Index

а	batch, definitions 353–354
accelerated seamless antibody	Bayesian optimization 244
purification (ASAP) 183	big data 218, 219
acoustic waves 148–149	bind elute cation exchange
adsorption mechanism 158, 284, 285	chromatography (CEX) 362
adsorptive hybrid filters (AHF) 150	biobetter 179
advanced process control (APC) 121,	biologics market 180
266	biomanufacturing 189, 190, 213
advanced therapy medicinal products	biomanufacturing 4.0 97
(ATMP) 95, 96	biomass concentration 23
alternating tangential flow filtration	biopharmaceutical industry 212
(ATF) 46, 299	biopharma market dynamics 200, 201
American type culture collection (ATCC)	bioprocess intensification 98, 100, 102
107	advanced process control (APC) 121
anion exchange (AEX) 53	artificial intelligence 114
APC-based autonomous operation 323,	automation 115-117
328	autonomation 115–117
application programming interfaces (API)	bioprocess control 112-113
114	bioprocess optimization 106-107
aqueous two-phase extraction (ATPE)	bioprocess simplification 107–108
270, 299, 312, 329	bioreactor design 121–122
artificial intelligence (AI) 60–61, 75, 76,	cloud/edge computing 114
79, 86–88, 114	commercialized systems 120–121
asset performance management (APM)	continuous bioprocessing (CB)
103	108–109
axial dispersion coefficient 290	design of experiments 118
	digital biomanufacturing 110-112
b	digital twins 113
baculovirus expression vector system	enterprise resource management
(BEVS) 105	(ERM) 103
batch and fed batch cultivation	facilities 123–126
conventional approaches 7–8	genetic engineering 104–105
feeding and control strategies 8–9	high-throughput systems 119–120

 $Process\ Control,\ Intensification,\ and\ Digitalisation\ in\ Continuous\ Biomanu facturing,\ First\ Edition.$ Edited by Ganapathy Subramanian.

^{© 2022} WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.

bioprocess intensification (contd.)	hydrocyclones 148		
improved process and product	settlers 149		
development 118	tangential flow filtration (TFF)		
materials media optimization	147–148		
109–110	cell separation and clarification		
materials variability 110	273–278, 306		
methods 120	cell-specific perfusion rate (CSPR) 42		
modeling 114–115	centrifuges 148		
new expression systems 105-106	chemostat cultures 11, 13		
PAT 119	chemostats systems 11		
process monitoring 117-118	chromatography 50, 53, 153–159, 282,		
QbD 119	293, 314–318		
single-use systems 122–123	fiber-based cartridges 156		
sustainability synergy 102–103	flow through and tandem		
synthetic biology 104-105	chromatography 157-158		
bioprocess monitoring 247, 248	membrane absorbers 155–156		
bioreactor design 121–122	mixed matrix membranes (MMM)		
biosensors 117	156–157		
biosimilar market 180	mixed mode chromatography		
biosolve process model 197	158–159		
black-box model 233, 234	monoliths 155		
body-feed filtration 150	prepacked columns 154–155		
budding market 201, 202	citric acid cycle (CAC) 43		
buffer handling 298	clean-in-place (CIP) 107		
bulk drug substance (BDS) 160, 161	cloud/edge computing 114		
	codon optimization 104		
C	coiled flow inverter (CFI) reactor 152		
Cadence in-line concentrator (ILC) 216	coiled flow inverter reactor (CFIR) 151		
Cadence in-line diafiltration (ILDF) 216	computational fluid dynamics (CFD) 44,		
capillary electrophoresis mass	115, 192		
spectroscopy (CE-MS) 118	computer-aided biology (CAB) 118		
capture chromatography 51	continuous bio-manufacturing (CBM) 9,		
cation exchange (CEX) 53	11		
cell clarification device 46	capture and LLE 273–278		
cell culture, process intensification 214	vs. cell cultures 13–14		
cell density of infection (CDI) 106	cell separation and clarification		
cell discard rate (CDR) 42	273–278		
cell disruption 15	chromatography 282–293		
cell free fluid (CFF) 140	E. coli		
cell line development 186, 188	plant usage 21–23		
cell retention 46, 147	subpopulations formation 27–29		
cell retention and harvest	lyophilization 293–295		
acoustic waves 148–149	mass-balancing and macroscopic effects		
centrifuges 148	11–13		
floating filters 148	membrane adsorption 282–293		

