Contents

Preface xi
About the Editor xiii

1 Earth-Abundant Metal-Based Nanomaterials for Electrochemical Water Splitting 1
Weiran Zheng, Yong Li, and Lawrence Yoon Suk Lee
1.1 Electrochemical Water Splitting 1
1.1.1 General Principle 1
1.1.2 Overpotential and Tafel Slope 3
1.1.3 Current Techniques 4
1.2 Earth-Abundant Metallic Nanomaterials 5
1.2.1 Hydrogen Evolution Reaction (HER) 6
1.2.1.1 Mechanism 6
1.2.1.2 Metal (M⁰) Nanoparticles 7
1.2.1.3 Metal (M⁰) Single-Atom Catalysts 8
1.2.1.4 Metal Phosphides 11
1.2.1.5 Metal Chalcogenides 12
1.2.1.6 Metal Nitrides 14
1.2.1.7 Metal Carbides 15
1.2.1.8 Metal Oxides/(Oxy)hydroxides 15
1.2.2 Oxygen Evolution Reaction 16
1.2.2.1 Mechanism 16
1.2.2.2 Metal Oxides/Hydroxides 19
1.2.2.3 Metal (Mn⁺) Single-Atom Catalysts 25
1.2.2.4 Metal Chalcogenides/Nitrides/Phosphides and Others 26
1.3 Computer-Assisted Materials Discovery 28
1.4 Challenge and Outlook 29
1.4.1 Reliability Comparison Between Results 29
1.4.2 Gap Between Industrial and Laboratorial Research 30
1.4.3 Outlook 30
References 31

2 Studies on Cerium-Based Nanostructured Materials for Electrocatalysis 41
Xuemei Zhou, Mingkai Zhang, Yuwei Jin, and Yongquan Qu
2.1 Introduction 41
2.2 Cerium-Based Nanostructure Materials 42
2.3 Cerium-Based Electrocatalysts for HER 44
2.3.1 Cerium-Doped Electrocatalysts for HER 44
2.3.2 Composites with CeO₂ for HER 45
2.4 Cerium-Based Electrocatalysts for OER 49
2.4.1 Cerium-Doped Electrocatalysts for OER 50
2.4.2 Composites with CeO₂ for OER 50
2.5 Cerium-Based Electrocatalysts for ORR 57
2.5.1 Noble Metals with Ce/Ceria for ORR 58
2.5.2 Doping Ce Element into Earth-Abundant Electrocatalysts for ORR 59
2.5.3 CeO₂-Based Electrocatalysts for ORR 60
2.6 Cerium-Based Electrocatalysts for Other Electrochemical Reactions 63
2.7 Conclusions and Outlooks 65
Acknowledgment 67
References 67

3 Metal-Free Carbon-Based Nanomaterials: Fuel Cell Applications as Electrocatalysts 73
Lai-Hon Chung, Zhi-Qing Lin, and Jun He
3.1 Introduction 73
3.2 Heteroatom-Doped Carbon Nanomaterials 75
3.2.1 Heteroatom-Doped Carbon Nanotubes 76
3.2.2 Heteroatom-Doped Graphenes 80
3.2.3 Heteroatom-Doped Graphdiyne 94
3.2.4 Heteroatom-Doped Porous Carbon Nanomaterials 97
3.2.5 Heteroatom-Doped Composite Materials 105
3.2.6 Better ORR Performance in Acidic Medium 108
3.3 Undoped Carbon Nanomaterials 111
3.3.1 Edge as Defect 112
3.3.2 Intrinsic/Topological Defects 114
3.4 Carbon-Based Organic Framework 117
3.5 Application in Fuel Cells 120
3.5.1 Application in Alkaline Fuel Cell and PEMFC 121
3.5.2 Application in Zinc–Air Battery 124
3.6 Conclusion 129
References 130

