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Introduction to Optimization Modeling for Petroleum
Refineries

1.1 Background

The topological optimization problem for determining an optimal configuration of
a petroleum refinery can be addressed by a logic-based modeling approach within
a mixed-integer superstructure optimization framework. The focus lies in investi-
gating and advancing existing optimization approaches and strategies of employing
logical constraints to conceptual process synthesis and design problems within the
framework of conventional mixed-integer linear programming (MILP) (Nemhauser
and Wolsey 1988) and alternate generalized disjunctive programming (GDP) (Gross-
mann and Trespalacios 2013). This work attempts to address the following consid-
erations:

● How the formulation of design specifications in a synthesis problem can be
accomplished using logical constraints in a mixed-logical-and-integer optimiza-
tion model to enrich the problem representation by way of incorporating past
design experience, engineering knowledge, and heuristics;

● How structural specifications on the interconnectivity relationships by space
(states) and function (tasks) should be properly formulated using logical
constraints within a mixed-integer optimization model.

The resulting modeling technique is illustrated on a numerical example, which is
based on a case study involving alternative processing routes of naphtha in a refinery.

Process synthesis or conceptual process design is concerned with the identification
of the best flowsheet structure to perform a given task. The following variants are
mainly available in the literature to address this class of problem: (1) the heuristics
method, notably the hierarchical decomposition of design decisions procedure; (2)
the technique based on thermodynamic targets and physical insights as exemplified
by pinch analysis; and (3) the algorithmic approach that utilizes optimization based
on the construction of a superstructure that seeks to represent all feasible process
flowsheets (Seider et al. 2009).

The intricate complexities associated with process synthesis problem in general
and the refinery design problem in specific necessitates the development and
implementation of a systematic and automated approach that efficiently and rigor-
ously integrates the elaborate interactions involving the design decision variables.
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2 1 Introduction to Optimization Modeling for Petroleum Refineries

This work aims to extend the superstructure optimization-based approach of using
logical constraints (Raman and Grossmann 1991, 1992, 1993a,b) within a MILP
to incorporate qualitative design knowledge based on engineering experience and
heuristics in modeling the major process flows in a refinery. These constraints adopt
discrete integer decision variables of the binary 0–1 type to model the existence of
a refinery process unit and the associated stream piping interconnections (which
are effectively pipelines) in a network structure, in which a value of one for a 0–1
variable designates that a unit is present in the optimal structure while the converse
is true for a value of zero.

Our work serves to further substantiate that the use of 0–1 decision variables offers
a more natural and powerful modeling approach compared to the conventional lin-
ear programming technique that employs only continuous decision variables. It also
affords the convenience of representing fixed-cost charges in the objective function
formulation. A variation in the use of integer variables in optimization model for-
mulations has been widely reported (Williams 1999).

Optimization is the core objective of chemical process design as exemplified
through the synthesis of petroleum refinery configurations (Khor and Varvarezos
2017). Selecting the best among a set of possible solutions requires good engineering
judgment to critically analyze the process with respect to the desired performance
objectives. It is crucial to identify and strike a balance between the competing
objectives of realizing the largest production, the greatest profit, the minimum
cost, the least energy usage, and so on. This ensures improved plant performance
through improved yields of valuable products, higher processing rates, longer time
between shutdowns, and reduced maintenance costs. In order to find the best
solution within the given constraints and flexibilities, a trade-off usually exists
between capital and operating costs.

Although the design stage only takes up about 2% or 3% of a project expenditure,
decisions made during this phase have an immense impact on plant economic per-
formance because approximately 80% of the capital and operating expenses of the
final plant are fixed during the design stage (Biegler et al. 1997). Hence, the necessity
of developing systematic methods in chemical process design has led to two major
strategies for process synthesis in determining an optimal configuration of a flow-
sheet and its operating condition.

In the first strategy, the problem can be solved in a sequential form involving
decomposition, fixing some elements in the flowsheet, and then using heuristic
rules to determine changes in the flowsheet that may lead to an improved solution.
An example of such a strategy is the sequential hierarchical decomposition strategy
by Douglas (1985, 1988). However, the sequential nature of the decisions and the
heuristic rules that are used can lead to suboptimal designs. Douglas claims that only
1% of all designs are ever implemented in practice and hence this screening proce-
dure avoids meticulous evaluation of most alternatives. It is not possible to rigorously
produce an optimal design because the sequential nature of flowsheet synthesis
cannot take all interactions among the design variables into consideration. Further-
more, the exponential number of possible topologies coupled with the multitude of
process technology options decrease the chances of realizing the best design.
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The second strategy that can be applied to solve a process synthesis problem is
based on simultaneous optimization using mathematical programming (Grossmann
1996). This strategy requires the postulation of a superstructure, which includes a
set of equipment that are potentially selected in the final flowsheet and their inter-
connections. The equations pertaining to the equipment and their interconnectivity
in addition to the operating condition constraints are formulated in an optimiza-
tion model with an objective function that typically minimizes cost or maximizes
profit. In particular, such a formulation requires discrete variables to represent the
choices of equipment besides continuous variables on the process parameters (e.g.
flow rates) with which the model becomes a mixed-integer linear or nonlinear pro-
gram (MILP or MINLP). In this regard, Grossmann (1996) states that an advantage
of mathematical programming strategy is that they can perform simultaneous opti-
mization of the configuration (as described by the discrete decisions) and operating
conditions (as described by the continuous decisions).

Designing a petroleum refinery configuration is challenging and complex. Many
factors such as design specifications and structural specifications have to be consid-
ered and incorporated at the conceptual design stage to arrive at an optimum con-
figuration of the refinery flowsheet (Khor et al. 2011). Hierarchical decomposition
uses heuristics, shortcut design procedures, and engineering experience to develop
an initial base case, but doing so is possibly time-consuming, whereas the result
may not necessarily guarantee an optimal solution. Thus, developing or adopting
an automated systematic procedure in the refinery configuration design endeavor
can significantly improve the decision-making process. The task can be achieved via
optimization or mathematical programming approach by representing the problem
through a superstructure and formulating the corresponding optimization model,
which is solved to obtain an optimal configuration based on inputs of crude oils to
be processed and final products to meet market demands while complying with the
requisite constraints.

Figure 1.1 shows the rapidly rising downstream capital cost index from 2005 to
2019. Thus, an automated approach that can guarantee an optimal refinery design is
increasingly important and sought after in the face of increased capital costs, higher
energy costs, and depleting resources. At the same time, heightened fuel consump-
tion leads to raised demand for petroleum products despite tight supplies with the
consequential need to construct new grassroots petroleum refineries.

With increasingly stricter environmental regulations and emphasis on clean fuels,
new refineries need to adhere to narrower operating margins and more stringent
product specifications. This situation adds to the degree of complexity in design-
ing refineries, which at present is already time-consuming with the intricacies of
the interplay among the various factors including public opinions and permitting
processes. All these considerations give rise to an exponential number of possible
refinery topologies or configurations that can adequately meet current economic,
operating, and environmental requirements.

We consider the following superstructure optimization problem for a refinery
topology design. Given the following data: fixed production amounts of desired
products, available process units and ranges of their capacities, and cost of crude oil
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Figure 1.1 Downstream capital cost index. Source: Data taken from Oil & Gas Journal
(Editorial) (2019).

and process units, we wish to determine an optimal configuration in terms of the
unit selection and sequencing as well as the operating levels.

