Contents

1 Introduction: A Delicate Collection of Advances in Solar-to-Chemical Conversions 1
Hongqi Sun

2 Artificial Photosynthesis and Solar Fuels 7
Jun Ke
2.1 Introduction of Solar Fuels 7
2.2 Photosynthesis 8
2.2.1 Natural Photosynthesis 8
2.2.2 Artificial Photosynthesis 9
2.3 Principles of Photocatalysis 10
2.4 Products of Artificial Photosynthesis 13
2.4.1 Hydrocarbons 13
2.4.1.1 Methane (CH₄) 14
2.4.1.2 Methanol (CH₃OH) 18
2.4.1.3 Formaldehyde (HCHO) 20
2.4.1.4 Formic Acid (HCOOH) 22
2.4.1.5 C2 Hydrocarbons 25
2.4.1.6 Other Hydrocarbons 26
2.4.2 Carbon Monoxide (CO) 27
2.4.3 Dioxygen (O₂) 31
2.5 Perspective 34
Acknowledgments 36
References 36

3 Natural and Artificial Photosynthesis 41
Dimitrios A. Pantazis
3.1 Introduction 41
3.2 Overview of Natural Photosynthesis 43
3.3 Light Harvesting and Excitation Energy Transfer 44
3.4 Charge Separation and Electron Transfer 48
3.5 Water Oxidation 53
3.6	Carbon Fixation	61
3.7	Conclusions	63
	References	63

4	Photocatalytic Hydrogen Evolution	77
	Amanj Kheradmand, Yuxiang Zhu, Shengshen Gu and Yijiao Jiang	
4.1	Introduction	77
4.2	Fundamentals of Photocatalytic H₂ Evolution	79
4.3	Photocatalytic H₂ Evolution Under UV Light	82
4.3.1	Titanium Dioxide (TiO₂)-Based Semiconductors	82
4.3.2	Other Types of UV-Responsive Photocatalysts	87
4.4	Photocatalytic H₂ Evolution Under Visible Light	88
4.4.1	Carbon Nitride (C₃N₄)-Based Semiconductor	88
4.4.2	Other Types of Visible-Light-Responsive Photocatalysts	94
4.5	Photocatalytic H₂ Evolution Under Near-Infrared Light	95
4.6	Roles of Sacrificial Reagents and Reaction Pathways	99
4.7	Summary and Outlook	102
	References	103

5	Photoelectrochemical Hydrogen Evolution	107
	Zhiliang Wang and Lianzhou Wang	
5.1	Background of Photoelectrocatalytic Water Splitting	107
5.2	Mechanism of Charge Separation and Transfer	109
5.3	Strategy for Improving Charge Transfer	112
5.3.1	Improving the Charge Transfer in Continuous Film	113
5.3.2	Improving the Charge Transfer in Particulate Photoelectrodes	114
5.4	Strategy for Improving Electron–Hole Separation	116
5.4.1	Heterojunction Formation	116
5.4.2	Crystal Facet Control	117
5.4.3	Surface Passivation	118
5.5	Surface Cocatalyst Design	120
5.6	Unbiased PEC Water Splitting	122
5.7	Conclusion and Perspective	123
	References	124

6	Photocatalytic Oxygen Evolution	129
	Huayang Zhang, Wenjie Tian and Shaobin Wang	
6.1	Introduction	129
6.1.1	Configuration of Photocatalytic Water Oxidation	129
6.1.2	Mechanism, Thermodynamics, and Kinetics Toward Efficient Oxygen Evolution	130
6.2	Homogeneous Photocatalytic Water Oxidation	131
6.2.1	Molecular Complexes and Polyoxometalates	131
6.2.2	Mechanism Details and the Stability	135
6.3	Heterogeneous Photocatalytic Water Oxidation	137
Contents

6.3.1 Unique Properties of Nanosized Semiconductor System 138
- 6.3.1.1 Quantum Confinement 138
- 6.3.1.2 Localized Surface Plasmon Resonance (LSPR) 141
- 6.3.1.3 Surface Area and Exposed Facet-Enhanced Charge Transfer 142
- 6.3.2 Zero-Dimensional Semiconductor Materials for Photocatalytic Water Oxidation 143
 - 6.3.2.1 0D Metal Complexes and Nanoclusters 143
 - 6.3.2.2 Metal Oxide Quantum Dots and Nanocrystals 144
- 6.3.3 One-Dimensional Semiconductor Materials for Photocatalytic Water Oxidation 147
- 6.3.4 Two-Dimensional Semiconductor Materials for Photocatalytic Water Oxidation 149
 - 6.3.4.1 2D Metal Oxide Nanosheets for Photocatalytic Water Oxidation 149
 - 6.3.4.2 Layered Double Hydroxide (LDH) Nanosheets for Photocatalytic Water Oxidation 150
 - 6.3.4.3 Metal-Based Oxyhalide Semiconductors for Photocatalytic Water Oxidation 152
- 6.3.5 LDSemiconductor-Based Hybrids for Photocatalytic Oxygen Evolution 153
 - 6.3.5.1 1D-Based (0D/1D and 1D/1D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation 154
 - 6.3.5.2 2D-Based (2D/2D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation 155
 - 6.3.5.3 Metal-Free-Based Semiconductors for Water Oxidation 156
- 6.4 Catalytic Active Site–Catalysis Correlation in LDSemiconductors 156
- 6.5 Conclusions and Perspectives 157
- References 158