in microbial 14–16	design of experiments (DoE) approach
modelling and control strategies	220
19–20	diafiltration processes 216
PAT 320-338	diethylaminoethyl (DEAE) 156
precipitation/crystallization 282-283	digital biomanufacturing (DB) 97,
SPTFF 278-281	110–112, 193
subpopulation monitoring 16–18	digital manufacturing 97, 222, 223
UF/DF 278-281	digital twin-based control 46
USP fed-batch and perfusion 273–275	digital twins 113, 269, 295
continuous bioprocessing (CB) 108–109,	distributed control systems (DCSs) 103
352	DMFCA model 45
continuous countercurrent tangential	DNA impurities 182
chromatography (CCTC) 164	downstream process 180, 181
continuous dead-end filtration 50	continuous 184–185, 189
continuous downstream processing 220	development 188–189, 220–221
continuous manufacturing 255, 257	process intensification in 214–216
continuous monitoring 84	sizing 182–184
continuous population balance equations	downstream process (DSP) 140, 358
(PBE) 253	downstream processing unit operations
continuous validation 84	chromatography 153–159
continuous virus inactivation 362	depth filtration 149–151
contract manufacturing organizations	drug substance freezing 161–162
(CMOs) 211	inline buffer blending and dilution 152–153
critical control points (CCP) 163	inline virus inactivation 151–152
critical process parameters (CPP) 5, 80,	tangential flow filtration 159–161
82, 119, 163, 220	drug substance freezing
critical quality attributes (CQA) 5, 40,	in bags 161–162
80, 82, 119, 162, 220	in bottles 161–162
crossflow filtration 159	in containers 162
cross flow flux (CFF) 363	DSP sensors applications 164–165
cryopreservant 143	dynamic mass balance model 45
Cryovault 162	dynamic soft sensor 250–252
cultivation mode 5, 6	
current Good Manufacturing Practices	e
(cGMP) 107	E. coli 8, 9, 21, 23
	genomic integration 26
d	genotypic diversification 23–25
Darwin's principles 23	phenotypic diversification 25–26
data analysis 358–359	elementary flux analysis (EFM) 45
decision-making process 78	end-to-end upstream 189
depth filtration 149–151	enterprise asset management (EAM)
filter aids 150	103
flocculation 150	enterprise resource management (ERM)
precipitation 150–151	103

enzyme-linked immunosorbent assay (ELISA) 320	high pressure liquid chromatography (HPLC) 51
equipment design 369, 370	high-throughput bioprocess developmen
ethylene and vinyl alcohol (EVAL)	(HTPD) techniques 120
157	high-throughput systems 119–120
expanded bed adsorption (EBA) 182	host cell protein (HCP) 182, 358, 362
extractionoemdash process modeling	human machine interface (HMI) 112
276	hydrocyclones (HC) 148
extreme pathways (EPs) 45	hydrophobic charge induction chromatography 285
f	hydrophobic interaction chromatography
fed-batch cell culture 235	(HIC) 53, 285, 299
fed batch cultivation 140	
fiber-based cartridges 156	i
filter aids 150	iCCC method 314
first principle models (FPMs) 233	independent primary test method (PTM)
floating filters 148	85
flocculation 150	industrial biotechnology 6
flow cytometry 16	industrial internet of things (IIoT) 97,
flow through and tandem	114
chromatography 157, 158	Industry 1.0 212
flow through anion exchange	Industry 2.0 212
chromatography 363	Industry 3.0 212
fluid dynamics 277	Industry 4.0 97, 212, 213
fluidized bed centrifugation (FBC) 47,	infrared spectroscopy 320
148	inline buffer blending and dilution
Fourier-transformed-infrared-	152–153
spectroscopy (FTIR) 321	In-line conditioning (ILC) 196, 197
fragment antigen binding (fABs) 21	inline DF (ILDF) 161
fuzzy control systems 60	inline diafiltration 160–161
	inline virus inactivation 151–152
g	In silico modeling 114
general rate model chromatography 282,	integrated counter current
284	chromatography (iCCC) 299,
gene therapy 226, 227	318, 325, 327
genetic engineering 104–105	integrated process model (IPM) 19
genomic integration 26	internal rate of return (IRR) 125
glycan analysis 194	Internet of Things (IoT) 77
glycosylation 270	ion exchange (IEX) 299
good manufacturing practices (GMP) 88	isoelectrical point (pI) 151
h	j
HIC-SMA process model 287, 289	just-in-time (JIT) system 81
high cell density perfusion process	
214	k
high-performance liquid chromatography	Kalman filter 250, 251
(HPLC) 358	kinetics 277