This work aims to present a primer on superstructure optimization by emphasiz-
ing the following aspects:

● developing a superstructure representation for a refinery network topology with a
suitable level of detail;

● formulating models based on the superstructure representation by adopting two
mixed-integer optimization frameworks: MILP and GDP, which incorporate both
continuous and discrete decisions;

● solving the models using standard commercial off-the-shelf solvers enhanced with
tailored solution strategies;

● analyzing and interpreting the model solution in terms of practical real-world
applications.

A high-level view of the modeling approach adopted is shown in Figure 1.2.

1.2 Overview of Refining Processes

Petroleum products are made from crude oil. There are many types of crude oil
from many different sources around the world. The selection of the right crude oil is
a key part of the refining process. The decision as to what crude oil or combination
of crude oils to process depends on many factors including quality, availability,
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Figure 1.2 Flow chart on modeling methodology.
Develop superstructure

representation of alternatives
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Obtain optimal refinery
configuration/topology

volume, and price. Table 1.1 briefly describes functions of several major refinery
processes (Figure 1.3).

1.2.1 Atmospheric Crude Oil Distillation

The first stage of crude oil processing involves distillation or fractionation. The
crude oil is distilled into fractions according to boiling point to yield light-end
hydrocarbons (C1–C4), light naphtha, heavy naphtha, kerosene, diesel, and atmo-
spheric residual. Some of these broad cuts can be marketed directly, while others
require further processing in downstream units. Increased efficiency and reduced
costs are achieved if the crude oil is fractionated at essentially atmospheric pressure
followed by residue or bottoms fractionation using vacuum distillation (Figure 1.4).

Naphtha is a complex mixture of paraffins, naphthenes, and aromatics in the
range of five-to-twelve carbon molecules (C5–C12). Straight-run naphtha is obtained
directly from the atmospheric distillation unit. Light naphtha is the fraction
boiling from 30 to 90 ∘C and contains C5 and C6 hydrocarbons. Heavy naphtha is
the fraction boiling from 90 to 200 ∘C and contains C7–C9 hydrocarbons, which
is the favored feedstock to the catalytic reformer. Naphtha can also be sourced
from the processing of heavier crude fractions in visbreaker, catalytic cracker,
hydrocracker, and coker in which olefinic hydrocarbons are present (Speight 2011).

1.2.2 Hydroprocessing

Hydrotreatment is the conventional means for removing sulfur from petroleum
fractions. This process is important to avoid poisoning of the reformer catalyst and
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Table 1.1 Functions of major refinery processes.

Process unit Function

Atmospheric distillation unit
(ADU)

Initial separation of crude oil into the raw products of light
gases, naphtha, kerosene, and diesel with the resulting
residue of the atmospheric bottoms stream

Naphtha hydrotreater (HDT) Uses hydrogen to desulfurize naphtha from atmospheric
distillation, which must be hydrotreated before being sent
for catalytic reforming

Catalytic reformer (REF) Convert naphtha-boiling range molecules into higher octane
reformate (i.e. reformer product) that has higher content of
aromatics and cyclic hydrocarbons; an important byproduct
is hydrogen released during reaction which is used either for
hydrotreating or hydrocracking

Fluid catalytic cracker (FCC) Upgrades heavy petroleum fractions into more valuable
lighter products

Hydrocracker (HCR) Uses hydrogen to upgrade heavier fractions into more
valuable lighter products

Visbreaker (VIS) Upgrades heavy residual crude oils by thermal cracking into
more valuable lighter products with reduced viscosity

Coker (COK) Converts very heavy residual crude oils into gasoline and
diesel fuel with petroleum coke as residual product

Isomerizer (ISO) Converts linear petroleum molecules to higher-octane
branched molecules for gasoline blending or as alkylation
feed

Alkylation unit (ALKY) Reacts low molecular-weight olefins with an isoparaffin to
form higher molecular-weight isoparaffins

to meet environmental legislations on combustion gas emissions. The feedstock is
passed together with hydrogen-rich gas (usually above 75% of hydrogen by mass),
over a fixed bed of catalyst under conditions that depend mainly on the feedstock
properties and desired product specifications. Hydrodesulfurization consumes
hydrogen and generates hydrogen sulfide according to the general reaction:

R–S–R + 2H2 → 2R–H + H2S

where R represents an alkyl group and S represents a sulfur atom. The severity of
a hydrotreater depends on the amount and types of sulfur compounds in the naph-
tha feed, which in turn are determined by the crude oil source. Characterization of
sulfur compounds in naphtha is particularly difficult due to extremely low concen-
trations. The sulfur composition in a blend (60% straight run and 40% hydrocracked
naphtha) is almost the same as straight-run naphtha since sulfur contribution from
hydrocracked naphtha is negligible (Ali 2004a).

Catalytic naphtha hydrotreatment can simultaneously accomplish desul-
furization, denitrogenation, and olefin saturation. Lower boiling compounds are
desulfurized more easily than high boiling ones. Reactivity decreases with increasing
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Light naphtha

Light gases

Kerosene

Heavy naphtha

Diesel

Resid

ATM distillation
column

Figure 1.4 Fractions from atmospheric crude distillation unit.

Table 1.2 Naphtha hydrotreater: typical yields.

Component Yield (weight)

Feed Naphtha 1.0000
H2 0.0080
Total 1.0080

Products Acid gas 0.0012
H2-rich gas 0.0110
LPG-rich gas 0.0058
Desulfurized naphtha 0.9900
Total 1.0080

molecular size. Products from the naphtha hydrotreater are generally acid gas,
hydrogen-rich gas, liquefied petroleum gas- or LPG-rich gas, and desulfurized
naphtha. Table 1.2 presents the typical yields in terms of weight fraction for feed
and products of a naphtha hydrotreater (Parkash 2003c). The desulfurized naphtha
from the hydrotreater can also be categorized as light and heavy.

The hydrodesulfurization of organosulfur compounds is exothermic. The amount
of heat released increases with the number of moles of hydrogen consumed. This
heat of reaction can increase the reactor temperature by 10–80 ∘C at nominal oper-
ating conditions depending on the feedstock (Ali 2004b). The conditions typically
used to hydrotreat straight-run feedstock are mild, whereas treating cracked feeds (or
blends of cracked and straight-run feeds) requires more severe conditions. The main
operating variables are temperature, hydrogen partial pressure, and space velocity.
In general, an increase in temperature and hydrogen partial pressure increases the
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Table 1.3 Sulfur recovery unit yields.

Component Yield (weight)

Feed H2S gas 1.0000
Total 1.0000

Products Sulfur 0.8478
Loss 0.1522
Total 1.0000

reaction rates of sulfur and nitrogen removal, while an increase in space velocity has
the reverse effect.

1.2.3 Sulfur Recovery

The hydrogen sulfide generated in the hydrotreater is sent to sulfur recovery unit
before it is burnt as refinery gas. The conversion of hydrogen sulfide to elemental
sulfur is necessary to minimize atmospheric pollution by sulfur dioxide. This is in
line with environmental regulations, which mandate the recovery of 99% or more of
the sulfur in refinery gas (Gary and Handwerk 2001). Sulfur recovery unit operates
based on the Claus process, which proceeds as follows:

Burner: 2H2S + 3O2 → 2H2O + 2SO2

Reactor: 2H2S + SO2 2H2O + 3S

One-third of the H2S is converted to SO2 by combustion, which is then combined
with the remaining two-thirds and passed over a catalyst where molten sulfur forms
and is separated from the gas stream. This sulfur is sold to generate additional rev-
enue. The gas stream is cooled by steam generation and passed over another catalyst
bed. This cycle is repeated for as many as four catalyst beds in some instances. The
gas stream leaving the sulfur recovery unit still contains H2S and/or SO2, which
requires further treatment. Table 1.3 shows the product yields from a sulfur recovery
unit (Parkash 2003d).

