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1.1 Introduction

Polymers have been one of the most important components in almost every area of
human activity today. Nowadays, polymers as multifunctional materials gradually
replace metals, glass, paper, and other traditional materials in various applications
due to its lightweight, flexibility, and low cost [1]. In most of their applications,
the applied materials are not composed of a single chemical component but
mixture systems of multiple components with polymers and other additives. By
incorporating different additives, such as metal, minerals, or even air, a wide variety
of materials with unique physical properties and competitive production costs can
be produced. For example, glass fiber-reinforced plastics are composite materials
manufactured by laminating unsaturated polyester resin with glass fiber and filler,
which can increase mechanical strength and heat resistance [2].

In addition, scientific research shows that the size of filling material in fiber rein-
forced composites has a great influence on the material properties, since the size of
the filling particles largely determines the surface interactions of adhesion, particle
movement, dispersion, and bonding between the surface and matrix [3]. With the
particle size of the filler that gradually reduces to the nanoscale, some properties
depending on the interface have undergone great changes, such as gas adsorption,
chemical activity, electrical properties, and catalytic activity. Examples of different
sizes of materials are shown in Figure 1.1, and a hydrogen atom is about 0.1 nm
in size, while a human hair is 104 nm in diameter. Among them, nanomaterials
are employed to describe the materials that have at least one dimension in the size
range from approximately 1 to 100 nm [4]. Different from the bulk and microscale
materials, nanomaterials are unique in that they have many unusual, useful, and
interesting properties. For example, bulk gold is a very stable precious metal in
golden color, which can be kept for a long time under atmospheric environment,
so it is used as the initial currency by people. Unlike bulk gold, gold nanoparticles
dispersed in water will show different colors according to the size of nanoparticles,
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Figure 1.1 Nanomaterials peculiarities of size scale.

and they have high reactivity that can even be used as catalyst at low temperature
[5]. Since most of the properties of nanomaterials depend on their size, shape,
and surface structure, their ultrafine size always tends nanomaterials to aggregate
into bulk materials, especially without proper stabilization in their formation and
application [6]. This is because the agglomeration process makes the high surface
energy and activity of nanomaterials decrease to a more stable state. Therefore, in
order to preserve the properties of nanomaterials, it is necessary to distribute them
uniformly in matrices to prevent from aggregating into bulk materials [7].

Polymer nanocomposites (PNCs) are the mixture of polymers and nanomaterials,
having at least one-dimensional structure and one component material in the
nanometer regime of less than 100 nm. Combining nanomaterials into the polymer
matrix not only makes it possible to produce a new class of properties provided
by uniformly dispersed nanomaterials, but also greatly improves most of expected
properties of the original polymer, such as mechanical properties, heat resistance,
biodegradability, and so on [8]. As early as 1970, the term “nanocomposites” was
first proposed by Theng [9], and PNCs began to develop in commercial research
institutions and academic laboratories in the late 1980s [10, 11]. Over the past
decade, PNCs have made great progress in various fields, which is reflected by
the exponential growth of publications from their inception (Figure 1.2). The
existence of nanomaterials in polymer matrix changes the surface chemical and
physicochemical properties of PNCs, where the geometry, surface chemistry,
aspect ratio, and size of nanomaterials are the key parameters to regulate these
performances. Therefore, PNCs are a new class of materials with unique properties,
which are far superior to traditional doped and composite polymer systems. The
large interface interaction between nanomaterials and polymer matrix surfaces and
the difference of nanoscale fundamentally distinguish PNCs from the traditional
system. The development of nanomaterials and polymer science and technology
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Figure 1.2 Number of publications per year on “nanomaterials,” “nanocomposites,” and
“polymer nanocomposites,” according to SciFinder Scholar on 30 April 2020.

has promoted many applications of PNCs, which cover almost all fields of polymer
material application fields, such as microelectronics, magnetic electronics, biologi-
cal materials, sensor, energy storage, and so on [12]. Therefore, the chapters include
unique perspectives of different experts with their knowledge and understanding of
PNCs in this book.

