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General Impact of Translational Symmetry in Crystals on
Solid State Physics

Atomic order in crystals.
Local and translational symmetries.
Symmetry impact on physical properties in crystals.
Wave propagation in periodic media.
Quasi-momentum conservation law.
Reciprocal space.
Wave diffraction conditions.
Degeneracy of electron energy states at the Brillouin zone boundary.
Diffraction of valence electrons and bandgap formation.

In contrast to liquids or gases, atoms in a solid state, in average (over time), are
located at fixed atomic positions. The thermally assisted movements around them
or between them are strongly limited in space (as for thermal vibrations in potential
wells) or have rather low probabilities (as for long-range atomic diffusion). Accord-
ing to the types of the averaged long-range atomic arrangements, all solid materials
can be sub-divided into the three following classes, i.e. regular crystals, amorphous
materials, and quasicrystals.

Most solid materials are regular (conventional) crystals with fully ordered and
periodic atomic arrangements, which can be described by the set of translated
elementary blocks (unit cells) densely covering the space with no voids. Nowadays,
using the advanced characterization methods, such as high-resolution electron
microscopy or scanning tunneling microscopy, it is possible to directly visualize
this atomic periodicity (Figure 1.1). Due to the translational symmetry, the key
phenomenon – namely, diffraction of short-wavelength quantum beams (electrons,
X-rays, neutrons) – takes place. As we show in the following text, sharp diffraction
peaks (or spots), which are the “visiting card” of crystalline state, are originated
from the quasi-momentum (quasi-wavevector) conservation law in 3D.

In contrary, amorphous materials, being characterized by some kind of short-
range ordering, do not reveal atomic order on a long range (Figure 1.2). In other
words, certain correlations between atomic positions exist within a few first
coordination spheres only and rapidly attenuate and disappear at longer distances.
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Figure 1.1 High-
resolution scanning
transmission electron
microscopy image of atomic
columns in crystalline GaSb.
Cations and anions within
dumbbells are separated by
0.15 nm.

(a) (b)

Figure 1.2 Structural motifs in silicon dioxide (SiO2): (a) – ordered atomic arrangement
in crystalline quartz; (b) – disordered arrangement in amorphous silica. Large open circles
and black filled circles indicate oxygen and silicon atoms, respectively.

Correspondingly, diffraction patterns taken from amorphs show diffuse features
only (called amorphous halo), rather than sharp diffraction peaks.

Quasicrystals in some sense occupy a niche between crystals and amorphs. They
have been discovered in the beginning of 1980s by Dan Shechtman during his
studies (by electron diffraction) of the structure of rapidly solidified Al–Mn alloys.
Quasicrystals can be described as fully ordered, but non-periodic arrangements of
elementary blocks densely covering the space with no voids. An example of fill-
ing the 2D space in this fashion, by the so-called Penrose tiles (rhombs having
smaller angles equal 18∘ and 72∘), is shown in Figure 1.3. Amazingly that despite
the lack of the long-range translational symmetry, quasicrystals, like regular crystals,
also produce sharp diffraction peaks (or spots), their positions being defined by the
quasi-momentum conservation law in high-dimensional space (higher than 3D, see
Section 1.1). In this high-dimensional space (hyperspace), quasicrystals are periodic
entities, their periodicity being lost when projecting them onto real 3D space.



1.1 Crystal Symmetry in Real Space 3

(a)

(b)

Figure 1.3 Dense filling of 2D space by spatially ordered, though non-periodic Penrose
tiles (b). Fivefold symmetry regions (regular pentagons) are clearly seen across the pattern.
Elemental shapes composing this tiling, i.e. two rhombs with smaller angles equal 18∘
(blue) and 72∘ (red), are shown in the (a).

In 1992, based on these findings, the International Union of Crystallography
changed the definition of a crystal toward uniting the regular crystals and quasicrys-
tals under single title with an emphasis on the similarity of diffraction phenomena:
“A material is a crystal if it has essentially a sharp diffraction pattern. The word
essentially means that most of the intensity of the diffraction is concentrated in
relatively sharp Bragg peaks, besides the always present diffuse scattering.” In
2011, Dan Shechtman was awarded Nobel Prize in Chemistry “for the discovery
of quasicrystals.”

