Contents

A Personal Foreword *xiii* Preface *xv*

1 Basics of Targeted Drug Delivery 1

- Kshama A. Doshi
- 1.1 Introduction 1
- 1.1.1 Concept of Bioavailability and Therapeutic Index 2

۱v

- 1.2 Targeted Drug Delivery 2
- 1.3 Strategies for Drug Targeting *3*
- 1.3.1 Passive Targeting 4
- 1.3.1.1 Reticuloendothelial System (RES) System 4
- 1.3.1.2 Enhanced Permeability and Retention (EPR) Effect 4
- 1.3.1.3 Localized Delivery 4
- 1.3.2 Active Targeting 5
- 1.3.3 Physical Targeting 5
- 1.3.3.1 Ultrasound for Targeting 6
- 1.3.3.2 Magnetic Field for Targeting 6
- 1.4 Therapeutic Applications of Targeted Drug Delivery 6
- 1.4.1 Diabetes Management 6
- 1.4.2 Neurological Diseases 7
- 1.4.3 Cardiovascular Diseases 8
- 1.4.4 Respiratory Diseases 9
- 1.4.5 Cancer Indications 9
- 1.5 Targeted Dug-Delivery Products 10
- 1.6 Challenges 11
- 1.6.1 Passive Targeting and EPR Effect 12
- 1.6.2 Active Targeting 12
- 1.7 Scale-up and Challenges 13
- 1.8 Current Status 14
- 1.9 Conclusion and Prospects 15 References 16

vi Contents

2	Addressing Unmet Medical Needs Using Targeted
	Drug-Delivery Systems: Emphasis on Nanomedicine-Based
	Applications 21
	Chandrakantsing Pardeshi, Raju Sonawane, and Yogeshwar Bachhav
2.1	Introduction 21
2.2	Targeted Drug-Delivery Systems for Unmet Medical Needs 23
2.2.1	Targeting Ligands 25
2.2.1.1	Small Molecules as Targeting Ligands 25
2.2.1.2	Aptamers as Targeting Ligands 27
2.2.1.3	Antibodies as Targeting Ligands 28
2.2.1.4	Lectins as Targeting Ligands 28
2.2.1.5	Lactoferrins as Targeting Ligands 29
2.2.2	Targeting Approaches 29
2.2.2.1	Disease-Based Targeting 29
2.2.2.2	Location-Based Targeting 32
2.3	Regulatory Aspects and Clinical Perspectives 35
2.4	Conclusion and Future Outlook 38
	List of Abbreviations 38
	References 39
7	Newscowiews Deced Texasted Dwise Delivery Systems Swell
5	Nanocarriers-Based Targeted Drug Delivery Systems: Small
	and Macromolecules 45
2.1	Presiliu Desul
5.1	Delivery 45
3.2	Passive Targeting Approaches 50
3.2.1	Enhanced Permeability and Retention-Effect-Based Targeting 50
3.3	Active Targeting Approaches 52
3.4	Stimuli Responsive Targeted NCs 54
3.4.1	Redox Stimuli Responsive Targeted NCs 55
3.4.2	pH Stimuli Responsive Targeted NCs 56
3.4.3	Enzyme Stimuli Responsive Targeted NCs 57
3.4.4	Temperature Stimuli Responsive Targeted NCs 58
3.4.5	Ultrasound Stimuli Responsive Targeted NCs 59
3.4.6	Magnetic Field Stimuli Responsive Targeted NCs 59
3.5	Conclusion and Future Prospects 60
	References 60
4	Linosomes as Targeted Drug-Delivery Systems 60
•	Raahavendra C Mundarai Neetika Taneia Javeshkumar I Hadia and
	Aiay I Khonade
41	Introduction 69
4.2	Linosome Commercial Landscape 72
43	Important Considerations in Development and Characterization of
	Linosomes 80

- 4.3.1 Selection of Lipids 80
- 4.3.2 Drug : Lipid Ratio 81
- 4.3.3 PEGylation 82
- 4.3.4 Ligand Anchoring 83
- 4.3.5 Drug-Loading Techniques 84
- 4.3.6 Physicochemical Characterization 85
- 4.3.7 Manufacturing Process 86
- 4.3.8 Product Stability 87
- 4.4 Targeted Delivery of Liposomes 88
- 4.4.1 Passive Targeting 89
- 4.4.2 Active-Targeted Delivery 92
- 4.4.2.1 Cancer Cell Targeting 94
- 4.4.2.2 Tumor Endothelium Targeting 98
- 4.5 Recent Clinical Trials with Liposomes with Investigational Liposome Candidates *102*
- 4.6 Factors Influencing the Clinical Translation of Liposomes for Targeted Delivery *103*
- 4.7 Conclusions and Future of Prospects of Targeted Liposomal-Delivery Systems 108
 List of Abbreviations 110