1.2 The Advantage of Nanocomposites

Since the fillers of nanocomposites are nanoscale, the performances of nanocom-
posites can be improved by the advantages of the reduction of filler size and the
increased surface area. In terms of size, the filler is 3 orders of magnitude smaller
than the traditional substitute. In addition, the quantum confinement effects caused
by the nanomaterials will lead to new physical phenomena, which can be applied
in electrical and optical research. Many of these properties are related to the size
of the polymer chain, and the polymer chain close to the fillers is affected by the
interaction between the packing surface and the polymer matrix, which is differ-
ent from the polymer chain far away from the interface. The size of polymer chain
can be reflected the radius of gyration Rg, and the thickness of the interface regions
(t) around the particle is independent of the particle size. Therefore, the volume of
interface material (V interface) relative to the volume of particle (V particle) will increase
with the decrease of particle size.

Figure 1.3 shows the functional relationship between the V interface/V particle varies
and the aspect ratio of particles [13]. The aspect ratio reflects the shape of the
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Figure 1.3 The graph on the left shows the function relationship between the ratio of
interfacial volume to the particle volume (V interface/Vparticle) and the particle aspect ratio.
The red shell represents the interface of particle, where the blue nucleus represents the
particle. The graph on the right defines the particle aspect ratio and the ratio of the
interfacial thickness to the particle size (𝛿) with different shapes (r is radius, I is length, h is
height). The interface thickness (t) is considered to be independent of particle size. When
the particle size is reduced to less than 100 nm, the physical properties can be controlled
by the volume of the interface around the particle, which is especially obvious for the
sphere and rod. Source: Winey and Vaia [13].

particles, which can be divided to plate (aspect ratio <1), sphere (aspect ratio = 1),
and rod (aspect ratio >1). 𝛿 represents the size of the filler, that is, the ratio of the
interface thickness t to the minimum dimension size of the particle. For spherical
and rod-shaped particles, 𝛿 is equal to the t/r, but 𝛿 is 2t/h in plate-shaped particles.
When the particle is microscale, 𝛿 is approximately equal to 0.01, and the particle
volume exceeds the volume of the interface region in all shapes. As the particle
size decreases, V interface/V particle values gradually increases. When 𝛿 goes above
one, V interface is going to exceed V particle. When the particles reach the nanoscale
(𝛿 = 10), the interface volume is more than 10 times that of the particle. Moreover,
particles with different shapes have different V interface/V particle in the same 𝛿. The
three-dimension sphere has the highest value, followed by the two-dimensional rod
and the one-dimensional plate. With the decrease of particle size, the gap becomes
more obvious, and even the V interface/V particle of spherical particles is 2 orders of
magnitude larger than that of plate-shaped particles. Therefore, the addition of
nanoscale fillers has a great impact on the performance of polymer in PNCs. Even
if the volume fraction of fillers is very small, the resulting interface region volume
will be very large.

As the interaction between polymer and particle is strengthened in PNCs, the
interparticle interface and coordination will be reflected in the macroscopic prop-
erties. Due to the nanoscale of particles, the secondary forming constituents have a
very high aspect ratio of over 100. When the volume fraction is 1–5%, these fillers
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can reach the percolation thresholds, which refer to the critical value of the volume
fraction of the packed particles that can mutate a certain physical property of the
composite material system. Therefore, the mechanical and transport performances
of PNCs can be greatly improved under the condition of low load nanoparticles.
Especially for the conductive particles, when the volume fraction of these parti-
cles increases to a certain critical value in polymer, conductivity of the polymer
suddenly increases sharply from insulator to conductor, and the change range is up
to 10 orders of magnitude.

1.3 Classification of Nanoscale Fillers

So far, various types of nanomaterials have been found to be able to form PNCs
with polymers. According to different applications, nanoparticles with correspond-
ing properties can be selected into the polymer system to achieve the expected
performance. In general, these nanofillers suitable for PNC applications can be
mainly divided into one-, two-, and three-dimensional materials according to their
different dimensions (Table 1.1).

1.3.1 One-Dimensional Nanofillers

One-dimensional nanofillers are plate-like materials with one-dimensional dimen-
sions less than 100 nm, which are usually a few nanometers thick and relatively
long sheets [14]. Most one-dimensional nanofillers have unique morphology

Table 1.1 Overview of nanomaterials classified by their nanoscale dimensions.