1.1 Crystal Symmetry in Real Space

Across this book, we will focus on physical properties of regular crystals, amorphs
and quasicrystals being out of our scope here. Thinking on conventional crystals,
we first keep in mind their translational symmetry. As we already mentioned, the
long-range periodic order in crystals leads to translational symmetry, which is
commonly described in terms of Bravais lattices (named after French crystallogra-
pher Auguste Bravais):

rs = n1a𝟏 + n2a𝟐 + n3a𝟑 (1.1)

The nodes, rs, of Bravais lattice are produced by linear combinations of three
non-coplanar vectors, a1, a2, a3, called translation vectors. The integer numbers in
Eq. (1.1) can be positive, negative, or zero. Atomic arrangements within every crystal
can be described by the set of analogous Bravais lattices.

Classification of Bravais lattices is based on the relationships between the lengths
of translation vectors, |a1|= a, |a2|= b, |a3|= c and the angles, 𝛼, 𝛽, 𝛾 , between them.
In fact, all possible types of Bravais lattices can be attributed to seven symmetry
systems:



4 1 General Impact of Translational Symmetry in Crystals on Solid State Physics

Triclinic: a ≠ b ≠ c and 𝛼 ≠ 𝛽 ≠ 𝛾 ;
Monoclinic: a ≠ b ≠ c and 𝛼 = 𝛽 = 90∘, 𝛾 ≠ 90∘; in this setting, angle 𝛾 is between

translation vectors a1 (|a1| = a) and a2 (|a2| = b); whereas the angles 𝛼 and 𝛽 are,
respectively, between translation vectors a2^a3 and a1^a3;

Orthorhombic : a ≠ b ≠ c and 𝛼 = 𝛽 = 𝛾 = 90∘;
Tetragonal: a = b ≠ c and 𝛼 = 𝛽 = 𝛾 = 90∘;
Cubic: a = b = c and 𝛼 = 𝛽 = 𝛾 = 90∘;
Rhombohedral: a = b = c and 𝛼 = 𝛽 = 𝛾 ≠ 90∘;
Hexagonal: a = b ≠ c and 𝛼 = 𝛽 = 90∘, 𝛾 = 120∘.

A parallelepiped built by the aid of vectors a1, a2, a3 is called a unit cell and is
the smallest block, which being duplicated by the translation vectors allows us to
densely fill the 3D space without voids.

Translational symmetry, however, is only a part of the whole symmetry in crys-
tals. Atomic networks, described by Bravais lattices, also possess the so-called local
(point) symmetry, which includes lattice inversion with respect to certain lattice
points, mirror reflections in some lattice planes, and lattice rotations about certain
rotation axes (certain crystallographic directions). After application of all these sym-
metry elements, the lattice remains invariant. Furthermore, rotation axes are defined
by their order, n. The latter, in turn, determines the minimum angle, 𝜑 = 360∘

n
, after

rotation by which the lattice remains indistinguishable with respect to its initial set-
ting (lattice invariance). In regular crystals, the permitted rotation axes, i.e. those
matching translational symmetry (see Appendix 1.A), are twofold (180∘-rotation,
n = 2), threefold (120∘-rotation, n = 3), fourfold (90∘-rotation, n = 4), and sixfold
(60∘-rotation, n = 6). Of course, onefold, i.e. 360∘-rotation (n = 1), is a trivial sym-
metry element existing in every Bravais lattice. The international notations for these
symmetry elements are: 1– for inversion center, m – for mirror plane, and 1, 2, 3, 4,
6 – for respective rotation axes. We see that fivefold rotation axis and axes of the order,
higher than n= 6, are incompatible with translational symmetry (see Appendix 1.A).

To deeper understand why some rotation axes are permitted, while others not, let
us consider the covering of the 2D space by regular geometrical figures, having n
equal edges and central angle, 𝜑 = 360∘

n
(Figure 1.4). Correspondingly, the angle, 𝛿,

between adjacent edges is:

𝛿 = 180∘ − 𝜑 = 180∘ − 360∘
n

(1.2)

To produce a pattern without voids by using these figures, we require that the full
angle around each meeting point, M, defined by p adjacent figures, should be 360∘,
i.e. p ⋅ 𝛿 = 360∘. Therefore, using Eq. (1.2) yields:

p𝛿 = p
[

180∘ − 360∘
n

]
= 360∘ (1.3)

or
1
2
− 1

n
= 1

p
(1.4)
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Figure 1.4 Dense filling of 2D space by
regular geometrical figures.