7 Photoelectrochemical Oxygen Evolution 163
 Fumiaki Amano

7.1 Introduction 163
7.2 Honda–Fujishima Effect 164
7.3 Factors Affecting the Photoanodic Current 165
7.4 Electrode Potentials at Different pH 168
7.5 Evaluation of PEC Performance 170
7.6 Flat Band Potential and Photocurrent Onset Potential 172
7.7 Selection of Materials 173
7.8 Enhancement of PEC Properties 175
 - 7.8.1 Nanostructuring and Morphology Control 176
 - 7.8.2 Donor Doping 178
 - 7.8.3 Modification of Photoanode Surface 180
 - 7.8.4 Electron-Conductive Materials 181
7.9 PEC Device for Water Splitting 182
7.10 Conclusions and Outlook 184
- References 185
8 Photocatalytic and Photoelectrochemical Overall Water Splitting

Nur Aqlili Riana Che Mohamad, Filipe Marques Mota and Dong Ha Kim

8.1 Introduction 189
8.2 Photocatalytic Overall Water Splitting 190
8.2.1 Principles and Mechanism 191
8.2.2 Key Performance Indicators 193
8.2.3 Materials for One-Step Photoexcitation Toward Overall Water Splitting 194
8.2.3.1 Semiconductors 194
8.2.3.2 Incorporation of Cocatalysts 204
8.2.3.3 Plasmonic Nanostructures 206
8.2.4 Hybrid Systems for Two-Step Photoexcitation Toward Overall Water Splitting 207
8.2.4.1 Z-Schemes 208
8.3 Photoelectrochemical Overall Water Splitting 213
8.3.1 Principles and Mechanism 215
8.3.2 Key Performance Indicators 215
8.3.3 Materials Design 216
8.3.3.1 Photoanode Materials 216
8.3.3.2 Photocathode Materials 219
8.3.4 Unassisted Photoelectrochemical Overall Water Splitting 221
8.3.4.1 Photoanode–Photocathode Tandem Cells 221
8.3.4.2 Photovoltaic–Photoelectrode Devices 225
8.4 Concluding Remarks and Outlook 230
Acknowledgments 231
References 231

9 Photocatalytic CO₂ Reduction

Maochang Liu, Guijun Chen, Boya Min, Jinwen Shi, Yubin Chen and Qibin Liu

9.1 Introduction 243
9.2 Principle of Photocatalytic Reduction of CO₂ 245
9.3 Energy and Mass Transfers in Photocatalytic Reduction of CO₂ 247
9.3.1 Energy Flow from the Concentrator to Reactor 249
9.3.2 Energy Flow on the Surface of the Photocatalyst 252
9.3.3 Mass Flow in CO₂ Photocatalytic Reduction 259
9.3.4 Product Selectivity in CO₂ Photocatalytic Reaction 262
9.4 Conclusions 265
Acknowledgments 266
References 266

10 Photoelectrochemical CO₂ Reduction

Zhongxue Yang, Hui Ning, Qingshan Zhao, Hongqi Sun and Mingbo Wu

10.1 Introduction 269
10.1.1 Introduction of Photoelectrocatalytic Reduction of CO₂ 269
10.1.2 Principles of Photoelectrocatalytic Reduction of CO₂ 270
10.1.3 System Configurations of Photoelectrocatalytic Reduction of CO₂ 270

10.2 PEC CO₂ Reduction Principles 272
10.2.1 Thermodynamics and Kinetics of CO₂ Reduction 272
10.2.2 Reaction Conditions 273
10.2.2.1 Reaction Temperature and Pressure 273
10.2.2.2 pH Value 274
10.2.2.3 Solvent 274
10.2.2.4 External Electrical Bias 274
10.2.3 Performance Evaluation of PEC CO₂ Reduction 275
10.2.3.1 Product Evolution Rate and Catalytic Current Density 275
10.2.3.2 Turnover Number and Turnover Frequency 275
10.2.3.3 Overpotential 275
10.2.3.4 Faradaic Efficiency 276

10.3 Application of Solar-to-Chemical Energy Conversion in PEC CO₂ Reduction 276
10.3.1 PEC CO₂ Reduction on Semiconductors 276
10.3.1.1 Oxide Semiconductors 277
10.3.1.2 Non-oxide Semiconductors 280
10.3.1.3 Chalcogenide Semiconductors 281
10.3.2 PEC CO₂ Reduction on Cocatalyst Systems 282
10.3.2.1 Metal Nanoparticles 283
10.3.2.2 Metal Complexes 284
10.3.3 PEC CO₂ Reduction on Hybrid Semiconductors 285
10.3.3.1 Conductive Polymers 286
10.3.3.2 Enzymatic Biocatalysts 287
10.3.3.3 Organic Molecules 287