References 112

5 Antibody–Drug Conjugates: Development and Applications 127

Rajesh Pradhan, Meghna Pandey, Siddhanth Hejmady, Rajeev Taliyan, Gautam Singhvi, Sunil K. Dubey, and Sachin Dubey

- 5.1 Introduction 127
- 5.2 Design of ADCs 128
- 5.2.1 Antibody 129
- 5.2.2 Linker 130
- 5.2.3 Payload 132
- 5.3 Mechanism of Action 133
- 5.4 Pharmacokinetic Considerations for ADCs 134
- 5.4.1 Heterogeneity of ADCs 134
- 5.4.2 Bioanalytical Considerations for ADCs 135
- 5.4.3 Pharmacokinetic Parameters of ADCs 136
- 5.4.3.1 Absorption 136
- 5.4.3.2 Distribution 136
- 5.4.3.3 Metabolism and Elimination 136
- 5.5 Applications of ADCs 137
- 5.5.1 Approved ADCs in the Market 137
- 5.5.1.1 Gemtuzumab Ozogamicin 137
- 5.5.1.2 Brentuximab Vedotin 139
- 5.5.1.3 Ado-Trastuzumab Emtansine (T-DM1) 139
- 5.5.1.4 Inotuzumab Ozogamicin 139

- 5.5.1.5 Polatuzumab Vedotin-piiq 140
- 5.5.1.6 Enfortumab Vedotin 140
- 5.5.1.7 Trastuzumab Deruxtecan 140
- 5.5.2 Use of ADCs in Rheumatoid Arthritis 141
- 5.5.3 Use of ADCs in Bacterial Infections 141
- 5.5.4 Use of ADCs in Ophthalmology 141
- 5.6 Resistance of ADC 142
- 5.7 Regulatory Aspects for ADCs 143
- 5.7.1 Role of ONDQA *143*
- 5.7.2 Role of OBP 144
- 5.8 Conclusion and Future Direction 144 References 145
- 6 Gene-Directed Enzyme-Prodrug Therapy (GDEPT) as a Suicide Gene Therapy Modality for Cancer Treatment 155
 - Prashant S. Kharkar and Atul L. Jadhav
- 6.1 Introduction 155
- 6.2 GDEPT for Difficult-to-Treat Cancers 159
- 6.2.1 High-Grade Gliomas (HGGs) 159
- 6.2.2 Triple-Negative Breast Cancer (TNBC) 161
- 6.2.3 Other Cancers 162
- 6.3 Novel Enzymes for GDEPT 164
- 6.4 Conclusions 165 References 165

7 Targeted Prodrugs in Oral Drug Delivery 169

- Milica Markovic, Shimon Ben-Shabat, and Arik Dahan
- 7.1 Introduction 169
- 7.1.1 Classic vs. Modern Prodrug Approach 170
- 7.2 Modern, Targeted Prodrug Approach 171
- 7.2.1 Prodrug Approach-Targeting Enzymes 171
- 7.2.1.1 Valacyclovirase-Mediated Prodrug Activation 172
- 7.2.1.2 Phospholipase A₂-Mediated Prodrug Activation 173
- 7.2.1.3 Antibody, Gene, and Virus-Directed Enzyme–Prodrug Therapy *175*
- 7.2.2 Prodrug Approach Targeting Transporters 176
- 7.2.2.1 Peptide Transporter 1 177
- 7.2.2.2 Monocarboxylate Transporter Type 1 179
- 7.2.2.3 Bile Acid Transporters 180
- 7.3 Computational Approaches in Targeted Prodrug Design 181
- 7.4 Discussion 182
- 7.5 Future Prospects and Clinical Applications 183
- 7.6 Conclusion 183
 - References 184