1.2.4 Reforming

The continuous demand of today’s automobiles for high-octane gasoline has
stimulated the use of catalytic reforming to produce high-octane reformate from
desulfurized naphtha without changing the boiling point range, as well as to provide
hydrogen required for hydrotreating. The typical feedstocks to reformers are heavy
straight-run naphtha and heavy hydrocracker naphtha. These are composed of
four major hydrocarbon groups: paraffins, olefins, naphthenes, and aromatics (also
referred to as PONA). The main function of a reformer is to convert paraffins and
naphthenes into aromatics, subsequently producing high-octane reformate. Typical
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Table 1.4 Catalytic reforming: feedstocks and products.

RON Component Feed (vol%) Product (vol%)

Paraffins 30–70 30–50
Olefins 0–2 0–2
Naphthenes 20–60 0–3
Aromatics 7–20 45–60

reformer feedstocks and products have the PONA analyses shown in Table 1.4
(Gary and Handwerk 2001).

Paraffins and naphthenes undergo two types of reactions in being converted to
higher octane components: cyclization and isomerization. The ease and probability
of either of these reactions occurring increases with the number of carbon atoms in
the molecules. It is for this reason that only heavy straight-run naphtha is used for
reformer feed. Light straight-run naphtha is largely composed of lower molecular
weight paraffins that tend to crack to butane and lighter fractions, thus uneconom-
ical to process in a catalytic reformer. Hydrocarbons boiling above 204 ∘C are easily
hydrocracked and cause an excessive carbon laydown on the reforming catalyst.

The desirable reactions in a reformer that lead to forming aromatics and
iso-paraffins mainly involve the following: (1) isomerization of n-paraffins to
iso-paraffins, (2) dehydrocyclization of paraffins to aromatics, (3) dehydrogenation
of naphthenes to aromatics, (4) saturation of olefins to form paraffins which then
react as in isomerization in reaction (1.1) and dehydrocyclization in reaction (1.2);
aromatics are essentially left unchanged (Maples 2000). Undesirable reactions are
dealkylation of side chains of naphthenes and aromatics besides the cracking of
paraffins and naphthenes. Table 1.5 shows typical reformer yields for three values
of research octane number (RON) (Parkash 2003a).

1.2.5 Isomerization

The octane numbers of light straight-run naphtha can be improved by isomerization
to convert normal paraffins of C5 and C6 to their isomers. This operation results in a
significant octane increase because n-pentane has a RON of 61.7, whereas the RON
of iso-pentane is 92.3 (Gary and Handwerk 1994).

Equilibrium conversion to isomers is enhanced at lower temperatures, hence a
reactor temperature of 98 to 205 ∘C is desirable. At these low temperatures, a very
active catalyst is necessary to provide a reasonable reaction rate. Catalysts used for
isomerization contain platinum on various bases. Small amounts of organic chlo-
rides are injected continuously to maintain high catalyst activities. This leads to the
formation of hydrogen chloride in the reactor, which necessitates the feed to be free
of water and other oxygen sources so that catalyst deactivation and potential cor-
rosion problems can be avoided. An atmosphere of hydrogen is used to minimize
carbon deposits on the catalyst but hydrogen consumption is negligible (Gary and
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Table 1.5 Catalytic reforming: typical product yields in weight fraction.

RON
component 96 100 102

H2 0.0193 0.0310 0.0320
C1 0.0085 0.0120 0.0140
C2 0.0138 0.0200 0.0230
C 0.0269 0.0290 0.0330
iC4 0.018 0.0170 0.0190
nC4 0.0228 0.0230 0.0260
iC5 0.0276 — —
nC5 0.0184 — —
C5+ — 0.8680 0.8530
C6+ 0.8447 — —
Total 1.0000 1.0000 1.0000

Table 1.6 Isomerization yields.

Component Yield (weight fraction)

Feed Light naphtha feed 1.0000
Hydrogen 0.0040
Total 1.0040

Products Isomerate 0.9940
Gases 0.0100
Total 1.0040

Source: Data from Parkash (2003b).

Handwerk 1994). Slight hydrocracking occurs during isomerization, resulting in loss
of gasoline and production of light gases. Light straight-run naphtha is also sold
as petrochemical feedstock besides being sent to the isomerization unit. Table 1.6
shows typical isomerization yields.

1.2.6 Blending

The final stage of the refining process is blending. This is a crucial step where the
various hydrocarbon components manufactured in the refinery are mixed together
to make the final products sold by the refinery. The final blend recipes depend on the
quality of the available components and on customer requirements or specifications.
All blended products are tested before they are sold to ensure that they meet the
specifications.
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1.3 Overview of Refinery Optimization Modeling

The refinery design process can be described as consisting of three stages, namely,
synthesis, analysis, and optimization.

● Synthesis involves identifying the possible need for a product, e.g. by conducting
market feasibility study.

1.3.1 Refinery Optimization Systems, Techniques, and Tools

A wide range of model-based systems and tools, typically computerized with asso-
ciated modeling strategies, are now pervasively available and increasingly used to
help design refineries in meeting desired requirements and intended applications.
As depicted in Figure 1.5, the major model-based related (or assisted) elements are
briefly described as follows (Engell 2007):

● regulatory control supported or enhanced with advanced process control (APC)
techniques such as the popular model predictive control (MPC) systems;

● real-time optimization (RTO) that can be implemented for both static (i.e. steady
state with certain criteria for such a certification, which is the typical or traditional
practice) and dynamic conditions;

● instrumentation such as sensors, analyzers, and actuators which deliver digital
information at an enhanced rate;

● programmable logic controllers (PLC), distributed control systems (DCS), per-
sonal computers, and real-time servers, which are now considerably inexpensive,
thus more available to buy (even in excess of required capacities) and maintain;

● new online analysis technology (including analyzers) such as near-infrared spec-
troscopy (commonly known by its abbreviation of NIR);

● software that supports devices, systems, and technologies enabled by (Industrial)
Internet-of-Things or more popularly abbreviated as (I)IOT, which capitalizes on
the capability afforded by the Internet including high-performance tools for stor-
ing and accessing data (e.g. in the cloud or at the edge);

● new tools as means of communication that are increasingly rapid and reliable from
transmitting initial input data up to integrating with management level (e.g. at the
headquarters);

● software development efforts that are continually reducing the need for propri-
etary modeling systems requiring the expertise, knowledge, or skills of a specialist;

● new powerful computational concepts, methods, and techniques for model devel-
opment and solution such as machine learning (e.g. neural network), which has
gained a lot of attention recently (besides mathematical programming, constraint
programming, fuzzy logic, or others).

