Contents

Preface xiii

1	Alkane Functionalization by Metal-Catalyzed Carbene
	Insertion from Diazo Reagents 1
	María Álvarez, Ana Caballero, and Pedro J. Pérez
1.1	Introduction 1
1.2	Chemo- and Regioselectivity 3
1.2.1	Definitions 3
1.2.2	Catalysts 5
1.2.3	Chemoselectivity 6
1.2.4	Regioselectivity 8
1.3	Enantioselectivity 9
1.4	Methane and Gaseous Alkanes as Substrates 14
1.5	Alkane Nucleophilicity Scale 18
1.6	Conclusions and Outlook 22
	Acknowledgments 22
	References 22
2	Catalytic Radical Approach for Selective Carbene Transfers via
	Cobalt(II)-Based Metalloradical Catalysis 25
	Xiaoxu Wang and X. Peter Zhang
2.1	Introduction 25
2.2	Intermolecular Radical Cyclopropanation of Alkenes 26
2.2.1	Cyclopropanation with Acceptor-Substituted Diazo Compounds 27
2.2.2	Cyclopropanation with Acceptor/Acceptor-Substituted Diazo
	Compounds 32
2.2.3	Cyclopropanation with Donor-Substituted Diazo Compounds 37
2.3	Intramolecular Radical Cyclopropanation of Alkenes 39
2.4	Intermolecular Radical Cyclopropenation of Alkynes 43
2.5	Intramolecular Radical Alkylation of C(sp ³)–H Bonds 44
2.5.1	Intramolecular C–H Alkylation with Acceptor/Acceptor-Substituted
	Diazo Compounds 45

vi	Contents	
	2.5.2	Intramolecular C–H Alkylation with Donor-Substituted Diazo Compounds 46
	2.6	Other Catalytic Radical Processes for Carbene Transfers 54
	2.7	Summary and Outlook 59
		Acknowledgment 60
		References 60
	3	Catalytic Enantioselective Carbene Insertions into
	3	Heteroatom – Hydrogen Bonds 67
		Ming-Yao Huang, Shou-Fei Zhu, and Qi-Lin Zhou
	3.1	Introduction 67
	3.2	N—H Bond Insertion Reactions 67
	3.2.1	Chiral Metal Catalysts 68
	3.2.1.1	Chiral Cu Catalysts 68
	3.2.1.2	Chiral Pd Catalysts 70
	3.2.1.3	Other Chiral Metal Catalysts 70
	3.2.1.4	Enzymes 72
	3.2.1.5	Chiral Proton-Transfer Shuttle Catalysts 72
	3.2.1.6	Chiral Phosphoric Acids as CPTS Catalysts 72
	3.2.1.7	Chiral Amino Thioureas as CPTS Catalysts 73
	3.3	O—H Bond Insertion Reactions 74
	3.3.1	Chiral Metal Catalysts 74
	3.3.1.1	Chiral Cu Catalysts 74
	3.3.1.2	Chiral Fe Catalysts 76
	3.3.1.3	Chiral Pd Catalysts 77
	3.3.1.4	Chiral Au Catalysts 78
	3.3.1.5	Chiral Bases as CPTS Catalysts 78
	3.3.1.6	Chiral Phosphoric Acids as CPTS Catalysts 79
	3.4	S—H Bond Insertion Reactions 80
	3.4.1	Chiral Metal Catalysts 80
	3.4.2	CPTS Catalysts 81
	3.4.3	Enzymes 81
	3.5	F—H Bond Insertion Reactions 82
	3.6	Si—H Bond Insertion Reactions 83
	3.6.1	Chiral Rh Catalysts 83
	3.6.2	Chiral Cu Catalysts 85
	3.6.3	Other Chiral Metal Catalysts 86
	3.6.4	Enzymes 87
	3.7	B—H Bond Insertion Reactions 88
	3.7.1	Chiral Cu Catalysts 88
	3.7.2	Chiral Rhodium Catalysts 89

