Contents

Preface xi

1 Lignin-Derived Materials for Supercapacitors 1
 Jesús Muñiz, Ana K. Cuestas-Gallegos, Miguel Robles, Alfredo Guillén-López, Diego R. Lobato-Peralta, and Jojhar E. Pascoe-Sussoni
 1.1 Lignocellulosic Biomass Conversion to Value-Added Products 1
 1.1.1 Cellulose 1
 1.1.2 Hemicellulose 2
 1.1.3 Lignin 4
 1.2 Production of Carbon Materials by Thermochemical Processes 6
 1.2.1 Hydrothermal Processing 7
 1.2.1.1 Hydrothermal Processing Mechanism 7
 1.2.2 Gasification 7
 1.2.2.1 Lignocellulosic Biomass Gasification Mechanism 8
 1.2.3 Pyrolysis 9
 1.2.3.1 Lignocellulosic Biomass Pyrolysis 9
 1.2.3.2 Fast Pyrolysis 10
 1.2.3.3 Intermediate Pyrolysis 11
 1.2.3.4 Slow Pyrolysis 11
 1.2.4 Solar Pyrolysis 12
 1.3 Nanoporous Carbon Obtained from Biomass for SC Applications 13
 1.3.1 Supercapacitors 13
 1.3.1.1 Electric Double-Layer Capacitors (EDLCs) 14
 1.3.2 Carbon Materials for EDLC 16
 1.3.2.1 Physical Activation 16
 1.3.2.2 Chemical Activation 17
 1.3.2.3 Pseudocapacitors 18
 1.3.2.4 Hybrid Supercapacitors 19
 1.4 Computational Simulation of Nanocarbon Structures from Lignin-Derived Materials with Potential Application in Energy Storage Devices 19
 1.4.1 Computational Study of Lignin from Different Computational Approaches 19
Contents

1.4.2 Computational Studies of Lignin Through Pyrolysis-Simulated Molecular Dynamics 26
1.5 Tailoring Nanocarbon Structures to Enhance the Performance of Electrodes in Supercapacitors 31
1.5.1 MD to Aid the Design of EDLCs 34
1.6 Perspectives for Future Development 35
Acknowledgments 36
References 36

2 Some Aspects of Preparations and Applications of Electrochemical Double-Layer Capacitors (Supercapacitors) 53
Aleksandr E. Kolosov, Volodymyr Y. Izotov, Elena P. Kolosova, Volodymyr V. Vanin, and Anish Khan
2.1 Introduction 53
2.2 Supercapacitors and Rechargeable Batteries 55
2.3 Combined Electrodes for Double Electrochemical Layer Capacitors 56
2.3.1 Brief State-of-the-Art Analysis Regarding the Technical Means of Manufacturing Electrodes for Electrochemical Double-Layer Capacitor 56
2.3.2 Electrode Fabrication Method for Electrochemical Double-Layer Capacitors 57
2.3.3 Combined Electrode for Double Electrochemical Layer Capacitors 60
2.3.4 Improved Composite Electrode for Supercapacitors 63
2.4 Prospective Carbon Nanomaterials for Manufacturing Electrodes of Supercapacitors: Nanotubes and Graphene 67
2.5 Using Ultrasound while Getting Supercapacitors 69
2.6 Some Perspective Applications for Supercapacitors 70
2.7 Conclusions 72
References 72

3 Metal Hydroxides for Supercapacitors 79
Viresh Kumar, Rigved Samant, Abu Faizal, and Himanshu S. Panda
3.1 Introduction 79
3.2 Unary Metal Hydroxides 81
3.2.1 Nickel Hydroxide (NH) 81
3.2.2 Cobalt Hydroxide 86
3.2.3 Iron Hydroxide 89
3.2.4 Manganese Hydroxide 91
3.2.5 Cadmium Hydroxide 91
3.2.6 Copper Hydroxide 93
3.3 Binary and Ternary Hydroxides 96
3.4 Summary 101
References 105
7 Conducting Polymer Carbon-Based Binary Hybrid for Supercapacitors 205
Rini Jain and Satyendra Mishra

7.1 Introduction 205

7.2 Conducting Polymers 206
7.2.1 Polyaniline (PANI) 206
7.2.2 Polypyrrole (PPy) 206
7.2.3 Poly(3,4-ethylenedioxythiphene) (PEDOT) 206

7.3 CP Application in Supercapacitors 206
7.3.1 Limitations of CP Electrode Supercapacitors 207

7.4 Carbonaceous Materials Used as Fillers for Conducting Polymers 207
7.4.1 Carbon Nanotubes 207
7.4.2 Carbon Fibers (CFs) 208
7.4.3 Graphene and Graphene Oxide (GO) 209
7.4.4 Reduced Graphene Oxide (RGO) 209

7.5 Nanocomposite Supercapacitor Application/Hybrid Supercapacitors 209
7.5.1 CP/CNT Nanocomposites 210
7.5.2 CPs/Graphene Composites 212
7.5.2.1 CPs/Graphene Oxide 213
7.5.2.2 CPs/Chemically Modified Graphene 214