Plate Rod Sphere

L

L

D D1

L
D1

D2
D3

• Montmorillonite clays
(MMT)

• Carbon nanofibers (CNFs) • Nano-silica (n-silica)

• Nanographene platelets
(NGPs)

• Carbon nanotubes (CNTs) • Nano-alumina (n-Al2O3)

• Layered double
hydroxide (LDHs)

• Halloysite nanotubes
(HNTs)

• Nano-silver (n-Ag)

• Nickel nanostrands (NiNs) • Nano-titanium dioxide
(n-TiO2)

• Aluminum oxide nanofibers
(Nafen)

• Nano-silicon carbide (n-SiC)

• Nano-zinc oxide (n-ZnO)
• POSS
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characteristics, such as nanoplate [15], nano-disk [16], nano-wall [17–23], etc.,
which play an important role in functional nano-devices [24, 25]. Recently, the
widely studied materials are montmorillonite clays (MMT) [26], nanographene
platelets (NGPs) [27, 28], ZnO nanosheets [29–31], Fe3O4 nanosheets [30], and
so on, which have excellent electrical, optical, and magnetic properties [32], and
are widely used in the fields of micro–nano electronics, biosensors, and chemical
engineering [33]. The one-dimensional nanofillers are common nanomaterials in
electronic and thermal devices due to their shape characteristics.

1.3.2 Two-Dimensional Nanofillers

Two-dimensional fillers are the materials with two dimensions less than 100 nm,
and they are mostly in the form of rods [14]. The typical two-dimensional nano-
materials are carbon nanofibers (CNFs), carbon nanotubes (CNTs), halloysite
nanotubes (HNTs), nickel nanostrands (NiNS), and aluminum oxide nanofibers
(Nafen). In addition, the most common two-dimensional nanofillers in PNCs
are nanotubes [34], plant fibers [35–39], nanowires [40], carbon fibers [41–44],
oxides [45–55], graphene [56, 57], molybdenum disulfide (MoS2) [58], and hexagon
boron nitride (h-BN) [59]. Compared with one- and three-dimensional fillers,
two-dimensional fillers have better flame retardancy and striped characteristic,
resulting in wide applications in the fields of catalysis, electronics, optics, sensing,
and energy [3, 26, 60–62].

1.3.3 Three-Dimensional Nanofillers

Three-dimensional nanofillers are nanomaterials with three dimensions on the
nanometer scale, so they are mostly spherical or cube-shaped [63], which is
also commonly referred to zero-dimensional particles. The most common three-
dimensional fillers are polyhedral oligomeric silsesquioxane (POSS), nanosilicon,
nanometal particles, nanometal oxides, and quantum dots (QDs) [33, 64]. Among
them, metals and metal oxide nanoparticles have the advantages of high stability,
catalytic activity, and easy preparation, and they are often used in the fields of
catalysis [65], purification [66–69], coatings [70–74], and biological fields [75, 76],
together with various polymers. One-, two-, and three-dimensional nanofillers
all have various special properties, and will ultimately promote the remarkable
performance of PNCs by loading in compatible polymers.

1.4 The Properties of Polymer Nanocomposites

In PNCs, many properties of the original polymer can be greatly improved, as well as
new properties resulting from the addition of nanoparticles. As shown in Figure 1.4,
the main properties of PNCs are listed, covering physical, chemical, and biologi-
cal areas. In general, the improvement level of properties is determined by the size,



1.5 Synthesis of Polymer Nanocomposites 7

Optical

activity

ConductivityLightweight

Thermal

stability
Polymer

nanocomposite

Mechanical

strength

Toughness

Sensing

activity

Biological

activity

Catalytic

activity

Figure 1.4 Significant properties of polymer nanocomposites.

loading capacity, aspect ratio, dispersion uniformity, and interface interactions of the
nanofillers with polymer matrix [4].

For example, most polymers don’t possess conductivity except some conducting
polymers, which is due to the covalent bonding of polymers and the lack of electron
channels or ion migration. Interestingly, new PNCs formed by adding conductive
nanofillers to insulating polymers exhibit many electrical properties. As early as
1994, Ajayan et al. used CNTs as reinforcement materials to prepare PNCs [77].
Since then, there have been a lot of researches on using CNTs as fillers to improve
the electrical properties of PNCs. Only a small volume fraction of such fillers is
needed to improve the electrical properties of polymers by several orders of mag-
nitude effectively [78].