3.7.3

3.8

Enzymes 89

References 91

Summary and Outlook 90

4	Engineering Enzymes for New-to-Nature Carbene
	Chemistry 95
	Soumitra V. Athavale, Kai Chen, and Frances H. Arnold
4.1	Introduction: Biology Inspires Chemistry Inspires Biology 95
4.2	P411-Catalyzed Cyclopropanation 99
4.3	The Workflow of Directed Evolution 101
4.4	Expanding Cyclopropanation with Diverse Hemeprotein Carbene
	Transferases 102
4.5	C–H Functionalization with Carbene Transferases 109
4.6	Biocatalytic Carbene X–H Insertion 113
4.7	Carbene Transfer Reactions with Artificial Metalloproteins 118
4.8	Structural Studies of Carbene Intermediates in Heme Proteins 125
4.9	Summary 128
	Acknowledgments 129
	References 129
5	Metal Carbene Cycloaddition Reactions 139
	Kostiantyn O. Marichev, Haifeng Zheng, and Michael P. Doyle
5.1	Introduction 139
5.2	[3+1]-Cycloaddition 142
5.3	[3+2]-Cycloaddition 145
5.3.1	[3+2]-Cycloaddition with Imines and Indoles 145
5.3.2	[3+2]-Cycloaddition with Polarized Alkenes 149
5.3.3	[3+2]-Cycloaddition with Nitrones 150
5.3.4	Divergent Behavior of Catalysts 151
5.4	[3+3]-Cycloaddition of Enoldiazo Compounds 152
5.4.1	[3+3]-Cycloaddition with Nitrones 152
5.4.2	[3+3]-Cycloaddition with Pyridinium Ylides and Hydrazones 155
5.4.3	Diastereoselective [3+3]-Cycloaddition with Achiral Catalysts 157
5.4.4	[3+3]-Cycloaddition with Diaziridines 158
5.4.5	[3+3]-Cycloaddition with Donor–Acceptor Cyclopropanes and
	Oxiranes 159
5.5	[3+4]-Cycloaddition 160
5.6	[3+5]-Cycloaddition 161
5.7	Summary 162
	References 163
6	Metal-Catalyzed Decarbenations by
	Retro-Cyclopropanation 169
	Mauro Mato and Antonio M. Echavarren
6.1	Introduction 169
6.2	Reactivity and Generation of Metal Carbenes 169
6.2.1	Decomposition of Diazo Compounds 170
6.2.2	Alternative Methods for the Generation of Metal Carbenes 170

viii	Contents

6.2.3	Decarbenation Reactions: General Process and Definition 170
6.3	Retro-Cyclopropanation Reactions: A Historical Walkthrough 171
6.3.1	Early Observations 171
6.3.2	Decarbenation Reactions from Gas Phase to Solution 173
6.3.3	The Discovery of the Gold(I)-Catalyzed Retro-Buchner Reaction 173
6.4	Metal-Catalyzed Aromative-Decarbenation Reactions: A Mechanistic
	Analysis 175
6.4.1	Basic Mechanistic Picture 175
6.4.2	Alternative Generation of the Same Carbenes from Carbenoids 175
6.4.3	Theoretical Studies on the Mechanism of the Retro-Buchner Reaction 177
6.4.4	Second-Generation Cycloheptatrienes: Low Temperature and Other Metals 179
6.4.5	
6.5	Mechanism of the Rh(II)-Catalyzed Aromative Decarbenation 181 Synthetic Methodologies and Applications 181
6.5.1	Cyclopropanation Reactions 181
6.5.1.1	Aryl Cyclopropanations 183
6.5.1.2	Alkenyl Cyclopropanations 184
6.5.1.3	Reactions with Furans 185
6.5.2	Higher Formal Cycloadditions 186
6.5.2.1	(4+1) Cycloadditions 187
6.5.2.2	(3+2) Cycloadditions 187
6.5.2.3	(4+3) Cycloadditions 189
6.5.3	Intramolecular Friedel–Crafts Reactivity 190
6.5.4	Insertion Reactions 190
6.5.4.1	C-H Insertion 190
6.5.4.2	Si–H Insertion 192
6.5.5	Oxidation Reactions 192
6.5.6	Alternative Precursors 193
6.5.7	Decarbenations Based on the Release of Alkenes 193
6.6	General Outlook and Concluding Remarks 195
	References 196
7	Gold-Catalyzed Oxidation of Alkynes by N-Oxides or
/	Sulfoxides 199
	Kaylaa Gutman. Tianvou Li. and Limina Zhana
7 1	3 3
7.1	Introduction: Gold-Activated Alkynes Attacked by Nucleophilic Oxidants 199
7.2	
7.2	Sulfoxides as Nucleophilic Oxidants 201
7.3	N-Oxides as Nucleophilic Oxidants 202
7.3.1	Reactions of Carbene/Carbenoid Intermediates with Oxygen-Based Nucleophiles 205
7.3.2	Reactions of Carbene/Carbenoid Intermediates with Nitrogen-Based
	Nucleophiles 212