A number of commercial optimization tools are routinely used in the industry that
typically include the following:

● PIMS (Process Industry Modeling System by Aspen Technology): Technique
called sequential linear programming (SLP) augmented with recursion methods
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is employed to enable handling some nonlinear functions (e.g. bilinear terms
that arise due to mixing process operations) through an iterative procedure;
spreadsheet-based user interface; and reporting;

● Excel Solver (add-in by FrontLine used in Microsoft Excel): Uses spreadsheet for-
mat for inputs/outputs;

● Sequential quadratic programming (SQP) as employed (also pioneered) through
the deployment of dynamic matrix optimization (DMO) technique: Uses algo-
rithm based on derivatives of functions to search for optimality; equations are
written in standard Fortran format with extensive linking to execute optimization
functionalities.

1.3.2 Modeling for Advanced Process Control

APC is an area that has long experienced a widespread practice of implementing
model-driven or model-assisted technology (Lee et al. 2018). APC applications in
refineries are mainly concerned with real-time multivariable control as based on
(largely) empirical models of process units. Such models can be incorporated with
dynamic RTO to improve the setpoints computed for implementation in APC, most
commonly through applying MPC systems (Kadam and Marquardt 2007; Pontes
et al. 2015).

The availability of sufficient degrees of freedom for modeling, control, and opti-
mization supported by excellent instrumentation for measurements has allowed
refineries to benefit significantly from these model-based techniques and tools. The
advantages can be exemplified (in whole or part) through easier, faster, safer, and
even greener (i.e. more environmental friendly) process unit management afforded
by more effective response. The resultant stability of operating conditions also
improves handling of changes in the production environment such as variations in
feedstock quality and weather conditions.

Consequently, these granted refinery operations to maximize throughput of higher
feed flow rate resulting from being able to push multiple process constraints in an
optimal manner to higher levels. At the same time, increased process capability due
to reduced process variabilities permitted higher stream yields in meeting market
demands particularly for high-value products. As a result, refineries improve energy
and general operation efficiency through less consumption of utilities and chemicals
as well as catalysts, lower losses due to manufacturing-related issues; and decreased
fluctuations in quality and the associated giveaways in product properties.

Modeling using APC contributes significantly to a large part of the potential ben-
efits derived in which the benefits can be quantified from refinery revamp projects.
Thus it is prioritized to carry out such value-improvement projects. Some of the
popular commercial APC software systems widely used in refineries worldwide
include Aspen Technology’s DMC (which historically stands for Dynamic Matrix
Control) and Honeywell’s Robust Multivariable Predictive Control Technology
(RMPCT) (Morari and Lee 1999). Trade information up-to-date on currently
operating APC systems is available in references such as Hydrocarbon Processing,
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a monthly periodical which also publishes an annual supplement (called Advanced
Process Control and Information Systems Handbook).

APC has been a mainstay in the refinery suite of modeling tools and applications
for the past two decades or so (Forbes et al. 2015). In comparison, optimization mod-
eling tools for online (real time) or offline purposes have not been used as commonly,
extensively, or pervasively relative to APC although arguably the trend has gained
more widespread acceptance in more recent times (Lee 2011).

Despite its many advantages, a possible objection to APC is that even erroneous
setpoints are simply implemented quickly when the most difficult part of refinery
operations is to ensure that setpoint values as accurate as possible are established in
the automated controls. Thus, RTO, also known as online optimization systems, is
employed for determining the optimal values for the setpoints sent to the APC by
executing online calculations (as briefly reviewed next).

1.3.3 Modeling for Real-Time Optimization

Compared to APC, there are relatively fewer commercial RTO applications; even
less common is a plantwide operational optimizer (with the level of detail as that
of a typical RTO), which is currently used in the downstream petroleum processing
industry. Conventional RTO models are required to generate solutions within min-
utes of execution (after achieving steady state as determined by certain appropriate
criteria). At the same time, the models are updated with economic and technical con-
ditions data of process units in a continuous and automated way. The latter necessi-
tates reliable and reasonably fast digital systems capable of collecting and validating
the data including to verify steady-state conditions in developing the processing unit
flowsheeting models.

In a similar way, a number of process simulation packages incorporate RTO-like
features of general optimization capabilities in addition to offering combined or
hybrid first-principle and empirical modeling options. Since the models used for
the optimization must be able to integrate all of the system’s constraints and use
the degrees of freedom available, the resulting optimization models formulated can
be complex. The complexity is manifested particularly by the requirement to handle
over hundreds of thousands of equations in which some are possibly nonconvex (e.g.
bi-/tri-linear or exponential) as well as millions of variables, all subject to a simulta-
neous solution strategy to be devised and executed in arriving at some meaningful
(if not practical) results.

It is noteworthy that a standard rigorous approach of RTO-based modeling
typically involves the following sequential procedure (as summarized in the
flowchart shown in Figure 1.6). The first step involves periodically executing an
algorithm, which is generally based on nonlinear optimization that gathers data
from steady-state operations. The second step performs data reconciliation between
the actual plant and model values. The third step consists of adapting or updating
some model parameters so that the model results match the reconciled data to an
acceptable degree of accuracy. The fourth step computes optimum target values
as improved setpoint candidates for identified (i.e. preselected or preconfigured)
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Real-time data import

Data reconciliation
(least squares optimization empirical model)

Optimization
(nonlinear first-principles model)

Update setpoint values
(APC model systems)

Steady-state condition?

Start

End

Figure 1.6 Standard cycle procedure
for typical real-time optimization
modeling systems (online and closed
loop).

process variables as handles to optimize (mainly for local optima) the process units
or the entire refinery in general. The final step entails modifying by implementing
the necessary process setpoints. The cycle is then repeated when a steady-state
criterion is verified to be attained (Bodington 1995; Moro 2003).

Recent developments in the petroleum refining world include efforts to imple-
ment simultaneous optimization of models for multiple units in real-time mode. An
ultimate goal is to enable online economic optimization (i.e. with commercial signif-
icance or impact) of the total refining process from the front-end (including berth-
or dock-related activities) to the back-end (including end-products distribution). A
crucial enabler for successful applications to problems of industrial scale and signif-
icance is the availability of powerful nonlinear optimization algorithms (de Prada
et al. 2017).

Conventional RTO software packages are equation-oriented systems that make
use of robust large-scale nonlinear programming algorithms as the solution engine
(e.g. SQP) such as the implementation in the commercial package called ROMeo
(Rigorous Online Modeling with equation-based optimization) (AVEVA 2021). A
user can expect to find in an RTO package such standard features like combination
of the underlying mathematical formulation and solution engine with an interface
(typically GUI or graphical user interface). The combined components of the pack-
age or systems are designed to capture and show real-time plant data and economic
objective function values, which attempt to depict a replica (i.e. a model) of the plant
operations in as close as possible a manner.
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A modeling-aided management system such as RTO, which is coupled to APC
offers a capability that allows users (i.e. plant engineers as well as the management
besides the modelers especially those personnel at the site) to have a reliably rig-
orous, precise, and accurate model of the process units in an operating facility to
optimize operations on a plant-wide basis by determining optimal process setpoints
for the plant control systems. In doing so, such a model-based system also assists in
determining the cause and source (or location) in which operating bottleneck prob-
lems and challenges lie. A single model with a modern user-friendly GUI approach
(such as that in the manner of RTO), instead of separate models catering for multiple
uses including process simulation, data reconciliation, and operational optimiza-
tion, facilitates to develop, deploy, and sustain a model with reduced cost.