4 Rare Earth Luminescent Nanomaterials and Their Applications 141
Jianle Zhuang and Xuejie Zhang
4.1 Introduction 141
4.2 Rare Earth Based UCNPs 142
4.2.1 Development of Upconversion Materials 142
4.2.2 Upconversion Mechanism 143
4.2.2.1 Excited-State Absorption (ESA) 143
4.2.2.2 Energy Transfer Upconversion (ETU) 143
4.2.2.3 Cooperative Upconversion (CUC) 144
4.2.2.4 Cross Relaxation (CR) 144
4.2.2.5 Photon Avalanche (PA) 144
4.2.2.6 Energy Migration-Mediated Upconversion (EMU) 145
4.2.3 Composition of UCNPs 145
4.2.3.1 Host 145
4.2.3.2 Activator 145
4.2.3.3 Sensitizer 146
4.2.4 Synthesis of UCNPs 146
 4.2.4.1 Thermal Decomposition 146
 4.2.4.2 Hydro/Solvothermal Synthesis 149
 4.2.4.3 Coprecipitation 149
 4.2.4.4 Sol–Gel Synthesis 150
 4.2.4.5 Microwave-Assisted Synthesis 150
 4.2.5 Characterization of UCNPs 150
 4.2.5.1 Identification of Crystal Structures 151
 4.2.5.2 Determination of Size and Morphology 152
 4.2.5.3 Characterization of Surface Moieties 153
 4.2.5.4 Composition Determination 154
 4.2.5.5 Measurement of Optical Properties 155
 4.2.5.6 Evaluation of Magnetic Properties 156
 4.2.6 Tuning of Upconversion Emission 156
 4.2.6.1 Tuning UC Emission Changing by the Chemical Composition and Varying Dopant Concentration 156
 4.2.6.2 Tuning UC Emission by Host Matrix Screening 157
 4.2.6.3 Tuning UC Emission by Interparticle Energy Transfer or Antenna Effect 158
 4.2.6.4 Tuning UC Emission Through Energy Migration 158
 4.2.6.5 Tuning UC Emission Using Cross-Relaxation Processes 160
 4.2.6.6 Tuning UC Emission Using Core/Shell Structures 160
 4.2.6.7 Tuning UC Emission Using Size- and Shape-Induced Surface Effects 160
 4.2.6.8 Tuning UC Emission Using FRET or RET 162
 4.2.6.9 Tuning Upconversion Emission Through External Stimulus 165
 4.2.7 Applications of UCNPs 165
 4.2.7.1 Bioimaging 165
 4.2.7.2 Therapy 168
 4.2.7.3 Optogenetics 170
 4.2.7.4 Sensing and Detection 171
 4.2.7.5 Photocatalysis 173
 4.2.7.6 UCNPs-Mediated Molecular Switches 175
 4.2.7.7 Other Technological Applications 176
 4.3 Rare Earth Based DCNPs 178
 4.3.1 Y₃Al₅O₁₂:RE (RE = Ce³⁺, Tb³⁺) 178
 4.3.1.1 Coprecipitation Approach 178
 4.3.1.2 Sol–Gel Method 179
 4.3.1.3 Solvothermal Method 181
 4.3.2 SrAl₂O₄:Eu²⁺, Dy³⁺ 182
 4.3.2.1 Hydrothermal Method 182
 4.3.2.2 Sol–Gel Method 183
 4.3.2.3 Microwave Method 183
 4.3.2.4 Electrosprinning 183
 4.3.3 Y₂O₃:Eu³⁺ 184
 4.3.4 LnVO₄:Ln³⁺ (Ln = La, Gd, Y; Ln³⁺ = Eu³⁺, Dy³⁺, Sm³⁺) 186
 4.3.5 LaPO₄:Ce³⁺, Tb³⁺ 187
 4.3.6 Applications 189
 4.3.6.1 Biological Imaging 189
 4.3.6.2 Tumor Treatment 190
 4.3.6.3 Fluorescent Ink 191
 4.4 Summary and Outlook 192
 References 193
Metal Complex Nanosheets: Preparation, Property, and Application

