Contents

Preface xi List of Abbreviations xiii

1 From Anion Recognition to Organocatalytic Chemical Reactions 1 ۱v

Friedemann Dressler and Peter R. Schreiner

- 1.1 Introduction and Background 1
- 1.1.1 Evolution of Thiourea-Based Catalysts 10
- 1.1.2 Evolution of Triazole-Based Catalysts 22
- 1.1.3 Progress on Halogen-Binding-Based Catalysts 25
- 1.1.4 Miscellaneous Anion-Binding Catalysts 26
- 1.2 Concepts in Anion-Binding Catalysis 31
- 1.2.1 Introduction 31
- 1.2.2 Anion-Binding Catalysis in Addition Reactions 36
- 1.2.3 Anion-Binding Catalysis in Substitution Reactions 44
- 1.2.4 Anion Binding in Cooperative Catalysis 54
- 1.2.5 Anion-Binding in Lewis Acid Enhancement Catalysis 57
- 1.2.6 Anion-Binding in Phase Transfer Catalysis 59
- 1.3 Summary and Outlook 62
- Acknowledgment 63 References 64

2 Anion Recognition and Binding Constant Determination 79

Edward G. Sheetz, David Van Craen, and Amar H. Flood

- 2.1 Introduction to Supramolecular Chemistry and Binding Constant Determination 79
- 2.1.1 Chapter Overview 79
- 2.1.2 Supramolecular Chemistry and Its Connection to Anion-Assisted Catalysis *80*
- 2.1.3 Brief History of Advances in Supramolecular Anion Binding 84
- 2.1.4 Predicting the Model of Association and Simulating the Expected Species Distribution Profiles and Binding Curves 86

vi Contents

2.2	Equilibrium Constants, Binding Curves, Titration Conditions, and
	Errors 87
2.2.1	Physical Origins of Equilibrium Binding Constants 87
2.2.2	Explanation of the Basis for Titration Techniques and Binding
	Curves 88
2.2.3	Hirose's Rule and Picking the Right Concentration, Solvent, and
	Technique 89
2.2.4	Error Determination 92
2.3	Experimental Techniques: NMR Spectroscopy 92
2.3.1	When to Use 92
2.3.2	Slow Exchange vs. Fast Exchange 93
2.3.3	Determination of the Underlying Equilibria 94
2.3.4	Software for Non-linear Regression Fitting 95
2.3.5	Common Issues 97
2.4	Experimental Techniques: UV–Vis Spectroscopy 97
2.4.1	When to Use 97
2.4.2	Physical Origins of Optical Phenomena 97
2.4.3	Software for Non-linear Regression Analysis of UV–Vis Titrations 98
2.4.4	Common Issues 99
2.5	Underappreciated Concerns in Binding Constant Determination:
	Multiple Binding Equilibria 99
2.5.1	When to Expect Additional Equilibria 99
2.5.2	How to Diagnose Additional Equilibria 100
2.5.3	How to Account for Additional Equilibria 101
2.6	Underappreciated Concerns in Binding Constant Determination: Ion
	Pairing 102
2.6.1	When to Expect Ion Pairing 102
2.6.2	Role of Solvent and Concentration in Ion Pairing 103
2.6.3	How to Diagnose Ion Pairing 103
2.7	Underappreciated Concerns in Binding Constant Determination: Kinetic
	Processes 104
2.8	Connecting Equilibrium Constants to Structures and Catalysis 104
2.9	Conclusion 105
	Acknowledgment 105
	References 105
7	(This)was and Soveramide Catalyzed Anian Dinding
3	(Thio)urea and Squaramide-Catalyzed Anion-Binding
	Catalysis with Halogen Anions 111
2.1	Matthew A. Horwitz and Véronique Gouverneur
3.1	Introduction 111
3.2	History and Background 111
3.3	Asymmetric Catalysis by Catalyst Association with the Electrophile 113
3.3.1	Examples Utilizing the N-Acyliminium Chloride Ion Pair 113

