Contents

Preface *xi*

Part I Introduction and Concepts 1

1	Anatomy of a Redox-Active Ligand 3			
	Marine Desage-El Murr			
1.1	Introduction 3			
1.2	Biological Inspiration: From the Enzyme to the Flask, a Continued			
	Journey 4			
1.2.1	Radicals in Biological Systems 4			
1.2.2	Redox Cofactors: Electrons and Protons in Metalloenzymatic			
	Systems 4			
1.3	Chemical History: Puzzle-Solving for Coordination Chemists 6			
1.3.1	The Curious Case of Metal Complexes with Dithiolene Ligands 6			
1.3.2	What are the Basic/Minimal Features? 7			
1.3.3	Classification According to Modes of Action 8			
1.4	Combining Spectroscopy and Theory: How to Spot a Redox-Active			
	Ligand? 9			
1.5	Non-innocent, Cooperative, Electro-Active, or Redox-Active? 10			
1.5.1	Defining Terms 10			
1.5.2	Related Notions 11			
1.6	Unusual Ligands and Unusual Reactivities with a Redox-Active			
	Ligand 12			
1.6.1	Reactivity at Ligand 12			
1.6.2	Open-Shell Reactivity: Radical Formation 13			
1.6.3	Two-Electron Chemistry: C—C Bond Formation 14			
1.7	Perspectives and Concluding Remarks 15			
	References 15			

v

vi Contents

2	Mechanistic Studies of Catalytic Nitrene-Transfer Reactions			
	Involving Redox-Active Ligands and Substrates 21			
	Nicolaas P. van Leest, Jarl Ivar van der Vlugt, and Bas de Bruin			
2.1	Introduction 21			
2.2	Characterization of Radical-type Intermediates 23			
2.2.1	Single-crystal X-ray Diffraction 23			
2.2.2	X-ray Absorption Spectroscopy 23			
2.2.3	Electron Paramagnetic Resonance 25			
2.2.4	Nuclear Magnetic Resonance Spectroscopy 27			
2.2.5	Effective Magnetic Moment and Spin State 27			
2.2.6 UV-vis and IR Absorption Spectroscopy and (Spectro-)				
	Electrochemistry 28			
2.2.7	Computational Studies 28			
2.2.8	Concluding Remarks 28			
2.3	Mechanistic Studies 29			
2.3.1	Kinetic Analysis 29			
2.3.2	Kinetic Isotope Effect 30			
2.3.3	Hammett Analysis 31			
2.3.4	Trapping and Poisoning 31			
2.3.5	Computational Methods 32			
2.3.6	Concluding Remarks 32			
2.4	Case Studies for Nitrene Transfer Aided by Redox-Active Ligands and			
	Substrates 33			
2.4.1	Electronic Structures of Nitrene Complexes 33			
2.4.2	Metal-to-Substrate Single-electron Transfer 34			
2.4.3	Ligand-to-Substrate Single-electron Transfer 37			
2.4.4	Spin-flip-assisted Reactions 39			
2.4.5	Electron Transfer Coupled to Spin-flips 40			
2.4.5.1	Nitrene Radical Formation and Transfer with a [Cu(NO ^{isq}) ₂]			
	Complex 40			
2.4.5.2	Nitrene Radical Formation and Transfer with Cobalt-TAML			
	Complexes 41			
2.4.6	Concluding Remarks and Outlook 46			
	References 47			
3	Redox-Active Ligands From a Computational Perspective 53			
	Roy Eckhardt, Dorys Reyes, Christian Sandoval-Pauker, and Balazs Pinter			
3.1	Introduction 53			
3.2	Electronic Structure Determination Through DFT and Spectroscopy 55			
3.3	Redox-Active Ligands as Electron Reservoirs 63			
3.3.1	Energy Conversion 64			
3.3.1.1	Noble Metal Reactivity 64			
3.3.1.2	Group Transfer and Radical Reactivity 69			
3.3.2	Photoredox Catalysis – Solar to Chemical Energy Conversion 74			
3.3.3	Energy Storage: Redox-flow Batteries 80			

- 3.4 In Silico Description and Engineering of Redox-Active Ligands 84
- 3.4.1 Computing Reduction Potentials 84
- 3.4.2 Rationalizing the Redox-Active Behavior of Quinoid and Bipyridine Ligands *86*
- 3.4.3 Computational Techniques for Characterizing Ligand Redox Activity 88
- 3.4.4 Ligand Redox Activity in the Excited State Photoredox Catalysis 92
- 3.5 Conclusions 98 Acknowledgments 99 References 100

Part II Applications 107

4	Complexes of Stable <i>N</i> -aryl Radicals and Their Catalytic		
	Applications 109		
	Nicolas Leconte and Fabrice Thomas		