δ
δ

φ

M

δ

Finally, we obtain:

p = 2n
n − 2

= 2 + 4
n − 2

(1.5)

It follows from Eq. (1.5) that there is a very limited set of regular figures (with
2<n ≤ 6) useful for producing periodic patterns, which fill the 2D space with no
voids (i.e. providing integer numbers, p). These are hexagons (n = 6, p = 3, 𝜑 = 60∘),
squares (n = 4, p = 4, 𝜑 = 90∘), and triangles (n = 3, m = 6, 𝜑 = 120∘). Based on the
value of central angle,𝜑, these regular figures possess the sixfold, fourfold, and three-
fold rotation axes, respectively. Since they are related to regular geometrical figures,
these rotation axes are called high-symmetry elements. Regarding the twofold axis,
it fits the symmetry of the parallelogram, which also can be used for filling the 2D
space without voids but does not represent a regular geometrical figure. For this
reason, the twofold rotation axis is classified as a low symmetry element (together
with inversion center, 1, and mirror plane, m). It also comes out from Eq. (1.5),
that regular figures with fivefold rotation axis (n = 5), as well as with rotation axes
higher than n > 6, are incompatible with translational symmetry, i.e. cannot be used
for producing periodic patterns without voids since parameter, p, is not an integer
number.

In the absence of the long-range translational symmetry, however, as in quasicrys-
tals, one can find additional rotation axes, e.g. fivefold (𝜑 = 360∘

5
= 72∘), as for 2D

construction shown in Figure 1.3 or for icosahedral symmetry in 3D. The latter can
be found in two Platonic bodies: regular icosahedrons and dodecahedrons. Regu-
lar dodecahedron has 12 pentagonal faces and 20 vertices, in each of them three
faces meet (Figure 1.5). Therefore, the fivefold axes are normal to the pentagonal
faces. In contrast, regular icosahedron has 20 triangular faces and 12 vertices, in
each of them five faces meet (Figure 1.6). Therefore, the fivefold axes connect the
body center and each vertex. Note that regular pentagon (plane figure) has central
angle 72∘ and is characterized by the so-called golden ratio 𝜏 (the ratio between the
pentagon diagonal, dp, and pentagon edge, ap, see Figure 1.7):

𝜏 =
dp

ap
= 2 cos 36∘ =

1 +
√

5
2

= 1.681 (1.6)
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Figure 1.5 Dodecahedron sculpted by 12
pentagonal faces.

Figure 1.6 Icosahedron sculpted by 20
triangular faces.

B

A
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ap C

36°
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Figure 1.7 Regular pentagon with edges equal ap
and diagonals equal dp. The ratio,
BC
AC

= dp

ap
= 2 cos 36∘ = 1+

√
5

2
, is called the golden

ratio (Eq. (1.6)).

which is of great importance to the quasicrystal diffraction conditions (described
later in this chapter).

Permitted combinations of local symmetry elements (totally 32 in regular crys-
tals) are called point groups. A set of different crystals, possessing the same point
group symmetry, form certain crystal class. Point group symmetry is responsible for
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Figure 1.8 Unit cells of the
following side-centered Bravais
lattices: A-type (a), B-type (b), C-type
(c). Translation vectors, a1 , a2 , a3 , are
indicated by dashed arrows. a3 a3

a1 a1
a2

(a) (b) (c)

a2

a3

a1
a2

Figure 1.9 Unit cells of the following
centered Bravais lattices: (a) face-centered
(F-type) and (b) body-centered (I-type).
Translation vectors, a1 , a2 , a3 , are indicated by
dashed arrows. a3 a3

a1
a1

a2 a2

(a) (b)

anisotropy of physical properties in crystals, as explained in more detail further in
this chapter.

Bravais lattices defined by Eq. (1.1) are primitive (P) since they effectively contain
only one atom per unit cell. However, in some symmetry systems, the same local
symmetry will be held for centered Bravais lattices, in which the symmetry-related
equivalent points are not only the corners (vertices) of the unit cell (as for primitive
lattice), but also the centers of the unit cell faces or the geometrical center of the unit
cell itself (Figures 1.8 and 1.9). Such lattices are conventionally called side-centered
(A, B, or C), face-centered (F), and body-centered (I). In side-centered modifications
of the type A, B, or C, additional equivalent points are in the centers of two oppo-
site faces, being perpendicular, respectively, to the a1-, a2-, or a3- translation vectors
(Figure 1.8). In the face-centered modification, F, all faces of the Bravais paral-
lelepiped (unit cell) are centered (Figure 1.9). For the cubic symmetry system, the
F-centered Bravais lattice is called face-centered cubic (fcc). In the body-centered
modification, I, the center of the unit cell is symmetry-equivalent to the unit cell ver-
tices (Figure 1.9). For the cubic symmetry system, the I-modification of the Bravais
lattice is called body-centered cubic (bcc). Accounting of centered Bravais lattices
increases their total amount up to 14.

In some cases, the choice of Bravais lattice is not unique. For example, fcc lattice
can be represented as rhombohedral one with aR = a/

√
2 and 𝛼 = 60∘ (Figure 1.10a).