l	modified Henderson-Hasselbalch 287,
liquid chromatography-mass	288
spectrometry (LC-MS) 110	modified mixed mode 285
liquid-liquid extraction (LLE)	monoclonal antibodies (mABs) 21, 40
continuous biomanufacturing	artificial intelligence control 60–61
273–278	continuous chromatography control
process integration 306	50-53
log reduction value (LRV) 367	continuous dead-end filtration, control
lower molecular weight components	of 49-50
(LMWC) 306	continuous formulation 56–57
lyophilization 271, 293–295, 314, 319	continuous precipitation 54–56
	continuous upstream and downstream
m	46–48
machine learning (ML) based control	continuous viral inactivation 53–54
60-61	high-level monitoring and control
manufacturing cost of goods 197, 198	59–60
manufacturing execution systems (MES)	machine learning control 60–61
103	process 353
manufacturing vs. lab scales	process digitalization 62–63
252, 253	process integration 48–49
mass spectrometry (MS) 110	statistical process control 61–62
mass transfer coefficient 284	surge tanks 57–59
mass transfer kinetics 292	upstream mammalian bioreactor
matrix assisted laser desorption/	control 40–46
ionization (MALDI) 117	Monte Carlo simulations 19
matrix-assisted laser desorption/	multi-attribute method (MAM) 107
ionization time of flight mass	multicolumn protein A chromatography
spectrometry	361–362
(MALDI-TOF-MS) 44	multimodal mode chromatography
membrane absorbers 155–156	(MMC) 158
membrane adsorption 282–283, 293, 314–318	multiple input multiple output (MIMO) 19
metabolic flux analysis (MFA) 45	multitask elastic nets (MEN) 240
metabolite-based control 44, 45	Multivariate Data Analysis (MVDA)
metal-organic framework (MOF) 157	223, 357, 358, 360
Michaelis-Menten kinetic 12	
microbial biotechnology 3	n
mixed matrix membranes (MMM)	N-1 bioreactor 214
156–157	Nelder-Mead estimation 287
mixed mode chromatography (MMC)	net present value (NPV) 125
158–159, 220, 221, 285	non classical IBs (ncIBs) 15
model parameter determination 289,	non-linear model predictive control
291	(NMPC) 60
model predictive controllers (MPC) 121,	normal operating ranges (NOR) 5
322	N-1 perfusion 144–146

0		process analytical tools 186
operation	s performance management	process characterization studies (PCS) 5
(0	PM) 103	process consistency 355
optical ch	aracter reader (OCR) 80	process control
out-of-spe	ecification test results (OOS) 77	automation 356–357
	nd test results (OOT) 77	data analysis 358–359
	otake rate (OUR) 43	downstream processing 358
30 1		PAT approach 357–359
р		real time release testing 360
•	fety, contamination control	upstream processing 358
	5, 366	process control system (PCS) 298
	bioreactors 181	process design space 238
-	systems 10	process development
_	counter-current chromatography	DoE 267
	CC) 183	QbD 266
	orcing 25	strategy 267
-	nilibrium 277	process dynamics 232, 234, 237
	uilibrium isotherms 290	process economy 199, 200
pH-shift		process integration 295, 300
pH titratio		capture and LLE 306
_	hemical models 271	cell separation and clarification 306
	roach 240	chromatography 314–318
	reactors (PFR) 254	CPD vs. experimental data 319–320
	nic flocculation agent	lyophilization 314–319
	lydiallyldimethylammonium	manufacturing platforms 216–217
	loride (pDADMAC) 150	membrane adsorption 314–318
	englycol (PEG) 151	precipitation/crystallization 311–313
	methylene biguanide (PHMB)	SPTFF 309–311
150		UF/DF 309-311
	se chain reaction (PCR) 107	USP fed-batch and perfusion 301–306
	lational modifications (PTMs)	process intensification
21	()	in biomanufacturing 213
precipitat	ion/crystallization 282–283,	in cell culture 214–216
	1, 313	in continuous manufacturing
	component analysis (PCA)	192–194
	3, 239	current bioprocessing 140
	nalytical technology (PAT) 97,	degree of 138
	9, 162–165, 222, 321	development 141–142
	inuous biomanufacturing	in downstream processing 214–216
	0–338	downstream processing unit operations
	strategy 332-335	149–162
	ion and summary 337–338	in DSP 169
	control 357–359	fourth dimension 217
-	simulation 323–328	general aspects of 140–141
-	ased control strategy 322–324	impact costs 169–170
	scopic methods, applicability of	multi-product perfusion platform
-	8–332	190–191
	16, 18, 45	PAT and sensors 162–165
20010	, ,	1111 4114 00115015 102 103