- 4.1 Introduction and General Considerations on Exocyclic *N*-aryl Radicals *109*
- 4.2 Complexes Featuring Anilinyl Radicals 111
- 4.2.1 Simple Anilines 111
- 4.2.2 TACN-Anilines 113
- 4.2.3 Tripods Anilines 114
- 4.2.4 Anilinosalens 114
- 4.2.5 Conjugated Anilines 115
- 4.2.6 Dipyrrin-Anilines 115
- 4.3 Bidentate *o*-diaminobenzenes and Their Radicals *115*
- 4.3.1 Homoleptic Complexes 115
- 4.3.2 Heteroleptic Complexes 120
- 4.3.3 9,10-Phenanthrenediimine 123
- 4.4 Pincer Ligands and Their Radicals 124
- 4.5 Branched Tetradentate o-diaminobenzene and Associated Radicals 128
- 4.5.1 Pivotal/Tripodal N4 Ligands 128
- 4.5.2 "Planar" N4 Systems *128*
- 4.5.3 Macrocyclic Ligands 130
- 4.6 Polydentate Ligands Featuring One Bidentate Diiminosemiquinone Radical *130*
- 4.6.1 Salphen 131
- 4.6.2 "Diamido" Platform 132
- 4.6.3 Diaminobenzene Platform 133
- 4.7 Representative Catalytic Applications 135
- 4.7.1 Alcohols Oxidation 135
- 4.7.2 Small Molecules Activation: O_2/H_2O_2 and H_2 Activation, H_2 Production 137
- 4.7.3 Intra- and Intermolecular Nitrene Transfers: C–H Bond Amination, Aziridination *138*

viii	Contents

4.7.4	Miscellaneou	us Transformations	139
4.8	Conclusion	140	
	References	141	

5 Redox-Active Ligands in Coordination Chemistry and Organic Synthesis 151

Toru Amaya, Toshiyuki Moriuchi, and Toshikazu Hirao

5.1 Introduction 151

- 5.2 Controlled Formation of Conjugated Complexes with Redox-Active Polyanilines or 1,4-Benzoquinonediimines *152*
- 5.3 Catalytic Application of Hybrid Systems Consisting of Redox-Active Polyanilines and Transition Metals *162*
- 5.4 Conclusion 169 Abbreviations 170 References 171

6 Metal Complexes Bearing Redox-Active Supporting Ligands that Promote Chemical Transformations Involving Protons and Electrons 175

Kundan K. Singh and Isaac Garcia-Bosch

- 6.1 Introduction 175
- 6.2 Dioxygen Reduction to Water 177
- 6.2.1 Cytochrome c Oxidase 177
- 6.2.2 Synthetic Metal Complexes that Utilize Redox-Active Ligands to Reduce O_2 to Water 178
- 6.3 Dioxygen Reduction Coupled with Substrate Dehydrogenation 179
- 6.3.1 Copper-Radical Oxidases 179
- 6.3.2 Synthetic Metal Complexes that Utilize Redox-Active Ligands to Couple O₂ Reduction with Substrate Dehydrogenation 180
- 6.4 Dioxygen Reduction Coupled with Substrate Hydroxylation 187
- 6.4.1 Cytochrome P450 187
- 6.4.2 Synthetic Metal Complexes that Utilize Redox-Active Ligands to Couple O₂ Reduction with Substrate Hydroxylation 188
- 6.5 Conclusions and Future Perspectives *192* References *192*

Part III Case Studies 197

7	Redox-Active Guanidine Ligands	
	Hans-Jörg Himmel	
7.1	Introduction 199	

- 7.2 Properties and Reactivity of Uncoordinated Redox-Active Guanidines 200
- 7.3 Redox-Active Guanidines as Ligands in Coordination Chemistry 206
- 7.3.1 Survey of Different Redox States of the Guanidine Ligand (Neutral, Dicationic, or Monocationic) in Coordination Compounds 206
- 7.3.2 Directed Stimulation of Intramolecular Electron Transfer (IET) in Copper Complexes with Redox-Active Guanidine Ligands 219
- 7.3.2.1 Valence Tautomerism (VT) 220
- 7.3.2.2 IET Triggered by Consecutive Reactions 227
- 7.3.2.3 Redox-Induced Electron Transfer (RIET) 229
- 7.3.2.4 IET Triggered by Counterligand Addition 230
- 7.3.2.5 IET Triggered by Counterligand Substitution 232
- 7.3.2.6 IET Triggered by Coordination of Metals to a Secondary Coordination Sphere 235
- 7.3.3 Catalytic Application in the Cross-Coupling of Phenols 238
- 7.4 Perspectives 241 References 242
- 8 Coordination Chemistry with Lanthanides and Redox-Active Ligands 249

Valeriu Cemortan and Grégory Nocton

- 8.1 Introduction 249
- 8.2 Quinone, Iminoquinone, and O-phenylenediamine-Based Complexes 250
- 8.3 Diazadienes 262
- 8.4 Iminopyridines and Bis(imino)pyridines 271
- 8.5 Nitroxides 277
- 8.6 N-heterocycles 280
- 8.7 Conclusion and Outlook 299 References 300
- 9 Actinide Complexes of Redox Non-innocent Ligands 317

Karlotta van Rees and Jason B. Love

- 9.1 Bipyridyl Ligands *318*
- 9.2 Pyrrole Ligands 320
- 9.3 Tmtaa Ligand 323
- 9.4 Schiff-Base Ligands 324
- 9.5 Pyridine(di-imine) Ligands 329
- 9.6 Phosphite Ligands 332
- 9.7 Quinone Ligands 332
- 9.8 Aryloxide Ligands 335
- 9.9 Conclusion 338
 - References 339

Index 343