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1.1 The Development of Carbon Materials

The pursuit of new materials with nontraditional architecture is one of the hot spots
in current research [1–3]. Carbon-based nanomaterials (such as fullerenes, carbon
nanotubes, and graphene) have attracted much attention due to their special struc-
tures and chemical and physical properties [4–7]. Carbon materials have experi-
enced a long history of development. The contact of carbon materials with humans
can be traced back to the earliest appearance of humans on the earth.

The first known existence of carbon was charcoal and soot. Diamond is a famous
allotype of carbon, which was discovered by humans as early as 4000 BCE. Graphite
is the most widely used allotrope of carbon and was found in the sixteenth century.
Although carbon is one of the oldest elements, it is surprising that it constantly
shows great vitality for the discovery of new allotropes (Figure 1.1), such as fullerene
(1985), carbon nanotubes (1991), graphene (2004), and graphdiyne (GDY) (2010).
The application of carbon materials can even be considered to promote the progress
of human society and the development of other materials. In fact, the unique
valence bond hybrid forms of carbon molecules, namely sp, sp2, and sp3, ensure that
carbon allotropes can be constructed in various possible forms and exhibit different
intrinsic properties. Diamond is composed of sp3-hybridized carbon, while graphite,
fullerene, carbon nanotubes, and graphene are composed of sp2-hybridized carbon.
sp2 hybrid carbon can enhance the conjugation of materials and exhibit good
electrical conductivity, while sp3 hybrid carbon has three-dimensional (3D) spatial
configuration in carbon materials, which can further improve the rigidity of related
materials. The sp hybrid carbon has a linear structure, which can improve the
porosity and provide enough active or storage sites for other atoms. At present, the
reasonable design of carbon materials and the full use of the advantages of the three
hybrid carbon materials are of great significance in many research fields.

An interesting family of carbon allotropes is represented by the so-called gra-
phynes (GYs) and GDYs. In general, these allotropes are flat one-atom-thin carbon
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Figure 1.1 The development of carbon materials.
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Figure 1.2 Schematic structures of graphene, carbyne, and graphynes, which comprise
exclusively sp-atoms, sp2-atoms, and both types: (sp+ sp2) atoms, respectively.

networks (such as graphene), which can be constructed by replacing some =C=C=
bonds in graphene by uniformly distributed acetylenic bonds —C≡C— (graphynes)
or diacetylenic bonds —C≡C—C≡C— (GDYs). In both cases, the resulting net-
work consists of two nonequivalent types of carbon atoms: threefold coordinated
sp2-hybridized atom and twofold coordinated sp-hybridized atom. In this context,
these flat carbon networks can be regarded as the “intermediate” (sp2 + sp) systems
between two famous carbon allotropes: graphene (containing only sp2-like atoms)
and carbyne (containing only sp-like atoms) [8], see Figure 1.2. We can simply
classify these materials according to the number of “—C≡C—” bonds connecting
two adjacent sp2-hybridized carbon atoms. As shown in Figure 1.2, they are called
graphyne, GDY, and graphyne-n [9].

The history of systematic study of (sp+ sp2) allotrope family began in 1987, when
Baughman et al. [10] first proposed the structural model of graphynes and discussed
some macrocyclic subunits suitable for creating these networks. Ten years later
(1997), the structure of GDY was predicted and many small diacetylene molecules
had been synthesized, which had become the “hot” spot of synthetic chemistry
for a period of time. These studies started in the mid-1990s and continued into
the new millennium. The chemists began some computational simulation and
theoretical studies during this period, and the related materials with different
sizes and dimensions [11–16], as well as some of their B–N and B–C–N analogues
[15, 17–19] were also experimented by theoretical simulation. On the other hand,
the experimental efforts in the synthesis of subunits of these systems were closely
related to organic chemistry, that is, new synthetic routes in annulene chemistry
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[20]. However, research in these areas has not advanced much because of the serious
lack of innovation in synthetic methods, leading to the study of the synthesized
GDY in the synthesis and properties of some small-molecule diacetylene. It was
in 2010 that the synthesized bottleneck of GDY was broken, and this was a great
success. A new allotrope of carbon was born, which opened up a new field for
research in carbon materials.

