–259, 302, 304, 314, 317
aluminum foil 56, 58–59, 61–63, 65, 116
anion-intercalation supercapacitors 162, 175
anionic intercalation 156
anisotropic crystal growth 259
annealing process 32

b
BBSC perovskite 171–172
BG/PANI composite fabrication 215
biochars 7–13, 16–18
biomedical engineering applications 114
Boudouard reaction 8

c
cadmium hydroxide 91–93
camphor sulfonic acid (CS) 115
carbon aerogel 33, 54, 68, 245, 290–291
carbon black 57, 59, 63, 194, 236, 256, 292, 304, 311
carbon fibers (CFs) 68, 208–209, 258, 267, 313
carbon nanochannels 290
carbon nanocrystallites 34
carbonaceous nanofiller 208
carbonization process 301
carbonization-in-a-day approach 301
Cd(OH)$_2$ interconnected nanowire 94
cellulose 31
cellulose fibers 2
cellulose films/membranes 2
ethanol production 1–2
cellulose films/membranes 2
cetyltrimethylammonium bromide (CTAB) 211, 265
carb gasification reaction 8
carbonate storage process 172
charge-discharge process 156, 321
charge-transfer process 175
chemical vapor deposition (CVD) 255–256, 315
cobalt hydroxide 86–89
condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) 25
conducting polymers (CPs) 114, 300
carbonaceous material
carbon fibers (CFs) 208–209
carbon nanotubes 207–208

Edited by Rajender Boddula, Anish Khan, Abdullah M. Asiri, and Aleksandr E. Kolosov.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
Index

conducting polymers (CPs) (contd.)
 graphene and graphene oxide (GO) 209
 reduced graphene oxide (RGO) 209
 charging-discharging mechanism 205
 chemically modified graphene 214
 CNT nanocomposites 210–212
 graphene composites 212–218
 graphene oxide 213–214
 intrinsically semi-conducting polymers 205
 limitations of 207
 poly (3,4-ethylenedioxythiphene)
 (PEDOT) 206
 polyaniline (PANI) 206
 polypyrrole (PPy) 206
 conductive polymers 19, 54, 80, 187–190, 205–211, 218, 289, 304
 conventional batteries 55, 187
 conventional capacitors 13–14, 53, 245
 copper hydroxide 93–94
 Coulomb attractions 25
 Cu(OH)₂ nanorods 94
 cyclic voltammetry (CV) 89, 92, 113, 214, 234–236, 247, 292, 311
 cyclic voltammogram 118, 141, 144, 154, 168, 192, 256

d
 density functional theory (DFT) 19, 22–24, 26, 29, 35, 91
 devolatilization 8
 (1,4)-dimethoxy-β-D-glucopyranose 27
 dispersion corrected DFT (DFT-D) 26
 dodecyl benzenesulfonic acid (DBSA) 115–116
 doping pseudocapacitance 79–80
 drying 8, 59, 82, 190–192, 194, 267, 290–292, 311

e
 EDTA-citrate complexing (EDTA-CA) method 171
 electric double layer capacitors (EDLC) 114, 141, 189, 302
 carbon materials for
 chemical activation 17–18
 hybrid supercapacitors (HSC) 19
 physical activation 16–17
 pseudocapacitors 18–19
 Gouy–Chapman model 15
 Helmholtz model 14–15
 molecular dynamics (MD) 34–35
 Stern model 15–16
 electric double-layer (EDL) model 34, 79
 electrocatalyst 226
 electrochemical double-layer capacitors (EDLC) 188, 246, 289, 299
 combined electrode for 60–63
 electrode fabrication method 57–60
 electrochemical impedance spectroscopy (EIS) 161, 235–236, 248, 266, 294, 311
 electrode fabrication method 57–60
 electrode materials
 energy density 249
 mixed transition metal oxides
 metal cobaltite 263–266
 metal molybdenats 270–271
 metal phosphates 270
 metal tungstate 266
 metal vanadates 266–269
 properties 249
 transition metal oxides
 Bi₂O₃ 260–263
 Co₃O₄ 254
 iron oxides 256–258
 MnO₂ 251–253
 MoO₂/MoO₃ 254–256
 NiO 253–254
 RuO₂ 250–251, 252
 SnO₂ 256
 WO₃ 259–260
 electrolytic capacitors 116, 289, 303
 electrolytic mobility 166
 electroplating 255
 electrospun approach 152
 energy distribution spectroscopy (EDS) analysis 215, 227, 230–231
 exfoliation process 301–302
Index

faradaic supercapacitor 174
faradic charge transfer 79, 189
fast Fourier transform (FFT) 32

galactomannans 3
galvanostatic charge–discharge (GCD) 86, 154–156, 174, 216, 234, 236, 291, 311–312, 320
Goldschmidt relation 134
Goldschmidt tolerance factor 136–137
Gouy–Chapman model 15
Grass lignin 5