1.5 Synthesis of Polymer Nanocomposites

In the synthesis of PNCs, it is necessary to uniformly distribute the fillers into matrix
in order to realize the functions of fillers. However, due to the fact that the fillers
are nanoscale, the uniform dispersion is much different from that of the microscale
fillers, which is mainly manifested in the following aspects. First, if the filling
operation is carried out according to the volume fraction, much more nanometer
fillers than the microfillers are required at the same volume fraction. Therefore,
the nanoparticles in matrix are very crowded with greater van der Waals and elec-
trostatic interactions between the particles, making it difficult to distribute evenly.
Second, the anisotropic nanofillers have a very high aspect ratio, which makes them
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Table 1.2 Summary of common methods for synthesis of polymer nanocomposites.

Technique Suitable filler Suitable matrix Solvent Controlling factors

Ultrasonication-
assisted
solution mixing

All types Liquid or viscous
monomers or
oligomers of
thermosets

Required Sonication
power and time

Shear mixing Nanosheets Liquid or viscous
monomers or
oligomers of
thermosets

Required Shapes of the
rotor blades,
rotating speed
and time

Three roll
milling

Nanosheets
and nanotubes

Liquid or viscous
monomers or
oligomers of
thermosets

Not
required

Speed of roller,
gap between
adjacent roller

Ball milling All types Liquid or solid
thermoplastics and
thermosets

Not
required

Time of milling,
ball size,
rotating speed,
ball/nanofiller
ratio

Double-screw
extrusion

All types Solid
thermoplastics

Not
required

Processing
temperature,
screw
configuration,
rotation speed

In situ synthesis All types Liquid or viscous
monomers or
oligomers of
thermosets

Required Chemical
reaction
conditions,
temperature,
condensation
rate

more prone to agglomerate. For example, monolayer graphene has aspect ratio of
about 104, so they tend to reduce their surface energy by π–π stacking. Third, a
large amount of nanofillers with huge surface area is loaded in the polymer matrix,
which will produce a large interface area and change the overall performances
of the PNC. Therefore, the decisive step in the synthesis of PNCs is the uniform
dispersion of nanofillers in polymer matrix. As shown in Table 1.2, the common
methods to disperse nanofillers and prevent the aggregation of nanoparticles by
using external energy are summarized.

1.5.1 Ultrasonication-assisted Solution Mixing

The most widely used approach to produce PNCs is ultrasonication-assisted solution
mixing [79–83]. In this method, the nanofillers and polymer are initially dissolved
in a solution. Then the nanofillers are evenly distributed in the matrix in assistant
of the ultrasound. Afterwards, the PNCs are obtained by evaporation of the solvent.



1.5 Synthesis of Polymer Nanocomposites 9

The nanoparticles are separated from the agglomeration state to the smaller units
by the ultrasonic energy, which is higher than the energy of interaction between
the nanomaterials in the aggregates. With the increase of ultrasonic time, the aggre-
gates of nanofillers are broken down into smaller ones, and even become individual
nanoparticles independent of other nanoparticles in the polymer. In addition, this
process often occurs at a high temperature, which can initiate in situ polymerization
of reactive monomers or their soluble prepolymers with nanomaterials to enhance
interfacial interactions [84].

Due to the simple operation and stable performance, the ultrasonic-assisted
solution mixing method has been widely used in the researches of new nanocom-
posites. However, due to the poor effect of ultrasound in high viscosity solution,
most of the polymers need to be dissolved in a high boiling point solvent and
maintain a low concentration, which will affect the process of solvent removal and
ultimately reduce the quality of the nanocomposites. Therefore, when using this
method, it is important to pay attention to the choice of solvent.

1.5.2 Shear Mixing

Compared with the ultrasonic-assisted method, shear mixing is a much more
common and simple method, which only requires the stirring process and has the
potential for industrial mass production [85]. In the process of stirring, the shear
force generated by stirrer rotating is used to separate the aggregates of nanofillers.
Due to the low strength of the shear force, the nanoparticles will be separated
under stirring and then aggregated again, so it is generally necessary to increase the
speed of the agitator to complete the separation. This method generally does not
destroy the structure of nanofillers; therefore it is suitable not only for separating
loosely bound nanoaggregates, but also for stripping off some layered nanosheets.
In addition, this method needs to be carried out in low viscosity solvent just like
ultrasonic assisted method.