Ryota Sakamoto

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>207</td>
</tr>
<tr>
<td>5.2 Preparation of Metal Complex Nanosheets</td>
<td>208</td>
</tr>
<tr>
<td>5.2.1 Vacuum Phase Fabrication</td>
<td>208</td>
</tr>
<tr>
<td>5.2.2 Mechanical Exfoliation</td>
<td>208</td>
</tr>
<tr>
<td>5.2.3 Liquid-Phase Exfoliation</td>
<td>209</td>
</tr>
<tr>
<td>5.2.4 Liquid/Liquid Interfacial Synthesis</td>
<td>211</td>
</tr>
<tr>
<td>5.2.5 Gas/Liquid Interfacial Synthesis</td>
<td>213</td>
</tr>
<tr>
<td>5.3 Properties of Metal Complex Nanosheets</td>
<td>215</td>
</tr>
<tr>
<td>5.3.1 Electroproperties</td>
<td>215</td>
</tr>
<tr>
<td>5.3.2 Photoproperties</td>
<td>217</td>
</tr>
<tr>
<td>5.3.3 Magnetoproperties</td>
<td>219</td>
</tr>
<tr>
<td>5.4 Outlook on Metal Complex Nanosheets</td>
<td>221</td>
</tr>
</tbody>
</table>

References

Synthesis, Properties, and Applications of Metal Halide Perovskite-Based Nanomaterials

Mei-Li Sun, Cai-Xiang Zhao, Jun-Feng Shu, and Xiong Yin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>225</td>
</tr>
<tr>
<td>6.1.1 Crystal Structure and Phase of Metal Halide Perovskites</td>
<td>225</td>
</tr>
<tr>
<td>6.1.2 Classification of Metal Halide Perovskite-Based Nanomaterials</td>
<td>227</td>
</tr>
<tr>
<td>6.1.2.1 Organic–Inorganic Hybrid Perovskite Materials</td>
<td>228</td>
</tr>
<tr>
<td>6.1.2.2 All-Inorganic Perovskite Materials</td>
<td>232</td>
</tr>
<tr>
<td>6.1.2.3 Lead-Free Perovskite Materials and Low-Lead Perovskite Material</td>
<td>234</td>
</tr>
<tr>
<td>6.2 Properties of Metal Halide Perovskite Materials</td>
<td>238</td>
</tr>
<tr>
<td>6.2.1 Tunable Bandgap</td>
<td>238</td>
</tr>
<tr>
<td>6.2.2 High Absorption Coefficient</td>
<td>239</td>
</tr>
<tr>
<td>6.2.3 Excellent Charge Transport Performance</td>
<td>240</td>
</tr>
<tr>
<td>6.2.4 Photoluminescence Properties</td>
<td>240</td>
</tr>
<tr>
<td>6.3 Synthesis of Metal Halide Perovskite-Based Nanomaterials</td>
<td>242</td>
</tr>
<tr>
<td>6.3.1 Hot Injection Method</td>
<td>243</td>
</tr>
<tr>
<td>6.3.2 Ligand-Assisted Reprecipitation Method</td>
<td>244</td>
</tr>
<tr>
<td>6.3.3 Solution Deposition Methods</td>
<td>244</td>
</tr>
<tr>
<td>6.3.3.1 One-Step Method</td>
<td>245</td>
</tr>
<tr>
<td>6.3.3.2 Two-Step Method</td>
<td>247</td>
</tr>
<tr>
<td>6.3.3.3 Other Solution-Processing Methods</td>
<td>249</td>
</tr>
<tr>
<td>6.4 Application of Metal Halide Perovskite-Based Nanomaterials</td>
<td>251</td>
</tr>
<tr>
<td>6.4.1 Perovskite Solar Cells</td>
<td>251</td>
</tr>
<tr>
<td>6.4.2 Perovskite Light-Emitting Diode</td>
<td>254</td>
</tr>
<tr>
<td>6.4.3 Sensing</td>
<td>256</td>
</tr>
<tr>
<td>6.4.4 Other Devices</td>
<td>257</td>
</tr>
</tbody>
</table>

References

Progress in Piezo-Phototronic Effect on 2D Nanomaterial-Based Heterostructure Photodetectors

Yuqian Zhao, Ran Ding, Feng Guo, Zehan Wu, and Jianhua Hao

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>275</td>
</tr>
<tr>
<td>7.2 Piezo-Phototronic Effect on the Junctions</td>
<td>277</td>
</tr>
<tr>
<td>7.2.1 Fundamental Physics of Piezo-Phototronics</td>
<td>277</td>
</tr>
</tbody>
</table>