Rhombohedral lattice is a primitive one and comprises one atom per unit cell instead
four atoms in the fcc unit cell. Similarly, bcc lattice can be represented in the rhom-
bohedral setting with aR = a

√
3/2 and 𝛼 = 109.47∘ (Figure 1.10b). In this case, the

rhombohedral lattice comprises one atom per unit cell instead two atoms in the bcc
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(a) (b) Figure 1.10 Lattice translations (red
arrows) in the rhombohedral setting
of the fcc (a) and bcc (b) lattices.

Table 1.1 Summary of possible symmetries in regular crystals.

Crystal symmetry Bravais lattice type Crystal classes (point groups)

Triclinic P 1, 1
Monoclinic P; B, or C m, 2, 2/m
Orthorhombic P; A, B, or C; I; F mm2, 222, mmm
Tetragonal P; I 4, 422, 4, 42m, 4/m, 4mm, 4/mmm
Cubic P; I (bcc); F (fcc) 23, m3, 432, 43m, m3m
Rhombohedral (trigonal) P ( R ) 3, 32, 3m, 3, 3m
Hexagonal P 6, 622, 6, 62m, 6/m, 6mm, 6/mmm

unit cell. We will widely use these settings in Chapter 2 considering the shapes of
Brillouin zones. Minimizing number of atoms in the unit cell substantially reduces
the calculation complexity of different physical properties in crystals.

Symmetry systems, types of Bravais lattices, and distribution of crystal classes
(point groups) among them are summarized in Table 1.1.

The number of high-order symmetry elements, i.e. the threefold, fourfold, and
sixfold rotation axes, which can simultaneously appear in a crystal, is also symmetry
limited. For threefold rotation axis, this number may be one, in trigonal classes, or
four, in cubic classes; for fourfold rotation axes – one in tetragonal classes or three in
some cubic classes, while for sixfold rotation axis – only one in all hexagonal classes
(see Appendix 1.A).

The presence or absence of an inversion center in a crystal is of upmost impor-
tance to many physical properties. For example, ferroelectricity and piezoelectricity
(see Chapter 12) do not exist in centro-symmetric crystals, i.e. in those having
inversion center. In this context, it is worth to note that any Bravais lattice is
centro-symmetric. For primitive lattices, this conclusion follows straightforwardly
from Eq. (1.1). Centered (non-primitive) Bravais lattices certainly do not refute
this statement (Figures 1.8 and 1.9). However, only 11 crystal classes of total 32,
in fact, are centro-symmetric. Even for high cubic symmetry, only two classes are
centro-symmetric, i.e. m3 and m3m (Table 1.1). Evidently, the loss of an inversion
center can happen in crystals, which are built of several Bravais lattices, their
origins being shifted relative to each other. We stress that it is necessary, but not
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Figure 1.11 The presence of
inversion center (C) in diamond
structure (a) and its loss (X) in
zinc-blende structure (b). Dissimilar
atoms are indicated by different
colors.

(1/4, 1/4, 1/4)(a) (b)

(0, 0, 0) (0, 0, 0)

(1/4, 1/4, 1/4)

GaAsSi C X

sufficient condition for the loss of inversion center. For illustration, let us consider
Si (diamond structure) and GaAs (zinc blende or sphalerite structure) crystals. Both
comprise two fcc lattices shifted relative to each other by one quarter of a space
cube diagonal. The difference is that in silicon these sub-lattices are occupied by
identical atoms (Si), whereas in GaAs – separately by Ga and As. In a result, Si is
centro-symmetric (class m3m) that can be easily proved by setting inversion center
at point ( 1/8, 1/8, 1/8), i.e. in the middle between the origins of two centro-symmetric
fcc Si sub-lattices (Figure 1.11a). This recipe can hardly be used in case of GaAs
since there is no symmetry operation that converts Ga to As (Figure 1.11b). There-
fore, GaAs is non-centro-symmetric crystal belonging to class 43m and revealing
significant piezoelectric effect.

Combining local symmetry elements with translations creates novel elements
of spatial symmetry – glide planes and screw axes. Therefore, spatial symmetry is
a combination of local (point) symmetry and translational symmetry. As a result,
32 point groups + 14 Bravais lattices produce 230 space groups describing all
possible variants of crystal symmetry, associated with charge distributions, i.e.
related to geometrical points and polar vectors. Magnetic symmetry, linked to
magnetic moments (axial vectors, see Section 1.2), will be discussed in Chapter 11.