1.2 Models and Nomenclature

In 1968, Balaban et al. first proposed a rich and diverse planar carbon network (con-
sisting of only sp2-bonded atoms with a threefold coordination) [21]. The search line
was actively extended, and then a large number of related two-dimensional peri-
odic carbon networks were constructed from non-C6 carbon polygons. For example,
so-called pentaheptites [22, 23] (formed by periodically distributed pentagons C5
and heptagons C7) or haeckelites [24] (including pentagons C5, hexagons C6, and
heptagons C7, see Figure 1.3), as well as some other related types of carbon networks,
sometimes referred to as graphene allotropes [9, 27–35], were proposed and success-
fully investigated. Here, the so-called two-dimensional supracrystals [25, 36] can
also be mentioned, Figure 1.3. These hypothetical low-stable polycyclic networks
are composed of strained cycles such as C3, C4, and C12; therefore, their synthesis
seems very suspicious. The recently studied 2D “square carbon” [25] also belongs to
this category.
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Figure 1.3 Structural motifs of some 2D carbon networks: 1.1: pentaheptites [22, 23],
1.2: haeckelites [24], and 1.3–1.7: some hypothetical so-called 2D carbon supracrystals –
polycyclic networks (based on Kepler’s nets) composed of strained cycles such as C3, C4,
and C12 [25]. Source: Ivanovskii [26]. © 2013, Elsevier.
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Graphynes are a series of stable two-dimensional crystalline carbon allotropes
composed of sp- and sp2-hybridized carbon atoms. Their structural models were
first proposed by R. H. Baughman et al. [10]. They have a two-dimensional
structure similar to graphite and contain acetylenic linkages (sp components),
referred to as graphyne. Accordingly, sp- and sp2-hybridized carbon atoms can be
connected to each other according to certain hybrid rules, producing a variety of
2D structures [26]. Some of such GYs are depicted in Figure 1.4. These (and related)
networks fall into four categories: I–IV, see Figure 1.4. Therefore, the structure of
group I (GY1) includes hexagons C6, which are connected to each other by —C≡C—
linkages. The two networks (GY2, GY3) of the second family consist of hexagonal C6
and a pair of sp2 atoms (C=C bonds), which are interconnected by —C≡C— link-
ages. The three networks of group III (GY4–GY6) have no hexagonal C6 and only
contain paired sp2 atoms (C=C bond). They are connected by —C≡C—bonds (GY4,
GY5), or by paired sp2 atoms and isolated sp2 atoms (GY6). Finally, the network of
group IV (GY7) consists of isolated sp2 atoms, which are connected to each other
by —C≡C— linkages. This network (so-called supergraphene) can be seen as a
graphene-like structure, in which all C=C bonds are replaced by acetylenic linkages
—C≡C—. Therefore, GY7 has the same hexagonal p6m symmetry as graphene.

Today, there is still no standard classification of such graphyne systems. In the
first work, Baughman et al. [10] designated the GY networks to be considered
in the simplified nomenclature, which defines the number of carbon atoms in
different rings forming a given network. According to this method, graphynes can
be named as a, b, and g-graphyne, where a and b represent the number of carbon
atoms in the smallest ring of the graphynes (a ring) and number of carbon atoms
in the adjacent smallest ring of the graphynes (b ring), respectively. Among them,
rings a and b are connected by C(sp2)C(sp)C(sp)C(sp2). The index g is the number

5

7

GY1′ GY2′

GY3′ GY4′ GY5′

5
6

8

Figure 1.5 Some possible atomic motifs of graphyne-like structures, which are termed in
the text as GY1′–GY5′. Source: Ivanovskii [26]. © 2013, Elsevier.
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of carbon atoms in the third ring of graphynes, which is connected to ring b by
C(sp2)C(sp)C(sp)C(sp2). For example, GY2 network is called 6,6,12-graphyne, GY4
is named 12,12,12-graphyne, and supergraphene (GY7) is called 18,18,18-graphyne.
In addition, for convenience, several kinds of graphynes are commonly named
after the Greek alphabet [36], which can be called as the customary nomenclature:
α-graphyne (GY7) [38], β-graphyne (GY4) [39], and γ-graphyne (GY1) [12].

