Contents

1	Introduction: A Delicate Collection of Advances in Solar-to-Chemical Conversions 1 Hongqi Sun
2	Artificial Photosynthesis and Solar Fuels 7
2.1	Introduction of Solar Fuels 7
2.2	Photosynthesis 8
2.2.1	Natural Photosynthesis 8
2.2.2	Artificial Photosynthesis 9
2.3	Principles of Photocatalysis 10
2.4	Products of Artificial Photosynthesis 13
2.4.1	Hydrocarbons 13
2.4.1.1	Methane (CH ₄) 14
2.4.1.2	Methanol (CH ₃ OH) 18
2.4.1.3	Formaldehyde (HCHO) 20
2.4.1.4	Formic Acid (HCOOH) 22
2.4.1.5	
2.4.1.6	Other Hydrocarbons 26
2.4.2	Carbon Monoxide (CO) 27
2.4.3	Dioxygen (O_2) 31
2.5	Perspective 34
	Acknowledgments 36
	References 36
3	Natural and Artificial Photosynthesis 41
	Dimitrios A. Pantazis
3.1	Introduction 41
3.2	Overview of Natural Photosynthesis 43
3.3	Light Harvesting and Excitation Energy Transfer 44
3.4	Charge Separation and Electron Transfer 48
3.5	Water Oxidation 53

vi	Contents	
	3.6	Carbon Fixation 61
	3.7	Conclusions 63
		References 63
	4	Photocatalytic Hydrogen Evolution 77
		Amanj Kheradmand, Yuxiang Zhu, Shengshen Gu and Yijiao Jiang
	4.1	Introduction 77
	4.2	Fundamentals of Photocatalytic H ₂ Evolution 79
	4.3	Photocatalytic H ₂ Evolution Under UV Light 82
	4.3.1	Titanium Dioxide (TiO ₂)-Based Semiconductors 82
	4.3.2	Other Types of UV-Responsive Photocatalysts 87
	4.4	Photocatalytic H ₂ Evolution Under Visible Light 88
	4.4.1	Carbon Nitride (C ₃ N ₄)-Based Semiconductor 88
	4.4.2	Other Types of Visible-Light-Responsive Photocatalysts 94
	4.5	Photocatalytic H ₂ Evolution Under Near-Infrared Light 95
	4.6	Roles of Sacrificial Reagents and Reaction Pathways 99
	4.7	Summary and Outlook 102
		References 103
	5	Photoelectrochemical Hydrogen Evolution 107
		Zhiliang Wang and Lianzhou Wang
	5.1	Background of Photoelectrocatalytic Water Splitting 107
	5.2	Mechanism of Charge Separation and Transfer 109
	5.3	Strategy for Improving Charge Transfer 112
	5.3.1	Improving the Charge Transfer in Continuous Film 113
	5.3.2	Improving the Charge Transfer in Particulate Photoelectrodes 114
	5.4	Strategy for Improving Electron–Hole Separation 116
	5.4.1	Heterojunction Formation 116
	5.4.2	Crystal Facet Control 117
	5.4.3	Surface Passivation 118
	5.5	Surface Cocatalyst Design 120
	5.6	Unbiased PEC Water Splitting 122
	5.7	Conclusion and Perspective 123 References 124
		References 124
	6	Photocatalytic Oxygen Evolution 129
		Huayang Zhang, Wenjie Tian and Shaobin Wang
	6.1	Introduction 129
	6.1.1	Configuration of Photocatalytic Water Oxidation 129
	6.1.2	Mechanism, Thermodynamics, and Kinetics Toward Efficient
		Oxygen Evolution 130
	6.2	Homogeneous Photocatalytic Water Oxidation 131
	6.2.1	Molecular Complexes and Polyoxometalates 131
	6.2.2	Mechanism Details and the Stability 135
	6.3	Heterogeneous Photocatalytic Water Oxidation 137