hardwood lignin 5
Helmholtz model 14, 15

hemicellulose 1–7, 10, 25, 31–32, 34, 285, 290
hollow carbon spheres (HCS) 226, 231–233, 236–238, 252
hybrid capacitors 246
hybrid organic-inorganic nanocomposites 188
hybrid supercapacitors (HSC) 18–19, 209–218, 289
hydrothermal method 97, 174, 191–192, 251, 256, 266, 271
3 hydroxycinnamyl alcohols 20

imidazolium chloride anions 27
in situ polymerization method 212, 217
insulator-metal transition 131
intercalation elements 162
intercalation oxygen ions 167
intercalation pseudocapacitance 79–80
intermediate pyrolysis 11
International Energy Agency (IEA) 80
intrinsically conducting polymers (ICP) 300
iron hydroxide 89–91
iron oxides 90, 256–258, 314, 316
Klason lignin 5
kraft lignin 5
lattice distortion 152–153, 156, 160–161, 175, 309
Lennard–Jones (LJ) function 25, 144
Li battery technology 13
Li-air batteries 226
lignin 31
computational approaches
 CHARMM potential 24
 COMPASS 25
 DFT methodologies 22
 3 hydroxycinnamyl alcohols 20
 interactions lignin-cellulose 24
 intermolecular interaction 22
 lignin molecular surfaces 24
 MD simulations 22, 24
 molecular model 25
 pyrolysis-simulated molecular dynamics 26–31
 solvation effects 19
 Grass lignin 5
 hardwood lignin 5
 Klason lignin 5
 Kraft lignin 5
 molecular model of 27
 Soda lignin 6
 softwood lignin 5
 sulphite lignin 5–6
 lignin carbohydrate complex (LCC) 25
 lignin polymerization 31
 lignin spirodienone 30
 lignocellulosic biomass
 cellulose 1–2
 hemicellulose 2–3
Index

m
manganese hydroxide 91
metal cobaltite 263–266, 271
metal molybdates 270–271
metal phosphates 270–271
metal tungstate 266
metal vanadates 266–269
metal–oxygen bond 161–162
methanation reaction 8
1-(4-methoxyphenyl)-2-methoxyethanol 27
microwave annealing
graphene oxide/polyaniline composite
electrochemical analysis 310–313
microwave treatment, effects of
309–310
synthesis of 307
graphene oxide/polypyrrole composite
electrochemical analysis 318–320
microwave treatment 317–318
pseudocapacitance 313
pyrrole monomer 314
synthesis of 316–317
microwave assisted graphene based
conducting polymer materials
EDLCs 302
microwave annealing and impacts
305–320
pseudocapacitor 302–304
microwave heating process 301
microwave irradiation 233, 301–302,
305–306, 308, 317
microwave treatment 301, 305–306,
308–313, 315–321
EDLCs 302
MnO₂ 91, 187–192, 195, 251–253, 307,
317
MnO₂ synthesis 191
molecular dynamics (MD) 34
simulations 22, 26–31
monolignol orientation 24
monoxide manganese oxide (6-MnO₃)
91, 226, 231–233, 236–238
multiwall carbon nanotubes (MWCNT)
207–208, 245

n
nanocatalyst 226
nanomaterials 54, 67–70, 72, 118,
209–210, 213, 225–239, 295, 309,
321
nanoporous carbons 13–19, 31–33,
56–57, 61, 63, 210, 290
nanotubes 67–70, 118, 210, 245, 254,
271, 308, 314–316
NH nanosheet morphology 86
nickel hydroxide (NH) 81–86
nucleation 214, 259, 270, 306, 315

o
oleylamine 83
organic hybrid perovskites 137
organic-inorganic nanocomposites 188
oxidation 8–9, 81–82, 89, 93, 114–116,
143, 154–156, 162, 167, 206,
217, 245, 254–255, 258–260,
301, 319
oxygen intercalation mechanism 142,
153