1.5.3 Three Roll Milling

Three roller milling is a method of dispersing nanofillers by the shearing force
between rolls in high viscosity matrix, such as ink, paste material, coating, etc. The
machine of three roll milling is composed of three cylindrical rollers with different
rotating speeds, and the adjacent rollers rotate in the opposite direction. The particle
size distribution and uniformity of the packing can be well controlled as the speeds
of the rollers and the gap between them are adjustable. In addition, the shearing
force generated between the rollers is higher than that generated by stirring, so
the method can be applied to high viscosity materials, and carried out under the
condition of little or no solvent. Therefore, this method is often used to disperse
some anisotropic nanofillers, such as CNTs [86–89], graphene nanosheets [90–92],
nanoclays [93–95], and so on.

However, it should be noted that the distance between adjacent rollers should be at
least 1 μm, so the dispersion effect of nanospheres with three-dimensional direction
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less than 100 nm will not be good. The aggregates of nanospheres can only be turned
into smaller units, not broken into individual particle. On the other hand, the rota-
tion of the roller requires the addition of viscous materials, and nanofillers can only
be dispersed in the thermosetting matrix but not in the thermoplastic matrix.

1.5.4 Ball Milling

Ball milling is widely used in metallurgy and mineral processing industry [96]. The
principle of ball milling is to grind and mix powders in a closed space by using
the huge shear force and compression force produced by hard ball collision. In the
synthesis of PNCs, this method can disperse CNTs [97], graphene nanoparticles
[98–101], silica nanoparticles [102], and BNs [103, 104] into thermoplastic and
thermosetting polymers. The high shear force produced by ball milling can peel
off some two-dimensional nanostructures, such as graphene, MoS2, and BNs, but
may not separate the interlayer structure connected by ionic bonding [105–110].
In addition, ball milling is not only suitable for solvent-free conditions but also
solvent-free conditions, so nanofillers can be directly dispersed in some solid
thermoplastic matrix, such as polyethylene (PE) [101, 111], polyphenylene sulfide
[104, 112], and polymethyl methacrylate (PMMA) [102].

1.5.5 Double-screw Extrusion

Double-screw extrusion disperses nanofillers in thermoplastic matrix by huge
shear force generated by high speed rotation of double-screw at high temperature
[113, 114]. This method has been widely used in industry due to the advantages of
solvent-free and environment-friendly technology. With this method, the fillers can
be dispersed into the polymer in a high content way to achieve the well-controlled
performance, and applied to different sizes of nanoparticles, such as graphene
sheets [115], CNTs [116], and silicon dioxide [117]. This method needs higher
temperature, which is helpful to reduce the viscosity of polymer and load more
nanofillers, but also has the risk of decomposing polymers and nanofillers. The
reason is owing to the existence of low thermal stability functional groups in the
materials. When the temperature is too high, the fracture will occur, resulting in
the deterioration of the performance of PNCs [118]. Moreover, the gap between the
screws is too large to keep some aggregates of nanofillers evenly, which will not
achieve the uniform monodispersing of nanofillers. So, it is necessary to combine
other technologies to further improve the performance [119, 120].

1.5.6 In Situ Synthesis

In addition to the aforementioned methods of dispersing prepared nanofillers into
polymers, another important synthesis strategy is in situ synthesis, which directly
generates nanoparticles in polymers through molecular precursors [121]. This
method can be divided into chemical and physical in situ synthesis [122]. Chemical
in situ synthesis is used to synthesize nanoscale fillers by chemical reaction, such
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as the hydrothermal method and sol–gel method [123, 124]. The physical in situ
synthesis is transforming the precursor of gas phase into inorganic nanoparticles
through plasma action, and then condensing the organic compounds on the surface
of inorganic particles to cover the polymer shell to form PNCs [125].

1.6 Conclusions and Future Outlook

In this chapter, the basic principles, properties, and synthesis methods of PNCs are
clearly described. The composite material has unique structure and performance,
and has a wide range of applications in many fields. The particle size, orientation,
shape, dispersion, and volume dispersion of nanofillers affect the properties of
PNCs. Most of the physical, chemical, and mechanical properties of PNCs depend
on the interface interaction between the filler and the matrix. Therefore, the uni-
form dispersion of nanofillers is the most important consideration in the synthesis
of PNCs. PNCs have recently become part of modern technology, but these areas
are still in the early stage of development. With more and more scientists and
engineers contributing to the understanding of PNCs, these functional materials
will be applied in more and more fields.
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