6.3.1	Unique Properties of Nanosized Semiconductor System 138
6.3.1.1	Quantum Confinement 138
6.3.1.2	Localized Surface Plasmon Resonance (LSPR) 141
6.3.1.3	Surface Area and Exposed Facet-Enhanced Charge Transfer 142
6.3.2	Zero-Dimensional Semiconductor Materials for Photocatalytic
	Water Oxidation 143
6.3.2.1	0D Metal Complexes and Nanoclusters 143
6.3.2.2	Metal Oxide Quantum Dots and Nanocrystals 144
6.3.3	One-Dimensional Semiconductor Materials for Photocatalytic
	Water Oxidation 147
6.3.4	Two-Dimensional Semiconductor Materials for Photocatalytic
	Water Oxidation 149
6.3.4.1	2D Metal Oxide Nanosheets for Photocatalytic Water Oxidation 149
6.3.4.2	Layered Double Hydroxide (LDH) Nanosheets for Photocatalytic
	Water Oxidation 150
6.3.4.3	Metal-Based Oxyhalide Semiconductors for Photocatalytic Water
	Oxidation 152
6.3.5	LD Semiconductor-Based Hybrids for Photocatalytic Oxygen
	Evolution 153
6.3.5.1	1D-Based (0D/1D and 1D/1D) Semiconductor Hybrids for Enhanced
	Photocatalytic Water Oxidation 154
6.3.5.2	2D-Based (2D/2D) Semiconductor Hybrids for Enhanced Photocatalytic
	Water Oxidation 155
6.3.5.3	Metal-Free-Based Semiconductors for Water Oxidation 156
6.4	Catalytic Active Site–Catalysis Correlation in LD Semiconductors 156
6.5	Conclusions and Perspectives 157
	References 158
7	Photoelectrochemical Oxygen Evolution 163
	Fumiaki Amano
7.1	Introduction 163
7.2	Honda–Fujishima Effect 164
7.3	Factors Affecting the Photoanodic Current 165
7.4	Electrode Potentials at Different pH 168
7.5	Evaluation of PEC Performance 170
7.6	Flat Band Potential and Photocurrent Onset Potential 172
7.7	Selection of Materials 173
7.8	Enhancement of PEC Properties 175
7.8.1	Nanostructuring and Morphology Control 176
7.8.2	Donor Doping 178
7.8.3	Modification of Photoanode Surface 180
7.8.4	Electron-Conductive Materials 181
7.9	PEC Device for Water Splitting 182
7.10	Conclusions and Outlook 184
	References 185

8	Photocatalytic and Photoelectrochemical Overall Water
	Splitting 189
	Nur Aqlili Riana Che Mohamad, Filipe Marques Mota and Dong Ha Kim
8.1	Introduction 189
8.2	Photocatalytic Overall Water Splitting 190
8.2.1	Principles and Mechanism 191
8.2.2	Key Performance Indicators 193
8.2.3	Materials for One-Step Photoexcitation Toward Overall Water
	Splitting 194
8.2.3.1	Semiconductors 194
8.2.3.2	Incorporation of Cocatalysts 204
8.2.3.3	Plasmonic Nanostructures 206
8.2.4	Hybrid Systems for Two-Step Photoexcitation Toward Overall
	Water Splitting 207
8.2.4.1	Z-Schemes 208
8.3	Photoelectrochemical Overall Water Splitting 213
8.3.1	Principles and Mechanism 215
8.3.2	Key Performance Indicators 215
8.3.3	Materials Design 216
8.3.3.1	Photoanode Materials 216
8.3.3.2	Photocathode Materials 219
8.3.4	Unassisted Photoelectrochemical Overall Water Splitting 221
8.3.4.1	Photoanode–Photocathode Tandem Cells 221
8.3.4.2	Photovoltaic–Photoelectrode Devices 225
8.4	Concluding Remarks and Outlook 230
	Acknowledgments 231
	References 231
_	
9	Photocatalytic CO ₂ Reduction 243
	Maochang Liu, Guijun Chen, Boya Min, Jinwen Shi, Yubin Chen and
	Qibin Liu
9.1	Introduction 243
9.2	Principle of Photocatalytic Reduction of CO ₂ 245
9.3	Energy and Mass Transfers in Photocatalytic Reduction of CO ₂ 247
9.3.1	Energy Flow from the Concentrator to Reactor 249
9.3.2	Energy Flow on the Surface of the Photocatalyst 252
9.3.3	Mass Flow in CO ₂ Photocatalytic Reduction 259
9.3.4	Product Selectivity in CO ₂ Photocatalytic Reaction 262
9.4	Conclusions 265
	Acknowledgments 266
	References 266
10	Photoelectrochemical CO Peduction 260
10	Photoelectrochemical CO₂ Reduction 269 Zhongxue Yang, Hui Ning, Qingshan Zhao, Hongqi Sun and Mingbo Wu
10.1	Introduction 269
10.1	
10.1.1	Introduction of Photoelectrocatalytic Reduction of CO ₂ 269