3.3.1.1 Pictet–Spengler Reaction and Variants 113

Contents vii

- 3.3.1.2 Intramolecular Cyclizations with Other (Hetero)aromatic Nucleophiles 115
- 3.3.1.3 Intramolecular and Intermolecular aza-Sakurai Reaction 116
- 3.3.1.4 Mannich Reaction and Variants 120
- 3.3.1.5 Petasis-Type Reactions 121
- 3.3.2 Examples Utilizing Electrophiles Other than *N*-Acyliminium Ion Precursors *123*
- 3.3.2.1 Utilization of Oxocarbenium and Pyrone Intermediates 123
- 3.3.2.2 Glycosylation Reactions Utilizing HBD–Halide Binding 126
- 3.3.2.3 Utilization of Non-heteroatom-Stabilized Carbocations as Electrophiles *127*
- 3.4 Asymmetric Catalysis by Catalyst Association with the Nucleophile 129
- 3.4.1 Catalyst-Nucleophile Association in Phase-Transfer Catalysis 130
- 3.4.1.1 Investigation of Hydrogen-Bonded Fluoride: Structure and Reactivity 130
- 3.4.1.2 Development of Hydrogen-Bonding Phase-Transfer Catalysis (HBPTC) 130
- 3.4.1.3 Development of Acyl-Transfer Catalysis with Hydrogen-Bonded Fluoride *134*
- 3.4.2 Catalyst–Nucleophile Association in Homogeneous Catalysis 135
- 3.5 Conclusions and Outlook 136 Acknowledgments 137 References 137
- 4 Chiral Ureas, Thioureas, and Squaramides in Anion-Binding Catalysis with Co-catalytic Brønsted/Lewis Acids 141
 - Adam Trotta and Eric N. Jacobsen
- 4.1 Introduction 141
- 4.2 Carboxylic Acid Co-catalysts 141
- 4.3 Sulfonic Acid Co-catalysts 148
- 4.4 Mineral Acid Co-catalysts 152
- 4.5 Lewis Acid Co-catalysts 155
- 4.6 Conclusions and Outlook 157 References 157

5 Anion-Binding Catalysis with Other Anions 161

Sankash Mitra and Santanu Mukherjee

- 5.1 Introduction 161
- 5.2 Cyanide Anion 162
- 5.2.1 Strecker Reaction 163
- 5.2.2 Acylcyanation of Imines 168
- 5.3 Oxygen-Based Anions 169
- 5.3.1 Alkoxides and Enolates 169
- 5.3.2 Enolates of Lactones, Cyclic Anhydrides, and Imides 174
- 5.3.3 Carboxylates 182

viii	Contents

5.4 Conclusions and Outlook *192* References *193*

6 Silanediols, Phosphoramides, and Other OH- and NH-Based H-Donor Catalysts 201

Alexandria Leveille and Anita Mattson

- 6.1 Introduction 201
- 6.2 Silanediols 201
- 6.2.1 Introduction 201
- 6.2.2 Overview of Silanols in Anion Binding and Catalysis 202
- 6.2.3 Silanediol Anion-Binding Catalysis 203
- 6.2.4 Alkoxysilanediol Anion Binding Catalysis 207
- 6.3 Siloxanes 208
- 6.4 Thiophosphoramides 210
- 6.5 Cyclodiphosphazanes 213
- 6.6 Other Examples 215
- 6.6.1 Xanthene–Diamine Scaffold 215
- 6.6.2 Croconamides 216
- 6.6.3 Pyrrole-Based Anion-Binding Catalyst 217
- 6.6.4 Bisamidine Catalysts 217
- 6.7 Conclusions 218 References 218

1,2,3-Triazoles and 1,2,3-Triazolium lons as Catalysts 221

Kohsuke Ohmatsu and Takashi Ooi

- 7.1 Introduction 221
- 7.2 Triazole-Based Anion-Binding Molecular Catalysts 224
- 7.3 Triazolium Ions as Organic Molecular Catalysts with Anion-Binding Ability 231
- 7.4 Triazolium Ions in Dual Functional Catalysts 240
- 7.5 Conclusion 241 References 242
- 8