- Anjali Pandya, Sreeranjini Pulakkat, and Vandana Patravale
- 8.1 Extracellular Vesicles: An Overview 193
- 8.1.1 Evolution of Exosomes 194
- 8.1.2 Exosomes as Delivery Vehicles for Therapeutics 195
- 8.1.2.1 Endogenous Loading Methods 198
- 8.1.2.2 Exogenous Loading Methods 198
- 8.2 Exosomes as Cancer Therapeutics 199
- 8.2.1 Influence of Donor Cells 202
- 8.2.2 Different Therapeutic Cargo Explored in Cancer Therapy 202
- 8.2.2.1 Delivery of Proteins and Peptides 203
- 8.2.2.2 Delivery of Chemotherapeutic Cargo 204
- 8.2.2.3 Delivery of RNA 204
- 8.3 Exosome Based Drug Delivery for Cardiovascular Diseases 206
- 8.3.1 Delivery of Cardioprotective RNAs 207
- 8.3.2 Exosomes Modified with Cardiac Targeting Peptides 208
- 8.4 Clinical Evaluations and Future Aspects 210
- 8.5 Conclusion 211 Acknowledgments 212 References 212
- 9 Delivery of Nucleic Acids, Such as siRNA and mRNA, Using

Complex Formulations 221

Ananya Pattnaik, Swarnaparabha Pany, A. S. Sanket, Sudiptee Das, Sanghamitra Pati, and Sangram K. Samal

- 9.1 Introduction 221
- 9.2 NA-Based Complex Delivery System 228
- 9.2.1 Classical NA-Based Complex Delivery System 229
- 9.2.1.1 Polymer-Based NA-Complex Delivery System 229
- 9.2.1.2 Lipid-Based Complex NA Delivery System 230
- 9.2.1.3 Peptide-Based Complex NA Delivery System 231
- 9.2.2 Advanced NA-Based Complex Delivery Systems 232
- 9.2.2.1 Inorganic and Hybrid NPs 232
- 9.2.2.2 Self-Assembled NA Nanostructures 233
- 9.2.2.3 Exosomes and NanoCells 233
- 9.3 Applications of NA-Complex Delivery Systems 234
- 9.3.1 Genome Editing 235
- 9.3.2 Cancer Therapy 237
- 9.3.3 Protein Therapy 238
- 9.4 Future Prospective 239
- 9.5 Conclusion 240
 - Acknowledgments 240
 - References 240

x Contents

10	Application of PROTAC Technology in Drug Development 247
10.1	Prushani S. Khuikai ana Alai L. Jaanav
10.1	Design of DDOTACS: A Drief Ocertian, 252
10.2	Design of PROTACS: A Brief Overview 252
10.3	Concerned 255
10.3.1	Cancer 255
10.3.2	Neurodegenerative Disorders 261
10.3.3	Immunological Diseases 263
10.3.4	Viral Infections 264
10.4	Challenges and Limitations in the Development PROTACs 265
10.5	Future Perspectives 266
	References 266
11	Metal Complexes as the Means or the End of Targeted
	Delivery for Unmet Needs 271
	Trevor W. Hambley
11.1	Introduction 271
11.2	Class 1: Chaperones 272
11.2.1	Chaperones that Protect Drugs 273
11.2.2	Delivery to the Cells or Environments to Be Targeted 275
11.2.3	Release from the Metal Where and When Required 276
11.3	Class 2: Active Metal Complexes 276
11.3.1	Targeted Platinum Agents 277
11.4	Class 3: Dual-Threat Metal Complexes 279
11.5	Targeting Strategies: The Chemical and Physical Environment 280
11.5.1	Hypoxia 281
11.5.2	pH-Based Targeting 282
11.5.3	The EPR Effect 283
11.5.5	Targeting Strategies: Transporters 284
11.0	Targeting Strategies: Enzyme Activation 286
11.7	Other Targeting Strategies 287
11.0	Conclusions 288
11.9	Pafarances 280
	References 209
12	Formulation of Peptides for Targeted Delivery 299
	Pankti Ganatra, Karen Saiswani, Nikita Nair, Avinash Gunjal, Ratnesh Jain,
	and Prajakta Dandekar
12.1	Introduction 299
12.2	Peptides Used in Cancer Therapy 302
12.2.1	Lung Cancer 303
12.2.2	Melanoma 304
12.2.3	Pancreatic Cancer 306
12.2.4	Brain Cancer 307
12.2.5	Breast Cancer 309
12.2.6	Leukemia 312
12.3	Peptide-Targeting Based on Site of Action 315