10.1.2 10.1.3	Principles of Photoelectrocatalytic Reduction of CO ₂ 270 System Configurations of Photoelectrocatalytic Reduction
	of CO ₂ 270
10.2	PEC CO ₂ Reduction Principles 272
10.2.1	Thermodynamics and Kinetics of CO ₂ Reduction 272
10.2.2	Reaction Conditions 273
10.2.2.1	Reaction Temperature and Pressure 273
10.2.2.2	pH Value 274
10.2.2.3	Solvent 274
10.2.2.4	External Electrical Bias 274
10.2.3	Performance Evaluation of PEC CO ₂ Reduction 275
10.2.3.1	Product Evolution Rate and Catalytic Current Density 275
10.2.3.2	Turnover Number and Turnover Frequency 275
10.2.3.3	Overpotential 275
10.2.3.4	Faradaic Efficiency 276
10.3	Application of Solar-to-Chemical Energy Conversion in PEC ${\rm CO}_2$ Reduction 276
10.3.1	PEC CO ₂ Reduction on Semiconductors 276
10.3.1.1	Oxide Semiconductors 277
10.3.1.2	Non-oxide Semiconductors 280
10.3.1.3	Chalcogenide Semiconductors 281
10.3.2	PEC CO ₂ Reduction on Cocatalyst Systems 282
10.3.2.1	Metal Nanoparticles 283
10.3.2.2	Metal Complexes 284
10.3.3	PEC CO ₂ Reduction on Hybrid Semiconductors 285
10.3.3.1	Conductive Polymers 286
10.3.3.2	Enzymatic Biocatalysts 287
10.3.3.3	Organic Molecules 287
10.4	Other Configurations for PEC CO ₂ Reduction 289
10.5	Conclusion and Outlook 292
	Acknowledgments 295
	Conflict of Interest 295
	References 295
11	Photocatalytic and Photoelectrochemical Nitrogen
	Fixation 301
	Lei Shi and Hongqi Sun
11.1	Introduction 301
11.2	Fundamental Principles and Present Challenges 303
11.2.1	Principles in N ₂ Reduction for NH ₃ Production 303
11.2.2	Challenges for N ₂ Reduction to NH ₃ 305
11.3	Strategies for Catalyst Design and Fabrication 307
11.3.1	Defect Engineering 307
11.3.1.1	Vacancies 307
11.3.1.2	Heteroatom Doning 313