7

Quaternary Ammonium, Phosphonium, and Tertiary Sulfonium Salts as Hydrogen-Bonding Catalysts 249

Seiji Shirakawa

- 8.1 Introduction 249
- 8.2 Hydrogen-Bonding Ability of Quaternary Ammonium Salts 249
- 8.3 Hydrogen-Bonding Catalysis of Quaternary Ammonium Salts 251
- 8.4 Hydrogen-Bonding Catalysis of Quaternary Phosphonium Salts 257
- 8.5 Hydrogen-Bonding Catalysis of Tertiary Sulfonium Salts 260
- 8.6 Conclusion 264 References 264

Catalysis 271

Efraim Reyes, Qui-Nhi Duong, Liher Prieto, Olga García Mancheño, and José L. Vicario

- 9.1 Dual Amino/H-Bond Donor Catalysis 271
- 9.1.1 Enamine Activation 272
- 9.1.2 Dienamine Activation 276
- 9.1.3 Iminium Ion Activation 278
- 9.1.4 Vinylogous Iminium Ion Activation 283
- 9.2 Thiourea Pyridine-Based Nucleophilic Dual Catalysis 284
- 9.2.1 Kinetic Resolution and Desymmetrization of Amines 284
- 9.2.2 Asymmetric Steglich Rearrangement 290
- 9.2.3 Other Acylation Reactions 296
- 9.2.4 Anion-Binding-Assisted Polymerization Reactions 296
- 9.3 Conclusions 298 References 299
- 10 Anion-Binding Catalysis by Halogen, Chalcogen, Pnictogen, and Tetrel Bonding 307
 - Raffaella Papagna, Lukas Vogel, and Stefan M. Huber
- 10.1 History of Halogen Bonding 307
- 10.2 History of Chalcogen Bonding 310
- 10.3 History of Pnictogen and Tetrel Bonding 314
- 10.4 Differences Between Hydrogen Bonding and Other Secondary Interactions 315
- 10.5 Secondary Bonding in Anion Recognition *316*
- 10.6 Halogen Bonding in Anion-Binding Catalysis 322
- 10.7 Chalcogen Bonding in Anion-Binding Catalysis 328
- 10.8 Pnictogen and Tetrel Bonding in Anion-Binding Catalysis 331
- 10.9 Conclusion 333 References 334
- 11 New Trends and Supramolecular Approaches in Anion-Binding Catalysis 345

María C. Pérez-Aguilar, Melania Gómez-Martínez, Jan Kuhlmann, and Olga García Mancheño

- 11.1 General Introduction 345
- 11.2 Dual Photoredox and Anion-Binding Catalysis 345
- 11.3 Combination of Metal and Anion-Binding Catalysis 351
- 11.3.1 Anion-Binding Assisted Hydrogenation Reactions 351
- 11.3.2 Hydroformylation Reactions 355
- 11.3.3 Anion-Binding Metal-Catalyzed C–C Forming Reactions 358
- 11.4 Supramolecular Approaches Involving Anion-Binding Catalysis 359

x Contents

- 11.4.1 Mechanically Interlocked Molecules in Anion-Binding Catalysis 359
- 11.4.1.1 Molecular Knots as Anion-Binding Catalysts 360
- 11.4.1.2 Rotaxanes as Anion-Binding Catalysts 363
- 11.4.2 Molecular Motors in Anion-Binding Catalysis 364
- 11.4.3 Macrocycles in Anion-Binding Catalysis 365
- 11.5 Anion $-\pi$ Catalysis 368
- 11.5.1 Anion–π-Catalyzed Kemp Elimination Reaction 369
- 11.5.2 Anion– π Interactions in Enolate Chemistry 370
- 11.5.3 Epoxide-Opening Ether Cyclization Reactions 372
- 11.5.4 Enantioselective Anion $-\pi$ Catalysis 373
- 11.5.5 Miscellaneous 376
- 11.6 Conclusion and Outlook 376 References 377

Index 387