perfusion process 192	r
in seed train development 192	radio frequency identification (RFID)
strategies 139	transponders 163
and SU technology 180	rational design 104
theory and practice 137–139	raw material attributes (RMA) 5
time, influence on 170–171	real time release testing (RTRT) 162,
transition from traditional to intensified	320, 360
165–169	recombinant protein formation 27
upstream processing unit operations 142–149	recombinant protein production (RPP) 13, 24
in vitro requirements of 232	recombinase-mediated cassette exchange
process optimization 242–247	(RMCE) 104
process traceability 353	red-but-not dead phenotype 16
batch and lot definitions 353–354	residence time distribution (RTD) 354
deviation management 354–355	retentostat cultivation 9
lot traceability and deviation	retentostat systems 11
management 354–355	ribozyme engineering 104
product quality attributes (PQA) 163	RNA interference (RNAi) 104
product quality prediction 238–257	root mean squared error in prediction
product resistance 293–296	(RMSEP) 235, 237, 241, 242
product temperature 295	run-to-run optimization 243, 244
pulse-response measurements 355	
pure black box (PLS) model 237	S
	Savitzky-Golay algorithm 249
q	scale down 233, 254, 255
quality assurance (QA) 80, 223–224	scale up 233, 253, 254
quality by design (QbD) 5, 42, 80, 97,	seed-train intensification
119, 360, 361	N-1 perfusion 144–145
bind elute cation exchange	wave bag expansion 144
chromatography 362	settlers 149
continuous virus inactivation 362	simulated moving bed (SMB) 183
flow through anion exchange	single input single output (SISO) 61
chromatography 363	single nucleotide polymorphism (SNP)
multicolumn protein A	24
chromatography 361–362	single pass diafiltration (SPDF) 160
PAT control strategy 322–324	single pass tangential flow filtration
principles 220	(SPTFF) 56, 159–160, 216, 270,
sterile filtration 363	278–281, 363
ultrafiltration and diafiltration 363	continuous biomanufacturing
unit operations, connection of	278–281
364–365	process integration 309–311
virus reduction filtration 363–364	single-use manufacturing 194, 195
quality management, principle 81	single-use systems 122–123
quality risk management (QRM) 82	single use technology (SUT) 180
quality target product profile (QTPP) 82,	cost management 195–196
162	limitations of 198–199
question based review (QbR) documents	size exclusion chromatography (SEC)

284, 320

363

SMART technologies 114	continuous biomanufacturing
soft sensors 247, 248	278–281
dynamic 250–252	process integration 309–311
static 248–250	ultra-performance liquid chromatography
soft-sensors 118	(UPLC) 358
SPC implementation 61	upstream process (USP) 140, 180, 181
static soft sensor 248–250	continuous 184–185
statistical process control 61-62	development 188-189
statistical process control (SPC) charts	fed-batch and perfusion 273-275,
83	301–306
steam-in-place (SIP) 107	process control 358
steric mass action (SMA) models	sensors applications 163
285	sizing 181-182
sterile filtration 363	unit operations
stirred tank reactor (STR) 254	cell retention and harvest 145–149
substrate-based control 44, 45	high density in bags 143-144
supervisory control and data acquisition	large volume cell banking in bags
(SCADA) 112	143–144
support vector regression, radial-basis	seed-train intensification 144–145
kernel function (SVR-rbf) 240	
surge tanks 57–59	V
sustainability synergy 102–103	viable cell densities (VCD) 142
SWOT-analysis 267	virtual sensors 118
synergistic prediction 242, 243	virus filtration 151
synthetic biology 104–105	virus-like particles (VLP) 105, 106
	virus reduction filtration 363–364, 368
t	virus safety
tangential flow filtration (TFF) 46,	in chromatography 367
147–148, 160, 216	low pH virus inactivation 367–368
inline diafiltration 160–161	virus reduction filtration 368
single pass TFF 159–160	
thermal conductivity 293	W
time-space yield should (TSY) 6, 21, 23	water for injection (WFI) 168, 197
transcription activator-like effector	water properties 295
nucleases (TALENs) 104	wave bag expansion 144
transcription induced mutation 24	wave bioreactor 141, 144, 197
transmembrane pressure (TMP) 363	
turbidostat 301	у
Turing Test 76, 77	yeasts 14, 105
	_
U	Z
ultrafiltration/diafiltration (UF/DF) 56,	zinc finger nucleases (ZFNs) 104
160, 270, 299, 363	