7.3.3	Reactions of Carbene/Carbenoid Intermediates with Other Heteronucleophiles 214
7.3.4	Friedel-Crafts Reactions of Carbene/Carbenoid Intermediates with
	Arenes 215
7.3.5	Reactions of Carbene/Carbenoid Intermediates with Alkenes 218
7.3.6	Reactions of Carbene/Carbenoid Intermediates with C—C Triple Bonds 224
7.3.7	1,2-C-C and 1,2-C-H Insertions of Carbene/Carbenoid
	Intermediates 226
7.3.8	Remote C(sp ³)–H Functionalizations by Carbene/Carbenoid
,,,,,	Intermediates 231
7.4	Conclusion 238
,	References 238
8	Transition-Metal-Catalyzed Carbene Transformations for
	Polymer Syntheses 243
	Eiji Ihara and Hiroaki Shimomoto
8.1	Introduction 243
8.2	Transition-Metal-Catalyzed C1 Polymerization of Diazoacetates 243
8.2.1	PdCl ₂ -Initiated Polymerization 244
8.2.2	(NHC)Pd(nq)/Borate-Initiated Polymerization 245
8.2.3	π-AllylPdCl-Based System-Initiated Polymerization 246
8.2.4	(nq) ₂ Pd/Borate- and (cod)PdCl(Cl-nq)/Borate-Initiated
	Polymerization 251
8.2.5	Preparation of Polymers with Densely Packed Functional Groups
	Around Polymer Main Chain 254
8.2.5.1	Hydroxy Group-Containing Polymers 254
8.2.5.2	Oligo(oxyethylene)-Containing Polymers 256
8.2.5.3	Pyrene-Containing Polymers 257
8.2.5.4	Fluoroalkyl and Fluoroaryl Group-Containing Polymers 258
8.3	Polycondensation of Bis(diazocarbonyl) Compounds 259
8.3.1	Three-Component Polycondensation of Bis(diazocarbonyl) Compound,
	Diol, and THF 259
8.3.2	Three-Component Polycondensation of Bis(diazocarbonyl) Compound,
	Dicarboxylic Acid, and THF 262
8.3.3	Three-Component Polycondensation of Bis(diazocarbonyl) Compound,
	Enol-form of 1,3-Diketone, and THF 263
8.3.4	Two-Component Polycondensation of Bis(diazocarbonyl) Compound
	with Aromatic Diamine 264
8.3.5	Single-Component Polycondensation of Bis(diazocarbonyl) Compound
	to Afford Unsaturated Polyesters 264
8.3.6	Single-Component Polycondensation of Bis(diazocarbonyl) Compound
	to Afford Poly(arylene vinylene)s (PAV) 265