Notwithstanding significant continuous progress as mainly found reported in
both trade periodicals and academic journals, which includes a recent partnership
between AVEVA and ExxonMobil Research and Engineering Co. (EMRE) to
enhance ROMeo’s capability, it remains arguable that RTO still lacks general
industrial acceptance (not least, relative to APC). The reasons could be due to
certain practical and also theoretical limitations. Some of these drawbacks generally
pertain to the levels of detail in characterizing the feed streams, developing the
process unit models, and detecting the existence (or nonexistence) of true steady
state (the latter applies particularly to plants with reasonable disturbance).

Nonetheless, substantial noteworthy effort has been undertaken to address
these issues for both the system modeling as well as the solution parts of RTO
technology. Improvements are partly reflected from industrial implementations
of RTO particularly for ethylene processing plants for petrochemical production
besides the petroleum refining industry (Shobrys and White 2000; Moro 2003;
Karuppiah and Grossmann 2006). Nonetheless, existing commercial RTO packages
have been thought of as somewhat dated (notwithstanding ongoing modernization
initiatives to incorporate state-of-the-art features, which include utilizing cloud
and edge computing technologies). Some examples along this line are exemplified
in packages enabled by dynamic optimization-based modeling and solution tech-
niques such as gPROMS software by Process Systems Enterprise (now owned by
Siemens) or GDOT software by Aspen Technology (now owned by Emerson).

1.3.4 Modeling for Process Simulation

Commercial model-driven process simulators are now largely considered as a
common omnipresent basic available tool required to enable and assist refinery
process engineers mainly to perform detailed material and energy balances. Sub-
sequently, the results (mostly available for steady-state condition but increasingly
also for dynamic condition) are requisite for a variety of other tasks and purposes as
part of design, operation or production, and maintenance or sustainment support
activities. Some examples of the latter (i.e. for maintenance applications) are more
and more used for debottlenecking studies on unit operations for plant revamp and
rejuvenation exercises.
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Notable examples of general-purpose simulators include Aspen Plus (Aspen
Technology 2021b); UniSim (Honeywell 2021); VMGSim (Virtual Materials Group
(VMG) 2021) for which different versions have been customized (called iCON
for PETRONAS, the Malaysian national oil company) and now acquired by
Schlumberger (called Symmetry); PRO/II (formerly of Invensys and now acquired
by Schneider Electric); and Petro-SIM (formerly of KBC and now acquired by
Yokogawa). A number of these packages also offer tailored or bespoke detailed
models for specific refinery processes such as fluidized catalytic cracking (FCC),
catalytic reforming, and hydrocracking. On the other hand, commercial specialized
simulation tools are also available to perform realistic simulation-based modeling
for certain process units in which detailed diagnostic studies are necessary. In this
realm, some of the examples pertaining to refinery-based applications include those
that need to incorporate detailed reaction kinetics in the modeling of conversion
units particularly for catalytic reforming, FCC, and hydrocracking units.

In addition, process simulation have been integrated as part of the routines in cer-
tain plant optimization models. Such integration are performed in either online or
offline mode—typically the former is executed on continuous real-time basis while
the latter on longer-term advisory or study basis. These integrated models typically
employ the latest process information extracted or imported from process simulation
models to update existing process plant models (Hallale et al. 2006).

As an example, Aspen Technology, a perennial market leader in provisioning of
modeling and optimization software, systems, and support services particularly
for refinery planning and scheduling, has extended its models to make available
detailed reactor representation with rigorous kinetics modeling for optimizing
hydrogen production (Aspen Technology 2021a). Such models, which are dubbed
as hybrid models since they combine both first-principles and empirical modeling
techniques coupled with artificial intelligence and analytics algorithms, have
enabled a better understanding of process operations under different hydrogen
feed conditions. The hybrid reactor simulation models developed in AspenPlus can
also be linked to and employed in Aspen PIMS with automatic updates available,
thus allowing the combined models to perform enhanced detailed planning and
scheduling activities as well as economic evaluation (Beck and Munoz 2020).

1.3.4.1 Modeling for Dynamic Simulation
A related development concerns modeling for dynamic process simulation. Several
software packages have resulted from more than three decades of research and
development (R&D) intertwined with systems design or customization. Applica-
tions of unit-wise and plant-wide dynamic simulation can be readily adopted as part
of an extensive modeling suite now available to assist with optimal decision-making
in refinery operations. Some examples of early equation-based modeling software
systems include DIVA (Kröner et al. 1990), ABACUSS (Allgor et al. 1996), and
SPEEDUP (Perkins and Sargent 1982) – the latter forms a base that has been further
developed and evolved to be a state-of the-art current cutting-edge package called
gPROMS (Barton and Pantelides 1994) by Process Systems Enterprise (a spinoff
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company of Imperial College London’s Department of Chemical Engineering,
which since has been acquired by Siemens) (Siemens 2021).

Such large-scale dynamic system simulation software allows a modeler or an
engineer to focus solely on formulating and thereafter implementing the model
developed. An advantage of doing so is that it generally removes or obviates the
modeler/engineer from concerns about solution algorithms (such as infeasibility
due to numerical issues caused by parameter or variable scaling) and code-related
issues (such as syntax for generation, compilation or interpretation, and debugging).
This modeling aid greatly permits the modeler/engineer to increase productivity
while assisting to ensure the dynamic simulation feasibility. Relevant activities
regarding such refinery use include designing, verifying, and analyzing paramet-
ric sensitivity for control and safety interlock systems as well as investigating
operational events of start-up, changeover, and shutdown.

1.3.4.2 Modeling for Operator Training Simulation
Refinery training simulators based on dynamic simulation modeling technique (as
discussed in Section 1.3.4.1) are now an essential tool to train new operators espe-
cially panel operators manning the control rooms besides to maintain and update the
operators’ knowledge and skill regularly in reacting to exceptional circumstances.
Although (panel) operators now are exposed to operational incidents much less fre-
quently than in the past (mainly due to control room reorganization), the increased
scope, level, and reliability of automation (which is also partly exacerbated by the
Covid-19 virus outbreak pandemic) have led to requirements for increased duration
and alternative suitable methods for operator training. Thus to guarantee a refin-
ery’s safety in the situation of automation systems failure, which can lead to plant
failure altogether, it is imperative to enhance operators’ readiness through enhanced
training level including by adopting a model-based approach.

We can represent realistic operating conditions using dynamic simulation models
in a manner akin to how flight simulators are used for aircrew training (e.g. for civil-
ian aircraft or military air force). The similarity of the roles is particularly apparent
to allow modeling of transient time period in the event that follows after an incident
or operational change. We can also expect state-of-the-art dynamic simulators to be
able to model several possible scenarios including to evaluate historical data of past
operator’s real-time reactions.

Models for training simulators typically include operator consoles (which are
identical to those one may expect to see in the control rooms) as a feature linked
to the DCS. Modeling in this way enables access to initial states of the process
variables. Indeed, training simulators and their comprehensive use are a showcase
of modeling capability in supporting high competence of safety assurance in
refinery operations.

1.3.5 Modeling for Planning and Scheduling

Modeling of refinery planning and scheduling serves to represent, predict, and pre-
scribe the establishment of a detailed manufacturing activities plan for a plant across
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various time scales (ranging from seconds or minutes up to several years). Planning
and scheduling enable and support enterprise supply and marketing functions of a
company by defining specific activity timings in producing the requisite product vol-
umes that fulfill the company’s objectives. Based on requirements stipulated by the
company operations, the main goal of refinery planning and scheduling is in meet-
ing the demands of primary outlets of national and international retail sales (Pompéi
2001). A side goal of the production plans and schedules also serves to minimize any
associated byproducts generated since typically they are of uneconomical values.