p
PANI/VA-CNTs nanocomposite electrode
films 211
perovskites
 capacitance performance
 A-site elements 152–162
 ABO₃ perovskites 142–152
 B-site elements 162–168
cation and anion deficient perovskite
 structures 137–140
halide double perovskites 134–137
organic-inorganic hybrid perovskites
 properties 132
SCM perovskite 167
soichiometry perovskite structure
 132–134
petroleum asphalt 28
phenethyl phenyl ether (PPE) 23
phenol resin molecule 29
plasma spray 255, 256
poly (3,4-ethylenedioxythiphene) (PEDOT) 206
polyaniline (PANI) 206, 213, 301
carbon precursor 117
elastic super capacitors 117–118
electro-chemical capacitors (ECs) 113
electrode discharge profile 118
electrolytic capacitors 116
high-rate super capacitors 116
mechanism 115
significance and role of 118–121
smart super capacitors 116–117
superficial electro-polymerization 113
polymer gel electrolyte 300
polypyrrole (PPy) 206, 301, 313–317
polystyrene (PS) spheres 190
carbon polypyrrole 114, 205, 301, 303, 306
polyvinylidene difluoride (PVDF) 63, 194, 236, 292, 311
pore size distribution (PSD) 16, 33, 34, 159, 262, 309, 317, 318
porous Carbon-Manganese Dioxide 290
Pr₆O₁₁/Mn₃O₄ nanocomposites 192–193
Pr₆O₁₁ nanoparticle synthesis 191
pseudo capacitance behaviour 152
pseudo capacitors 18–19, 114, 121, 122, 188, 189, 225, 245, 246, 248, 249, 259, 289, 299, 302–304
pseudo-capacitance behavior 142, 152, 217, 258
pseudo-capacitance electrode materials 141
pseudo-capacitive materials 18, 141, 213, 306, 314
pseudo-capacitive electrodes 80
pseudo-capacitive mechanism 79
pyrolysis-simulated molecular dynamics 26–31

q
quantum nuclear effects 29

r
radial distribution functions (RDF) 32–34
rechargeable batteries 13, 55–56, 71
redox pseudocapacitance 79–80
RuO₂ 250–251

S
Sacccharum Officinarum (Sugar cane) bagasse ash (SCBA)
activated carbon 291–292
advantageous utilizations 287
applications of 287–289
carbon aerogel 290–291
chemical composition 286–287
components of 285
generation process and utilization 286
hydrothermally treated and activated carbon 292
self-consistent charge density functional method (SCC-DFTB) 28, 29
single-wall carbon nanotubes (SWCNT) 207, 208
slow pyrolysis 11–12
small-angle neutron scattering (SANS) 24
soda lignin 6
sodium dodecyl sulfate (SDS) 265
softwood lignin 5, 24
sol-gel assisted electrospinning method 153
sol-gel methods 142, 153, 156, 162, 191, 194, 255, 256, 263
solar pyrolysis 12–13
spirodienone lignin 31
sputtering 254–256
Stern model 15, 79
sulfonated graphene 212, 213, 304, 315
sulphite lignin 5
supercapacitor electrodes 3, 14, 16, 34, 157
supercapacitors (SCs)
advantages 188
applications for 70–72
applications of 187
back-up memory systems 187
supercapacitors (SCs) (contd.)

battery applications 189
binary and ternary hydroxides 96–101
classification 188
conducting polymers 205–218
CoNi2S4 ultrathin nanosheets 232–234
EDLC 14–16
electrochemical performance 234–237
history of 14
hybrid electric vehicles 187
improved composite electrode for 63
inorganic supercapacitors
Fe3O4 synthesis 194
homogeneous core-shell materials 194
metal oxides 190–191
Mn2O4 nanoparticle 191–192
MnO2
SWNT composites 191
MnO2 synthesis 191
Pr6O11 nanoparticle synthesis 191
Pr6O11/Mn3O4 nanocomposite 192–194
RuO2/CNTs composite 194
V2O5 synthesis 194
Li battery 13
metal oxides
electrochemical measurements 247–248
electrode materials 249
δ-MnO2/HCS
fabrication of 231–232
synthesis of 232
nanocarbon structures 31–35
nanotubes and graphene 67–69
organism based materials 289–295
perovskites 131–175
polyaniline based materials 113–122
portable electronic devices 187
and rechargeable batteries 55–56
ultrasound 69–70

NiO/NF synthesis
2D ZnCo2O4/NF Nanoflake structures 227–229
preparation of 227
unary metal hydroxides
cadmium hydroxide 91–93
cobalt hydroxide 86–89
iron hydroxide 89–91
manganese hydroxide 91
nickel hydroxide (NH) 81–86
ZnWO4 nanoparticles 229–231
superionic conductors 54

Teflon emulsion 57, 59, 60, 64, 65, 72
thermochemical processes
gasification
mechanism 8–9
hydrothermal processing (HP) 7
conversion of carbohydrates 7
conversion of lignin 7
pyrolysis
fast pyrolysis 10–11
intermediate pyrolysis 11
slow pyrolysis 11–12
solar pyrolysis 12–13
transition metal oxides 19, 141, 190, 226, 245, 250–263, 270, 272
transition metal oxides (TMOs) 19, 114, 141, 190, 225, 226, 245, 250–272
triple transition metals (TMOs) 114, 225

ultrasound 55, 69–70
underpotential deposition
pseudocapacitance 79, 80

vacuum evaporation 255, 256
vanadium oxides 258

water gas-shift reaction 8
wind energy 303