x Contents

8.4	Concluding Remarks 266 References 266
9	Metal-Catalyzed Quinoid Carbene (QC) Transfer Reactions 269 Hai-Xu Wang, Vanessa KY. Lo, and Chi-Ming Che
9.1	Introduction 269
9.2	Metal–Quinoid Carbene (QC) Complexes and Stoichiometric Reactivity 269
9.3	Metal-Catalyzed QC Transfer Reactions 273
9.3.1	Cyclopropanation Reactions 273
9.3.2	C(sp ²)–H Insertion Reactions 275
9.3.3	C(sp ³)–H Insertion Reactions 284
9.3.4	Nucleophilic Addition and Miscellaneous Reactions 286
9.4	Conclusion 293
	Acknowledgment 295
	References 295
10	Asymmetric Rearrangement and Insertion Reactions with
	Metal-Carbenoids Promoted by Chiral N,N'-Dioxide or
	Guanidine-Based Catalysts 299
	Xiaobin Lin, Xiaohua Liu, and Xiaoming Feng
10.1	Introduction 299
10.2	The Introduction of Chiral N,N' -Dioxide/Metal Complexes and
	Guanidine Catalysts 299
10.3	Chiral <i>N</i> , <i>N'</i> -Dioxide/Metal Complexes-Catalyzed Rearrangement
40.4	Reactions 302
10.4	Chiral Guanidine-Based Catalyst-Mediated Asymmetric Carbene
10.5	Insertion Reactions 315
10.5	Conclusion and Outlook 323
	References 323
11	Multi-Component Reaction via gem-Difunctionalization of
	Metal Carbene 325
	Mengchu Zhang, Xinfang Xu, and Wenhao Hu
11.1	Introduction 325
11.2	Mannich-Type Interception 327
11.2.1	Interception of Ammonium Ylide 327
11.2.2	Interception of Oxonium Ylide 328
11.2.3	Interception of Zwitterionic Intermediate 339
11.3	Aldol-Type Interception 340
11.3.1	Interception of Ammonium Ylide 340
11.3.2	Interception of Oxonium Ylide 342

11.3.3	Interception of Zwitterionic Intermediate 343
11.4	Michael-Type Interception 345
11.4.1	Interception of Ammonium Ylide 345
11.4.2	Interception of Oxonium Ylide 346
11.4.3	Interception of Zwitterionic Intermediate 348
11.5	Miscellaneous Transformations 349
11.5.1	Interception Other Types of Active Intermediates 349
11.5.2	Interception of Active Intermediates with Other Electrophiles 353
11.5.3	Applications in Cascade Reactions 355
11.6	Synthetic Applications 358
11.6.1	Synthesis and Modification of Natural Products 358
11.6.2	Synthesis of Bioactive Molecules 362
11.7	Conclusion 364
	References 365
12	Transition-Metal-Catalyzed Cross-Coupling with Carbene
	Precursors 371
	Kang Wang and Jianbo Wang
12.1	Introduction 371
12.2	Palladium-Catalyzed Carbene Cross-Coupling Reactions 372
12.2.1	Diazo Compounds as Carbene Precursors 372
12.2.1.1	Reactions with Electrophiles 372
12.2.1.2	Reactions with Nucleophiles 373
12.2.1.3	Palladium-Catalyzed Cascade Cross-Coupling Reactions 374
12.2.2	N-Tosylhydrazones as Carbene Precursors 377
12.2.2.1	Reactions with Electrophiles 377
12.2.2.2	Reactions with Nucleophiles 379
12.2.2.3	Palladium-Catalyzed Cascade Cross-Coupling Reactions 380
12.2.3	Non-Diazo Compounds as Carbene Precursors 382
12.3	Copper-Catalyzed Carbene Cross-Coupling Reactions 385
12.3.1	Reactions with Terminal Alkynes 385
12.3.1.1	Multi-substituted Allenes as the Coupling Products 385
12.3.1.2	Internal Alkynes as the Coupling Products 386
12.3.2	Reactions with Other Coupling Partners 387
12.4	Rhodium-Catalyzed Carbene Cross-Coupling Reactions 388
12.4.1	Generating Organorhodium Species Through Transmetalation 388
12.4.2	Generating Organorhodium Species Through C—C Bond Cleavage 389
12.5	Transition-Metal-Catalyzed C—H Bond Functionalizations with
	Carbene Precursors 391
12.5.1	Non-Directing-Group-Assisted C—H Functionalizations 391
12.5.2	Directing-Group-Assisted C—H Bond Functionalizations 393
12.5.2.1	Generating Acyclic Products Through C—H Bond Activation 393
12.5.2.2	Generating Cyclic Products Through C—H Bond Activation 394

Conclusion Remarks 396 12.6 Acknowledgment 397 References 397

Index 401