Thus, modeling for refinery planning and scheduling systems is vital particularly
to improve feeds as throughput to the process units in realizing potential large
returns or margins and saving costs significantly. But a main complicating challenge
in modeling refinery operations lies in representing the operation modes of the
process units involved, i.e. that can be not only mostly continuous in nature but also
batch or semi-batch (or semi-continuous). Such operating considerations are on
top of a need to deal with the existing complexity involved in handling the various
crude oils feed mix and product grades. In addressing these issues, the modeling
effort entails adopting both the more conventional continuous and discrete types
of decision variables and the corresponding constraints as adequately espoused
elsewhere (Karuppiah et al. 2008). Doing so allows modeling with greater flexibility
besides incorporating practical problem representation in the model formulation as
will be illustrated throughout the book.

As shown in Figure 1.7, planning and scheduling activities in a refinery are
made up of several sections. These sections can be represented conveniently
as separate modules of optimization models, namely, crude oil movement and
blend scheduling (at the refinery front-end), production planning and scheduling
(refinery middle-end), and product blending and distribution scheduling (refinery
back-end) (Jia and Ierapetritou 2003; Reddy et al. 2004; Méndez et al. 2006).

The front-end plans and schedules involve blend scheduling optimization of crude
oil mixtures (i.e. crudes for short) that include handling arrival events of crudes such
as unloading from vessels, transfer to storage tanks, and blending and charging of
crudes as feedstock for processing in crude distillation units. The middle-end plans
and schedules address process unit operations of the intermediate streams includ-
ing their inventory control from one unit to another. The process operations involve
reactions to modify and attain the desired output such as product properties (e.g.
higher octane number) as well as separation to increase product purity (e.g. lower
contaminant concentrations), which can entail a need for handling effluents. The
back-end plans and schedules deal with product blending and dispatch or distribu-
tion in which the latter largely involves logistics optimization around end-products
lifting for shipping delivery to customers (i.e. demand centers or points) and includ-
ing inventory control that serves to prevent stock out.

Refinery commercial success depends to a great extent on how the associated
plans and schedules are modeled for development, deployment, and sustainment.
Thus, it is imperative for a refinery to be able to put in place a robust and reliable
as well as automated process of modeling and computing in generating optimal
or feasible plans and schedules. Typically, a database, e.g. one based on SQL
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(structured query knowledge) is used particularly within a short-term scheduling
model to ensure that a refinery implements the generated plans and schedules
in a consistent manner between one to the other with the latter (i.e. results from
the scheduling activity) involving more details or granularity than the former (i.e.
results from the planning activity).

The consistency in data and its validity are ensured particularly on yields, costs,
and throughputs. Such undertaking necessitates significant requisite effort in main-
taining, establishing, and integrating the database with the refinery-wide informa-
tion systems encompassing both IT (information technology) and OT (operating
technologies) including management-centric dashboards.

In view of the drive for increased or enhanced digitalization spurred by the Indus-
trial Revolution 4.0 (IR4.0) paradigm and the onset of the Covid-19 (coronavirus)
pandemic, model-based tools for decision-making support systems have seen a surge
of interests particularly but not limited to the activities of optimizing refinery plans
and schedules. The actual situation is not something entirely new because even
previously, refineries face amplified pressures constantly due to intensified operat-
ing challenges brought about by tightened market, regulatory, and environmental
requirements (also sometimes referred to as the so-called “triple bottom-line”) as
well as heightened priorities for social and governance aspects.

Ongoing recent technical advances have generated renewed interests in
computer-aided model-based decision-making tools to improve refinery planning
and scheduling activities continually. In particular, the following refinery optimiza-
tion developments have enabled more benefits to be reaped with increased speed
and scale:

● greater operational complexity in raw materials handling due to pressures of
attaining economic advantage of processing cheaper challenged crudes (with
typically more diverse crude oil mixtures);

● quicker and more rapid supply chain responsiveness to market dynamics to cap-
ture more value;

● reduced operating degrees of freedom arising from a greater number of constraint,
e.g. more stringent product specifications, stricter environmental requirements,
and tighter tankage limitations;

● generally easier, faster, and more accurate (relatively) problem formulation
through adopting increasingly powerful state-of-the-art modeling techniques
(e.g. logic-based constraint programming, artificial-intelligence-based expert
systems, and hybrids of mixed-integer optimization involving combined
mixed-integer programming with disjunctive programming);

● by a similar token to the previous point (i.e. in the same way as afforded by the
availability of more sophisticated models), more efficient solution and implemen-
tation or deployment of model-based optimization for decision-making support
system;

● more advanced computing and computational capacity afforded by the increased
availability of more powerful hardware and more efficient algorithms;

● massive refinery data availability (i.e. in terms of volume, velocity, variety, veracity,
and value which collectively describes the “big data” phenomenon) as well as that
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related to the parent company or enterprise networks, which has given access to
requisite information instantly and pervasively through internet and web-based
technologies or infrastructures (e.g. cloud computing or Industrial IoT compo-
nents in general).

The situation has enabled complex planning and scheduling problems with
solution methods and strategies that can cater for discrete decisions. Such models
involve both continuous and integer (often binary) types of decision variables.
Thus, the application necessitates handling an exponential number of feasible plans
and schedules with their associated permutations. In particular, the mathematical
formulation and model development undertaking give rise to combinatorial opti-
mization of mixed-integer programming with tools and techniques that can now
afford such problems to be solved within tractable and practical computational
effort and execution or run time.

The techniques of advanced model-based optimization coupled with powerful
and scalable yet flexible object-oriented programming and graphical inter-
faces have been largely instrumental in enabling the practical use of these
resource-and-data-intensive systems. There is demonstrated great potential for
enhanced practical use of planning and scheduling systems that can benefit from
the joint employment of machine learning-based analytics (such as artificial neural
networks or data mining with decision trees) and artificial intelligence-based
cognitive techniques (such as expert systems) coupled with the latest clever mathe-
matical algorithms made possible by high-performance computer hardware (as also
mentioned elsewhere). In view of current developments, model-based computer
systems are increasingly if not pervasively substituting the function of many
manual (nonautomated) procedures, which typically rely on spreadsheet-based
tools presently used for planning and scheduling activities of complex refineries
(particularly in handling multiple crude oils processing). These activities frequently
entail making decisions for multiperiod problems that involve optimization to
sequence crude oil runs with consideration for product blending rules, allocate
storage and charging tanks, determine operating conditions of the process units and
their associated auxiliary or supporting units, devise product blending formulations,
and sequence the movements of finished products for distribution to depots or ports
as well as to be ready for shipping to sales points of end customers.

1.3.5.1 Systems Implementation
Planning and scheduling systems are at the heart of refinery IT systems as well as
increasingly its OT systems. Thus it is imperative that data for the plans and sched-
ules are continuously kept up to date. The main data required comprises tank levels
(as a function of time) especially those related to inventory, operating conditions of
process units, component and product qualities, and major equipment availability
besides business-related data such as marketing requirements (or situations) as well
as forecast of external supply or deliveries and product lifting requirements.