Coming back to possible types of graphynes, the structures of GY1′ and GY2′

(Figure 1.5) can be easily constructed from pentaheptite or haeckelite networks by
simple replacement of all C=C bonds by acetylenic linkages —C≡C—; the struc-
tures of GY3 and GY4′ are graphyne-like analogues of some 2D carbon supracrystals
depicted in Figure 1.3. Besides, various graphene/graphyne “hybrids” can be sup-
posed. A simple example is GY5′, which includes “stripes” of hexagons C6 bonded
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Figure 1.6 Graphdiyne with special properties and the related potential applications. EMI;
1-ethyl-3methylimidazolium, PVdF; poly(vinylidene fluoride), BF4; tetrafluoroborate, GD NS;
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by acetylenic linkages —C≡C—, etc. On the other hand, in all of the described gra-
phynes, the sp2 atoms are bonded by “single” —C≡C— linkages. Therefore, one
more way of construction of graphyne-like networks is to increase the length of
linear carbine-like atomic chains between sp2 atoms, i.e. to replace (—C≡C—) by
(—C≡C—C≡C—) or (—C≡C—C≡C—C≡C—) chains, etc. which connect either
hexagons C6, or pairs of sp2 atoms, or individual sp2 atoms.

1.3 Brief Introduction of Graphdiyne

The chemical study of carbon-rich molecules has and will continue to produce
significant structures in size, topology, and spatial direction. Nevertheless, the
achievements of early chemists were indeed remarkable in the current synthetic
and analytical techniques that modern chemists take for granted. Advanced
synthesis methods for alkyne chemistry have been developed through Sonogashira
cross-coupling reactions or oxidative acetylenic coupling reactions catalyzed by
Cu-[47, 48] or Pd/Cu [49]. The on-surface chemistry also provides a new way for
the development of GDY.

GDY has butadiyne linkage between two adjacent aromatic rings. The develop-
ment of GDY prepared by in situ Glaser coupling reaction of hexaethynylbenzene
(HEB) monomers on a copper (Cu) substrate by Professor Yuliang Li’s group [50] in
2010, is widely recognized as a great breakthrough regarding the structure of carbon
materials. One of the most important features of the chemical structure of GDY is
the presence of quantitative sp carbon, which gives it some characteristics that other
carbon materials do not have [51, 52].

Theoretical analysis shows that GDY has a direct natural bandgap (0.46 eV) [53]
and a Dirac cone structure, which can be attributed to the inhomogeneous π-bonding
between the sp and sp2-hybridized carbon (Figure 1.6). GDY has excellent electri-
cal properties, such as high carrier mobility and small carrier effective mass, which
make it promising for nanoelectronics [54]. Both the intrinsic holes and electrons
mobility of GDY at room temperature can reach up to 105 cm2 V−1 s−1[55]. As the
number of GDY layers increases, the band gap of GDY decreases and the direct band
gap remain unchanged. The mechanical properties of GYs are considered as a func-
tion of the number and arrangement of acetylenic linkages [9, 56]. The expanded
pores surrounded by the butadiyne linkers and benzene rings in the structure pro-
vide additional space for the storage and diffusion of metal atoms such as lithium
and sodium. Moreover, the uniformly distributed in-plane pores of GDY can also
promote the vertical transfer of ions [57].

Another unique feature of GDY -based materials is that they can be prepared by
chemical methods, which is conducive to adjusting and optimizing their morphol-
ogy and some fundamental chemical properties, including the conductivity, size and
distribution of the pores, and affinity to certain metal atoms. In addition, the posi-
tion and number of heteroatoms introduced in GDY can be well controlled by this
preparation method [58]. GDY has been synthesized under different experimental
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conditions in the forms of films, nanowires, nanotube arrays, nanowalls, 3D foams,
nanosheets and ordered stripe arrays, etc.

The above structural features and performance advantages make it possible and
convenient to adjust and optimize the electrochemical properties of GDY, leading
to the wide application of GDY in efficient separation, energy storage, photoelectric
and energy conversion (Figure 1.6). The abundant distribution of alkyne bonds
makes the charge distribution on the GDY surface extremely uneven, which endows
it with more active sites, leading to higher intrinsic activity, which can effectively
promote the catalytic reaction process. Therefore, GDY should be a valuable
complement to popular sp2-hybridized carbon materials for constructing new
concepts and highly active metal-free catalysts and understanding their catalytic
mechanisms.

In Chapters 2–4, we will introduce the fundamental characteristics of GDY in
terms of experiment and theory, namely electrical, mechanical, and optical prop-
erties [51, 52, 58, 59]. More importantly, we will focus on the application of GDY in
catalysis [41, 42] (Chapter 5), energy conversion and storage [43, 44] (Chapters 6, 7),
electronic devices [46] (Chapter 8), detectors, biomedicine and treatment [45], and
water purification [40] (Chapter 9).
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