References
7.2.2 Piezo-Phototronic Effect on P–N Junction 278
7.2.3 Piezo-Phototronic Effect on Metal–Semiconductor Junction 282
7.3 Piezo-Phototronic Effect on the Performance of P–N Junction Photodetectors 284
7.3.1 Photodetector Based on 2D Homojunction 285
7.3.2 Photodetectors Based on 1D–2D Heterostructure 286
7.3.3 Photodetectors Based on 2D–2D Heterostructure 289
7.3.4 Photodetectors Based on 3D–2D Heterostructure 293
7.4 Conclusion and Future Perspectives 295
Acknowledgments 297
References 297

8 Synthesis and Properties of Conducting Polymer Nanomaterials 303
Ziyan Zhang, Tianyu Sun, Mingda Shao, and Ying Zhu
8.1 Introduction 303
8.2 Synthesis and Properties 305
8.2.1 Chemical Synthesis and Properties 306
8.2.2 Electrochemical Synthesis and Properties 314
8.3 Summary 329
References 329

9 Conducting Polymer Nanomaterials for Electrochemical Energy Storage and Electrocatalysis 337
Mingwei Fang, Xingpu Wang, Xueyan Li, and Ying Zhu
9.1 Introduction 337
9.2 Electrode Materials of Batteries 337
9.2.1 Electrodes for Metal-Ion Batteries 338
9.2.1.1 Electrodes for Lithium-Ion Batteries 338
9.2.1.2 Electrodes for Other Metal-Ion Batteries 345
9.2.2 Electrodes for Lithium–Sulfur Batteries 348
9.2.3 Electrodes for All-Polymer Batteries 350
9.2.4 Electrodes for Dye-Sensitized Solar Cell 352
9.2.5 Electrodes for Bioelectric Batteries 352
9.3 Electrocatalysis 355
9.3.1 Oxygen Evolution Reaction (OER) 356
9.3.2 Hydrogen Evolution Reaction (HER) 357
9.3.3 Carbon Dioxide Reduction Reaction (CO₂RR) 361
9.4 Supercapacitors 363
9.4.1 CP as the Active Material 364
9.4.2 CP Composites as the Active Materials 370
9.5 Summary and Perspective 386
References 386

10 Conducting Polymer Nanomaterials for Bioengineering Applications 399
Xiang Sun, Meiling Wang, You Liu, Xin Zhang, Yalan Chen, Shiyi Li, and Ying Zhu
10.1 Introduction 399
10.2 Electronic Skin 399
10.2.1 Wearable Electronic Devices 400
10.2.2 Self-Healing E-Skin 403
10.2.3 Energy-Saving E-Skin 405
10.3 Bioengineering 406
10.3.1 Tissue Regeneration Engineering 406
10.3.2 Drug Delivery 414
10.3.3 Actuators 422
10.4 Chemical Sensors and Biosensors 424
10.4.1 Chemical Sensors 424
10.4.2 Biosensors 427
10.5 Summary and Perspective 436
References 436

11 Methods for Synthesizing Polymer Nanocomposites and Their Applications 447
Muwei Ji, Jintao Huang, and Caizhen Zhu
11.1 Factors for Synthesizing Polymer Nanocomposites 448
11.2 Solution Mixing 451
11.3 Emulsion Polymerization 456
11.4 Dispersion Polymerization and Dispersion Copolymerization 458
11.5 Self-Assembly 461
11.6 Melting 463
11.7 In situ Polymerization 466
11.8 Tailoring of Polymers Nanocomposite 471
11.9 Application of Polymer Nanocomposites 474
11.10 Outlook 481
List of Abbreviations 481
References 483

12 Spin-Related Electrode Reactions in Nanomaterials 491
Shengnan Sun and Yanglong Hou
12.1 Introduction 491
12.2 Factors Influencing the Electrochemical System 492
12.2.1 Forces Caused by Magnetic Fields in Aqueous Solution 492
12.2.2 Spin States of Electrocatalysts 495
12.3 Spin-Related Electrode Reactions 496
12.3.1 Electrodeposition of Metals or Alloys 496
12.3.2 Hydrogen Evolution Reaction 498
12.3.3 Oxygen Evolution Reaction 504
12.3.4 Oxygen Reduction Reaction 513
12.3.5 Other Catalytic Reactions 517
12.3.6 Battery 518
12.3.7 Others 522
12.4 Conclusion and Outlook 523
References 523

Index 533