Refineries require robust, reliable, and secure communications network that
include auxiliary systems such as an associated database to store plant-wide data
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for the necessary or requisite processing and manipulation steps of extraction,
transformation, and loading to the relevant applications. This infrastructure is
deemed as crucial elements or components yet with potential room for major
improvements particularly in view of harnessing the pervasive “big data” available
today in deriving greater value from better decision-making activities. Planning and
scheduling functions are now adopted as decision support systems. However the
scope of such systems typically do not guarantee whole refinery optimization of the
operations, mainly due to the challenge of high complexity and consequently a long
model solution time (i.e. runtime).

It is typically practiced in the industry to develop separate modeling applications
on crude oil charging and blend scheduling (at refinery front-end) and that on
planning and scheduling of product blending and delivery (at refinery back-end).
Plans and schedules tend to be obsolete (i.e. no longer relevant to business situa-
tions) fairly rapidly due to uncertain product demands and other market-related
factors or even sentiments. For the latter problem, the uncertainty arising from
fluctuating product demands and other changing parameters of the market often
render the plans and especially the schedules to be obsolete very quickly. Thus,
such problems (particularly the schedules) are mainly used for optimization studies
on the products tankage.

1.3.5.2 Optimization of Crude Oil Scheduling
As crude oil purchasing costs account for more than two-thirds (around 80%) of
a refinery’s turnover, we can achieve significant savings by optimally performing
the scheduling operation of charging crude oil blends to the primary (atmospheric)
distillation units (Kelly and Mann 2003). With premium crude oils experiencing
reduced supplies and increased prices or costs, a significant operational optimization
issue that afflicts refineries today revolves around how to feasibly (if not optimally)
exploit greater margins from employing low-cost crude oils or the so-called “chal-
lenged crudes”, i.e. to increase profits by using varying blends of premium and chal-
lenged crude oils. However, various operational issues are expected to arise related to
processing these challenged crudes that have high contents of contaminants includ-
ing aromatics, sulfur, and various other high residues. Therefore, refiners need to
strategically identify an optimal mix of both premium and challenged crude oils for
processing that does not compromise profit margins and with as few operational
challenges as possible to this crude oil blend scheduling optimization problem.

It is not surprising that the functions, duties, and responsibilities of refinery
crude oil schedulers (i.e. optimization application users) are not only ever more
demanding and pressing now but increasingly complex and convoluted, which
entails increasingly higher risks at stake operationally, financially, and politically.
It is requisite that the users monitor and match crude oil movement to market
demand as well as that of the refinery overall operation.

Under normal circumstances of handling crude oil receipts or arrivals, the users
assign destination tanks for each of the crude oil shipment parcels. This task also
includes blending and charging the received crude oils to the distillation units (i.e.
CDU) as necessary in meeting mainly yield and quality targets or various other
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specifications on the fractionation products. However, due to pressures arising
from timing or deadlines and unfavorable inventory availability or flexibility, the
users tend to rely on their experience (if not intuition) that prompts them to select
the first feasible solution computed by existing non-rigorous model-based tools
(e.g. spreadsheets using Excel typically). As a result, there is significant loss of
economic and operational opportunities to improve such planning and scheduling
decision-making activities.

Automated, reliable, and robust model-based refinery crude oil blend scheduling
optimization system is valuable and needed for the foregoing reasons with poten-
tial of enhancing crude oil blend options by considering various possible (and per-
missible) charge mixtures (i.e. combinations or permutations of crude oil sources
or types in optimum proportions) particularly in capturing value from processing
high-quality crude oils which are mixed with less expensive feedstock in an econom-
ically optimum manner. Other associated benefits or returns that such advanced
optimization systems can offer include increased throughput (i.e. processing out-
put) and raw material resource utilization, reduced yield and quality giveaways,
enhanced control and predictability of downstream production, and decreased costs
(e.g. inventory holding, storage, and demurrage).

1.3.5.3 Refinery Management
A real challenge in using modeling tools lies in ensuring that we can get realistic
results compared to an existing possibly manual approach. With the present drive
for harnessing the power and resultant benefit of increased digitalization, it is
imperative to be able to showcase and continually improve the value of modeling
(or a model-driven approach, in general) to refiners. The outcome of improvement
brought about through such efforts typically requires minimal additional bespoke
or tailored custom-built features with a potential incentive that they can be directly
adopted to meet actual refinery operations while the derived benefits can be
straightforwardly quantified (e.g. in monetary sense). Some of the advancements
include linking model-based optimization tools with real-time databases for which
such automation permits access to data and insights that could assist with planning
and scheduling activities. An example entails validating outputs from (long-term)
plans and (short-term) schedules enhanced with simulation results with an aim of
gaining more granularity toward attaining more realistic production targets setting.

1.4 Concluding Remarks

This chapter provides an overview of the subject addressed in this book, which
concerns a mixed-integer superstructure optimization approach to determine the
topology or configuration for a petroleum refinery. A brief treatment of refining
processes is given as background on the numerous available commercial process
units considered in the approach. The chapter then proceeds to present a represen-
tative selection of staple refinery optimization modeling tools as partly exemplified
by the current practice of RTO and APC. A brief exposition is also offered as
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regards to modeling-aided suite of techniques and approaches for efficient and
effective plant management as appropriate in this age of digitalization as spurred
by Industrial Revolution 4.0, big data analytics, and to a certain extent, the global
coronavirus (Covid-19) outbreak, chiefly to lend a flavor to the book’s subject but
without attempting to be comprehensive (with references cited for a more complete
exposition).

References

Ali, S.A. (2004a). Naphtha hydrotreatment. In: Catalytic Naphtha Reforming (ed. G.J.
Antos and A.M. Aitani), 114. New York: Marcel Dekker.

Ali, S.A. (2004b). Naphtha hydrotreatment. In: Catalytic Naphtha Reforming (ed. G.J.
Antos and A.M. Aitani), 119. New York: Marcel Dekker.

Allgor, R.J., Berrera, M.D., Barton, P.I., and Evans, L.B. (1996). Optimal batch process
development. Computers & Chemical Engineering 20 (6/7): 885–896.

Aspen Technology (2021a). Aspen Hybrid Models. Aspen Technology. https://www
.aspentech.com/en/solutions/aspen-hybrid-models (accessed 11 November 2021).

Aspen Technology (2021b). AspenPlus. http://www.aspentech.com (accessed 11
November 2021).

AVEVA. (2021). AVEVA process optimization. AVEVA Group. https://www.aveva.com/
en/products/process-optimization (accessed 11 November 2021).

Barton, P.I. and Pantelides, C.C. (1994). Modeling of combined discrete/continuous
processes. AIChE Journal 40: 966–979.

Beck, R, and Munoz, G. (2020). Hybrid modeling: AI and domain expertise combine to
optimize assets. https://www.aspentech.com/en/resources/white-papers/hybrid-
modeling-ai-and-domain-expertise-combine-to-optimize-assets-cxo (accessed 11
November 2021).

Biegler, L.T., Grossmann, I.E., and Westerberg, A.W. (1997). Systematic Methods of
Chemical Process Design. New Jersey: Prentice Hall.

Bodington, C.E. (ed.) (1995). Planning, Scheduling, and Control Integration in the
Process Industries. New York: McGraw-Hill.

Douglas, J.M. (1985). A hierarchical decision procedure for process synthesis. AIChE
Journal 31 (3): 353–362.

Douglas, J.M. (1988). Conceptual design of chemical process.
Engell, S. (2007). Feedback control for optimal process operation. Journal of Process

Control 17 (3): 203–219.
Forbes, M.G., Patwardhan, R.S., Hamadah, H., and Gopaluni, R.B. (2015). Model

predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48
(8): 531–538.