10.4 Other Configurations for PEC CO₂ Reduction 289
10.5 Conclusion and Outlook 292

Acknowledgments 295
ConflictofInterest 295
References 295

11 Photocatalytic and Photoelectrochemical Nitrogen Fixation 301
Lei Shi and Hongqi Sun
11.1 Introduction 301
11.2 Fundamental Principles and Present Challenges 303
11.2.1 Principles in N₂ Reduction for NH₃ Production 303
11.2.2 Challenges for N₂ Reduction to NH₃ 305
11.3 Strategies for Catalyst Design and Fabrication 307
11.3.1 Defect Engineering 307
11.3.1.1 Vacancies 307
11.3.1.2 Heteroatom Doping 313
11.3.1.3 Amorphization 314
11.3.2 Structure Engineering 317
11.3.2.1 Morphology Regulation 317
11.3.2.2 Facet Control 321
11.3.3 Interface Engineering 322
11.3.4 Heterojunction Engineering 324
11.3.5 Co-catalyst Engineering 327
11.3.6 Biomimetic Engineering 330
11.4 Conclusions and Outlook 333
References 334

12 Photocatalytic Production of Hydrogen Peroxide Using MOF Materials 339
Xiaolang Chen, Yasutaka Kuwahara, Kohsuke Mori and Hiromi Yamashita
12.1 Introduction 339
12.2 Photocatalytic H₂O₂ Production Through Selective Two-Electron Reduction of O₂ Utilizing NiO/MIL-125-NH₂ 340
12.3 Two-Phase System Utilizing Linker-Alkylated Hydrophobic MIL-125-NH₂ for Photocatalytic H₂O₂ Production 346
12.4 Ti Cluster-Alkylated Hydrophobic MIL-125-NH₂ for Photocatalytic H₂O₂ Production in Two-Phase System 356
12.5 Conclusion and Outlooks 362
Reference 362

13 Photocatalytic and Photoelectrochemical Reforming of Methane 365
Jinqiang Zhang and Hongqi Sun
13.1 Introduction 365
13.2 Photo-Mediated Processes 367
13.3 Differences Between Photo-Assisted Catalysis and Thermocatalysis 369
13.3.1 Catalyst Involved 369
13.3.2 Reactors 370
13.3.3 Mechanism 371
13.3.4 Equations for Quantum Efficiency 373
13.4 Reactions of Methane Conversion via Photo-Assisted Catalysis 373
13.4.1 Methane Dry Reforming 374
13.4.2 Methane Steam Reforming 376
13.4.3 Methane Coupling 379
13.4.4 Methane Oxidation 381
13.4.5 Methane Dehydroaromatization 382
13.5 Conclusions and Perspectives 383
Acknowledgment 384
References 384
14 Photocatalytic and Photoelectrochemical Reforming of Biomass 389
Xiaoqing Liu, Wei Wei and Bing-Jie Ni
14.1 Introduction 389
14.2 Fundamentals of Photocatalytic and Photoelectrochemical Processes 391
14.2.1 Photocatalytic Process 391
14.2.2 Photoelectrochemical Process 392
14.3 Photocatalytic Reforming of Biomass 393
14.3.1 Photocatalytic Reforming of Lignin 393
14.3.2 Photocatalytic Reforming of Carbohydrates 397
14.3.3 Photocatalytic Reforming of Native Lignocellulose 401
14.3.4 Photocatalytic Reforming of Triglycerides and Glycerol 403
14.4 Photoelectrochemical Reforming of Biomass 406
14.4.1 Photoelectrochemical Conversion of Biomass to Produce Electricity 406
14.4.2 Photoelectrochemical Conversion of Biomass to Produce Hydrogen 410
14.4.3 Photoelectrochemical Conversion of Biomass to Produce Chemicals 410
14.5 Conclusion Remarks and Perspectives 412
Acknowledgments 413
References 413

15 Reactors, Fundamentals, and Engineering Aspects for Photocatalytic and Photoelectrochemical Systems 419
Boon-Junn Ng, Xin Ying Kong, Yi-Hao Chew, Yee Wen Teh and Siang-Piao Chai
15.1 Fundamental Mechanisms of Photocatalytic and PEC Processes 419
15.1.1 Rationales of Photocatalytic Systems 419
15.1.1.1 Photocatalytic Water Splitting 420
15.1.1.2 Photocatalytic CO₂ reduction 423
15.1.2 Rationales of PEC Systems 425
15.2 Reactor Design and Configuration 428
15.2.1 Reactors for Photocatalytic Systems 428
15.2.1.1 Reactors for Photocatalytic Water Splitting 428
15.2.1.2 Reactors for Photocatalytic CO₂ Reduction 432
15.2.2 Reactors for PEC Systems 434
15.3 Engineering Aspects of Photocatalytic and PEC Processes 436
15.3.1 Photocatalyst Sheets: Scaling-up of Photocatalytic Water Splitting 436
15.3.2 Monolithic Devices: Wireless Approach of PEC Reaction 441
15.4 Conclusions and Outlook 443
Acknowledgments 444
Contents

List of Abbreviations 444
References 445

16 Prospects of Solar Fuels 449
Hongqi Sun

Index 453