- 12.3.1 Topical Delivery of Peptides 315
- 12.3.2 Ocular Delivery of Peptides 317
- 12.3.3 Brain Delivery of Peptides 319
- 12.3.4 Lung-Targeted Delivery of Peptides 321
- 12.4 Conclusion and Future Prospects 323 References 324

13 Antibody-Based Targeted T-Cell Therapies 327

Manoj Bansode, Kaushik Deb, and Sarmistha Deb

- 13.1 Introduction 327
- 13.2 Immune-Directed Cancer Cell Death 328
- 13.3 Immunotherapy Strategies in Cancer 328
- 13.4 T-Cell Therapy 329
- 13.5 Naturally Occurring T Cells 329
- 13.6 Genetically Modified Occurring T Cells 330
- 13.7 Clinical Implication of T-Cell and CAR-T-Cell Therapy: 330
- 13.8 Antibody-Induced T-Cell Therapy 332
- 13.9 A Bispecific Antibody (BsAbs)-Induced T-Cell Therapy 332
- 13.10 Formats of BsAbs 335
- 13.11 Triomab Antibodies in T-Cell Therapy 335
- 13.12 Bispecific Antibodies in T-Cell Therapy 336
- 13.13 Clinically Approved T-Cell-Activating Antibodies 337
- 13.14 Prospects 337
- 13.15 Conclusion 339
 - References 339

14 Devices for Active Targeted Delivery: A Way to Control the Rate and Extent of Drug Administration 349

Jonathan Faro Barros, Phedra F. Sahraoui, Yogeshvar N. Kalia, and Maria Lapteva

- 14.1 Introduction 349
- 14.2 Macrofabricated Devices Drug Infusion Pumps 351
- 14.2.1 Peristaltic Pumps 351
- 14.2.2 Gas-Driven Pumps 352
- 14.2.3 Osmotic Pumps 353
- 14.2.4 Insulin Pumps 354
- 14.2.4.1 Diabetes and Insulin Product Development 354
- 14.2.4.2 Open-Loop Insulin Delivery Systems 355
- 14.2.4.3 Closed-Loop Insulin Delivery Systems 360
- 14.3 Microfabricated and Nanofabricated Drug Delivery Devices 364
- 14.3.1 Microelectromechanical Systems (MEMS) 364
- 14.3.1.1 Microchip-Based MEMS 364
- 14.3.1.2 Pump-Based MEMS 366
- 14.3.1.3 MEMS Efforts to Close the Loop 368
- 14.3.2 Nanofabricated Drug Delivery Devices 369

ĸij	Contents
ĸ	Contents

14.4	Noninvasive Active Drug Delivery Systems: Iontophoresis 372
14.5	Conclusions 376
	Acknowledgments 377
	List of Abbreviations 377
	References 378
15	Drug Delivery to the Brain: Targeting Technologies to Deliver
	Therapeutics to Brain Lesions 389
	Nishit Pathak, Sunil K. Vimal, Cao Hongyi, and Sanjib Bhattacharyya
15.1	Introduction 389
15.2	Brain Tumor 390
15.2.1	Obstacles to Brain Tumor-Targeted Delivery 391
15.2.2	Brain-Tumor-Focused Nano-Drug Delivery 393
15.3	Neurodegenerative Diseases 396
15.3.1	Alzheimer's Disease (AD) 396
15.3.1.1	Alzheimer's Disease Focused on Drug Delivery 396
15.3.2	Parkinson's Disease 399
15.3.2.1	Drug Delivery Focussed on Parkinson's Drug Disease 399
15.3.3	Cerebrovascular Disease 400
15.3.3.1	Drug Delivery for Cerebrovascular Disease 400
15.3.4	Inflammatory Diseases (ID) 402
15.3.4.1	Inflammatory Diseases (ID) Focused on Drug Delivery 402
15.3.4.2	Drug Delivery for the Treatment of Neuro-AIDS 403
15.3.5	Drug Delivery for Multiple Sclerosis (MS) 403
15.4	Drug Delivery for CNS Disorders 404
15.4.1	Tau Therapy 405
15.4.2	Immunotherapy 407
15.4.3	Gene Immunotherapy (GIT) 407
15.4.4	Chemotherapy (CT) 408
15.4.5	Photoimmunotherapy (PIT) 408
15.5	Future Prospects 410
15.6	Conclusions 410
	List of Abbreviations 411
	References 412
	Index 425

xii