Gary, J.H. and Handwerk, G.E. (1994). Petroleum Refining: Technology and Economics,
3e, 204. New York: Marcel Dekker.

Gary, J.H. and Handwerk, G.E. (2001). Petroleum Refining: Technology and Economics,
4e, 273. New York: Marcel Dekker.



References 27

Grossmann, I.E. (1996). Mixed-integer optimization techniques for algorithmic process
synthesis. In: Advances in Chemical Engineering (ed. J. Wei, M.M. Denn, G.
Stephanopoulos, and J.H. Seinfeld), 171–246. Elsevier.

Grossmann, I.E. and Trespalacios, F. (2013). Systematic modeling of
discrete-continuous optimization models through generalized disjunctive
programming. AIChE Journal 59 (9): 3276–3295.

Hallale, N., Moore, I., and Vauk, D. (2006). Hydrogen: under new management. In:
Practical Advances in Petroleum Processing (ed. C.S. Hsu and P.R. Robinson),
371–392. New York: Springer Science+Business Media, Inc.

Honeywell (2021). UniSim – software for process design and simulation. https://www
.honeywellprocess.com/en-US/explore/products/advanced-applications/unisim/
Pages/default.aspx (accessed 11 November 2021).

Jia, Z. and Ierapetritou, M. (2003). Mixed-integer linear programming model for
gasoline blending and distribution scheduling. Industrial & Engineering Chemistry
Research 42 (4): 825–835.

Kadam, J.V. and Marquardt, W. (2007). Integration of economical optimization and
control for intentionally transient process operation. Lecture Notes in Control and
Information Sciences 358: 419–434.

Karuppiah, R. and Grossmann, I.E. (2006). Global optimization for the synthesis of
integrated water systems in chemical processes. Computers & Chemical Engineering
30 (4): 650–673.

Karuppiah, R., Furman, K.C., and Grossmann, I.E. (2008). Global optimization for
scheduling refinery crude oil operations. Computers & Chemical Engineering 32 (11):
2745–2766.

Kelly, J.D. and Mann, J.L. (2003). Crude oil blend scheduling optimization: an
application with multi-million dollar benefits. Hydrocarbon Processing 82 (6): 47–52.

Khor, C.S. and Varvarezos, D. (2017). Petroleum refinery optimization. Optimization
and Engineering 18 (4): 943–989.

Khor, C.S., Yeoh, X.Q., and Shah, N. (2011). Optimal design of petroleum refinery
topology using a discrete optimization approach with logical constraints. Journal of
Applied Sciences 11 (21): 3571–3578.

Kröner, A., Holl, P., Marquardt, W., and Gilles, E.D. (1990). DIVA—an open architecture
for dynamic simulation. Computers & Chemical Engineering 14 (11): 1289–1925.

Lee, J.H. (2011). Model predictive control: review of the three decades of development.
International Journal of Control, Automation and Systems 9 (3): 415.

Lee, J.H., Shin, J., and Realff, M.J. (2018). Machine learning: overview of the recent
progresses and implications for the process systems engineering field. Computers &
Chemical Engineering 114: 111–121.

Maples, R.E. (2000). Petroleum Refinery Process Economics, 2e, 264. Oklahoma:
Pennwell.

Méndez, C.A., Grossmann, I.E., Harjunkoski, I., and Kaboré, P. (2006). A simultaneous
optimization approach for off-line blending and scheduling of oil-refinery operations.
Computers & Chemical Engineering 30 (4): 614–634.

Morari, M.H. and Lee, J. (1999). Model predictive control: past, present and future.
Computers & Chemical Engineering 23 (4): 667–682.



28 1 Introduction to Optimization Modeling for Petroleum Refineries

Moro, L.F.L. (2003). Process technology in the petroleum refining industry—current
situation and future trends. Computers & Chemical Engineering 27 (8): 1303–1305.

Nemhauser, G.L. and Wolsey, L.A. (1988). Integer and Combinatorial Optimization.
Wiley-Interscience.

Oil & Gas Journal (Editorial) (2019). Construction costs continue to rise, operating costs
decline. Oil & Gas Journal 117: 27–28.

Parkash, S. (2003a). Chapter 4: Gasoline manufacturing processes. In: Refining Processes
Handbook (ed. S. Parkash), 116. Burlington: Gulf Professional Publishing.

Parkash, S. (2003b). Gasoline manufacturing processes. In: Refining Processes Handbook
(ed. S. Parkash), 144. Burlington: Gulf Professional Publishing.

Parkash, S. (2003c). Refining Processes Handbook (ed. S. Parkash). Burlington: Gulf
Professional Publishing.

Parkash, S. (2003d). Sulfur recovery and pollution control processes. In: Refining
Processes Handbook, 225. Burlington: Gulf Professional Publishing.

Perkins, J.D. and Sargent, R.W. (1982). SPEEDUP: a computer program for dynamic
simulation and design of chemical processes. AIChE Symposium Series 78: 1–11.

Pompéi, C. (2001). Functional and organizational analysis. In: Refinery Operation and
Management (ed. R. Baker), 455–509. Paris: Editions Technip.

Pontes, K.V., Wolf, I.J., Embiruçu, M., and Marquardt, W. (2015). Dynamic real-time
optimization of industrial polymerization processes with fast dynamics. Industrial &
Engineering Chemistry Research 54 (47): 11881–11893.

de Prada, C., Sarabia, D., Gutierrez, G. et al. (2017). Integration of RTO and MPC in the
hydrogen network of a petrol refinery. Processes 5 (1): 3.

Raman, R. and Grossmann, I.E. (1991). Relation between MILP modelling and logical
inference for chemical process synthesis. Computers & Chemical Engineering 15 (2):
73–84.

Raman, R. and Grossmann, I.E. (1992). Integration of logic and heuristic knowledge in
MINLP optimization for process synthesis. Computers & Chemical Engineering 16 (3):
155–171.

Raman, R. and Grossmann, I.E. (1993a). Relation between MILP modeling and logical
inference for chemical process synthesis. Computers & Chemical Engineering 15:
73–84.

Raman, R. and Grossmann, I.E. (1993b). Symbolic integration of logic in mixed integer
linear programming techniques for process synthesis. Computers & Chemical
Engineering 17: 909–927.

Reddy, P.C.P., Karimi, I.A., and Srinivasan, R. (2004). Novel solution approach for
optimizing crude oil operations. AIChE Journal 50 (6): 1177–1197.

Seider, W.D., Seader, J.D., Lewin, D.R., and Widagdo, S. (2009). Product and Process
Design Principles, 3e. New York: Wiley.

Shobrys, D.E. and White, D.C. (2000). Planning, scheduling and control systems: why
can they not work together. Computers & Chemical Engineering 24 (2): 163–173.

Siemens (2021). The partnership between Siemens and Process Systems Enterprise
(PSE). https://new.siemens.com/global/en/products/automation/industry-software/
siemens-and-process-systems-enterprise.html (accessed 11 November 2021).



References 29

Speight, J.G. (2011). Chapter 2: Refining processes. In: The Refinery of the Future, 43.
Boston: Elsevier.

Virtual Materials Group (VMG) (2021). Virtual materials process simulation. http://
www.virtualmaterials.com/vmgsim.html (accessed 11 November 2021).

Williams, H.P. (1999). Model Building in Mathematical Programming, 4e. Chichester,
West Sussex, England: Wiley.