7.6 Conclusions, Future Prospects, and Challenges 218

References 219

8 New Inorganic Nanomaterials for Supercapacitors 225
Mehmet H. Calimli, Gokcem Dasdemir, Anish Khan, and Fatih Sen

8.1 Introduction 225

8.2 Experimental 227
8.2.1 Synthesis of ZnCo$_2$O$_4$@NiO/NF 227
8.2.1.1 Preparation of Nickel Foam (NF) Substrate 227
8.2.1.2 Synthesis of 2D ZnCo$_2$O$_4$/NF Nanoflake Structures 227
8.2.2 Fabrication ZnWO$_4$ Nanoparticles 229
8.2.3 Procedure of Fabrication of δ-MnO$_2$/HCS 231
8.2.3.1 Fabrication of δ-MnO$_2$ 231
8.2.3.2 Synthesis of HCS 232
8.2.3.3 δ-MnO$_2$/HCS Synthesis 232
8.2.4 Procedure CoNi$_2$S$_4$ Ultrathin Nanosheets (Freestanding) Preparation 232
8.2.4.1 Preparation of Ni$_{0.75}$Co$_{0.25}$(OH)$_2$(CO$_3$)$_{0.125}$ Exhibiting Free Nanoscaled Sheets 232
8.2.4.2 Fabrication of CoNi$_2$S$_4$ Ultrathin Freestanding Nanosheets 233

8.3 Electrochemical Performance 234

8.4 Conclusion 237

References 239
9 Metal Oxides for Supercapacitors 245
Reza Ghaffari Adli, Yuanhai Su, Mir Ghasem Hosseini, and Abdollah Hajalilou

9.1 Introduction 245
9.2 Electrochemical Measurements 247
9.3 Characterization Methods of Electrode Materials 249
9.4 Electrode Materials 249
9.4.1 Transition Metal Oxides 250
9.4.1.1 RuO₂ 250
9.4.1.2 MnO₂ 251
9.4.1.3 NiO 253
9.4.1.4 Co₃O₄ 254
9.4.1.5 MoO₂/MoO₃ 254
9.4.1.6 SnO₂ 256
9.4.1.7 Iron Oxides 256
9.4.1.8 V₂O₅ 258
9.4.1.9 WO₃ 259
9.4.1.10 Bi₂O₃ 260
9.4.2 Mixed Transition Metal Oxides 263
9.4.2.1 Metal Cobaltite 263
9.4.2.2 Metal Tungstate 266
9.4.2.3 Metal Vanadates 266
9.4.2.4 Metal Phosphate 270
9.4.2.5 Metal Molybdates 270
9.5 Conclusion and Future Research 271
Acknowledgment 272
References 272

10 High-Surface Saccharum officinarum Based Materials for Supercapacitor Applications 285
Divya Velpula, Shilpa Chakra Chidurala, Rakesh Kumar Thida, and Shireesha Konda

10.1 Introduction 285
10.2 Chemical Composition of SCB and SCBA 286
10.3 Advantageous Utilizations of SCB and SCBA 287
10.4 Applications of SCB and SCBA 287
10.5 Organism-Based Materials as Supercapacitors 289
10.5.1 Synthesis of Carbon-Based Materials from Saccharum officinarum for Supercapacitor Applications 290
10.5.1.1 Carbon Aerogel 290
10.5.1.2 Activated Carbon 291
10.5.1.3 Hydrothermally Treated and Activated Carbon 292
10.6 Conclusion and Future Research 295
References 296
11 Microwave-Assisted Graphene-Based Conducting Polymer Materials for Supercapacitors 299

Senthil K. Kandasamy, Kavitha N. Singaram, Hemalatha Krishnamoorthy, Chandrasekaran Arumugam, Shanmugam Palanisamy, Kannan Kandasamy, Anish Khan, Abdullah M. Asiri, and Hurija D.-Cancar

11.1 Introduction 299
11.1.1 EDLCs 302
11.2 Composites 304
11.3 Microwave Annealing and Its Impacts 305
11.3.1 Graphene Oxide/Polyaniline Composite 306
11.3.1.1 Synthesis of Graphene Oxide/Polyaniline Composite 307
11.3.1.2 Microwave Annealing of Graphene Oxide/Polyaniline Composite 308
11.3.1.3 Effects of Microwave Treatment of Graphene Oxide/PANI and Feeding Ratio on Structural Properties 309
11.3.1.4 Effects of Microwave Treatment of Graphene Oxide/PANI and Feeding Ratio on Electrochemical Analysis 310
11.3.2 Graphene Oxide/Polypyrrole Composite 313
11.3.2.1 Synthesis of Graphene Oxide/Polypyrrole Nanocomposite 316
11.3.2.2 Microwave Annealing of Graphene Oxide/Polypyrrole Nanocomposite 317
11.3.2.3 Effects of Microwave Treatment of Graphene Oxide/PPy and Feeding Ratio on Structural Properties 317
11.3.2.4 Effects of Microwave Treatment of Graphene Oxide/PPy and Feeding Ratio on Electrochemical Analysis 318

11.4 Conclusions and Future Work 320
References 321

Index 327