ĸ	Contents

11.3.1.3	Amorphization 314
11.3.2	Structure Engineering 317
11.3.2.1	Morphology Regulation 317
11.3.2.2	Facet Control 321
11.3.3	Interface Engineering 322
11.3.4	Heterojunction Engineering 324
11.3.5	Co-catalyst Engineering 327
11.3.6	Biomimetic Engineering 330
11.4	Conclusions and Outlook 333
	References 334
12	Photocatalytic Production of Hydrogen Peroxide Using MOF Materials 339
	Xiaolang Chen, Yasutaka Kuwahara, Kohsuke Mori and Hiromi Yamashita
12.1	Introduction 339
12.2	Photocatalytic H ₂ O ₂ Production Through Selective Two-Electron
	Reduction of O ₂ Utilizing NiO/MIL-125-NH ₂ 340
12.3	Two-Phase System Utilizing Linker-Alkylated Hydrophobic
	MIL-125-NH ₂ for Photocatalytic H ₂ O ₂ Production 346
12.4	Ti Cluster-Alkylated Hydrophobic MIL-125-NH ₂ for Photocatalytic
	H_2O_2 Production in Two-Phase System 356
12.5	Conclusion and Outlooks 362
	Reference 362
13	Photocatalytic and Photoelectrochemical Reforming of
	Methane 365
	Jinqiang Zhang and Hongqi Sun
13.1	Introduction 365
13.2	Photo-Mediated Processes 367
13.3	Differences Between Photo-Assisted Catalysis and
13.3	Thermocatalysis 369
13.3.1	Catalyst Involved 369
13.3.2	Reactors 370
13.3.3	Mechanism 371
13.3.4	Equations for Quantum Efficiency 373
13.4	Reactions of Methane Conversion via Photo-Assisted Catalysis 373
13.4.1	Methane Dry Reforming 374
13.4.1	
	<u> </u>
13.4.3	8
13.4.4	Methane Oxidation 381 Methane Debuggerometization 383
13.4.5	Methane Dehydroaromatization 382
13.5	Conclusions and Perspectives 383
	Acknowledgment 384 References 384
	Neierences 204

14	Photocatalytic and Photoelectrochemical Reforming of
	Biomass 389
	Xiaoqing Liu, Wei Wei and Bing-Jie Ni
14.1	Introduction 389
14.2	Fundamentals of Photocatalytic and Photoelectrochemical
1401	Processes 391
14.2.1	Photocatalytic Process 391
14.2.2	Photoelectrochemical Process 392
14.3	Photocatalytic Reforming of Biomass 393
14.3.1	Photocatalytic Reforming of Lignin 393
14.3.2	Photocatalytic Reforming of Carbohydrates 397
14.3.3	Photocatalytic Reforming of Native Lignocellulose 401
14.3.4	Photocatalytic Reforming of Triglycerides and Glycerol 403
14.4	Photoelectrochemical Reforming of Biomass 406
14.4.1	Photoelectrochemical Conversion of Biomass to Produce
	Electricity 406
14.4.2	Photoelectrochemical Conversion of Biomass to Produce
	Hydrogen 410
14.4.3	Photoelectrochemical Conversion of Biomass to Produce
	Chemicals 410
14.5	Conclusion Remarks and Perspectives 412
	Acknowledgments 413
	References 413
15	Reactors, Fundamentals, and Engineering Aspects for
	Photocatalytic and Photoelectrochemical Systems 419
	Boon-Junn Ng, Xin Ying Kong, Yi-Hao Chew, Yee Wen Teh and Siang-Piac
	Chai
15.1	Fundamental Mechanisms of Photocatalytic and
	PEC Processes 419
15.1.1	Rationales of Photocatalytic Systems 419
15.1.1.1	Photocatalytic Water Splitting 420
15.1.1.2	Photocatalytic CO ₂ reduction 423
15.1.2	Rationales of PEC Systems 425
15.2	Reactor Design and Configuration 428
15.2.1	Reactors for Photocatalytic Systems 428
15.2.1.1	Reactors for Photocatalytic Water Splitting 428
15.2.1.2	Reactors for Photocatalytic CO ₂ Reduction 432
15.2.2	Reactors for PEC Systems 434
15.3	Engineering Aspects of Photocatalytic and PEC Processes 436
15.3.1	Photocatalyst Sheets: Scaling-up of Photocatalytic Water Splitting
	436
15.3.2	Monolithic Devices: Wireless Approach of PEC Reaction 441
15.4	Conclusions and Outlook 443
	Acknowledgments 444

List of Abbreviations 444 References 445

16 **Prospects of Solar Fuels** 449 Hongqi Sun

Index 453