1.2 Symmetry and Physical Properties in Crystals

Crystal symmetry imposes tight restrictions on its physical properties. Term
“properties” relates to those that can be probed by regular (macroscopic) opti-
cal, mechanical, electrical, and other measurements, averaging over the actual
atomic-scale periodicity of physical characteristics. Note that complete spatial sym-
metry of the crystal is revealed in diffraction measurements using quantum beams
(X-rays, neutrons, electrons) with wavelengths comparable with translational
periodicity. Note that crystal characteristics, even averaged over many translation
periods, show anisotropy which is dictated by the crystal point group. Within
this averaged approach, the symmetry constraints are formulated by means of the
so-called Neumann’s principle: the point group of the crystal is a sub-group of the
group describing any of its physical properties. In simple words, the symmetry of
physical property of the crystal cannot be lower than the symmetry of the crystal: it
may be only equivalent or higher.

In practical terms, it means that if physical property is measured along certain
direction within the crystal and then the atomic network is transformed according
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Ic
r

Δl
ΔH

Figure 1.12 Illustration of the Biot–Savart law
(Eq. (1.7)).

any symmetry element of its point group and measurement repeats, we expect to
obtain the measurable effect of the same magnitude and sign as before. Any devia-
tion will contradict particular crystalline symmetry and, thus, the Neumann’s prin-
ciple. Using mathematical language, physical properties are, generally, described by
tensors of different rank, for which the transformation rules under local symmetry
operations are well-known. Tensor rank defines the number of independent tensor
indices, i, k, l, m,…, each of them being run between 1 and 3, if the 3D space is con-
sidered. In most cases, physical property is the response to external field applied to
the crystal. Note that external fields are also described by tensors, which are called
field tensors to distinguish them from crystal (material) tensors.

Tensors of zero rank are scalars. It means that they do not change at all under
coordinate transformations related to symmetry operations. As an example of scalar
characteristics, we can mention the mass density of a crystal. Tensor of rank one is
a vector. It has one index i = 1,2,3, which enumerates vector projections on three
mutually perpendicular coordinate axes within Cartesian (Descartes) coordinate
system. It is easy to point out field vectors, for example, an applied electric field,  i,
or electric displacement field, Di. As crystal vector, existing with no external fields,
one can recall the vector of spontaneous polarization, Ps

i , in ferroelectric crystals
(see Chapter 12). Spontaneous polarization, as well as polarization, Pi, induced
by external electric field, is defined as the sum of elementary dipole moments per
unit volume. Note that polarization P is polar vector having three projections,
Pi, as e.g. radius-vector r (with projections, xi). There exist also axial vectors (or
pseudo-vectors), i.e. vector products (cross products) of polar vectors, which are
used to describe magnetic fields and magnetic moments. In fact, magnetic field,
𝚫H, produced by the element 𝚫l of a conducting wire carrying electric current, Ic,
is described by the Biot–Savart law:

𝚫H =
Ic [𝚫l × r]

4𝜋 r3 (1.7)

where r is the radius-vector connecting the element 𝚫l and the observation point
(see Figure 1.12). In turn, magnetic dipole moment, 𝜇d, is defined as an integral
over the volume containing the current density distribution J:

𝜇d = 1
2 ∫ ∫ ∫ [r × J]dV (1.8)

Axial vectors are considered when analyzing magnetic symmetry and magnetic
symmetry groups (Chapter 11).

Tensor of rank 2 has two independent indices i, k = 1, 2, 3. As a rule, it linearly con-
nects two vectors, e.g. the vectors of the electric displacement field, Di, and external
electric field, k, i.e. Di =

∑3
k=1εik, k, as tensor of dielectric permittivity, εik, does
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(see Chapter 8). Another example is the density of electric current, Ji, and electric
field, k, connected by the electrical conductivity tensor 𝜌ik, i.e. Ji =

∑3
k=1𝜌ikk (see

Chapter 4). In further analyses, we will omit the summation symbols and use the
reduced record (according to the Einstein convention) for tensor relationships, e.g.

Di = εikk (1.9)

Ji = 𝜌ikk (1.10)

There are two important field tensors of second rank, which are in common use.
These are the stress and strain tensors. Stress tensor, 𝜎ik, connects vector of external
force, Fi, applied to a certain crystal area,ΔS, and unit vector, n̂k, normal to this area:

Fi = 𝜎ikΔSn̂k (1.11)

Based on the mechanical equilibrium of the stressed solid, it is possible to prove
that stress tensor (Eq. (1.11)) is symmetric one, i.e. 𝜎ik = 𝜎ki. Regarding strain ten-
sor, it connects the deformation vector, ui, in the vicinity of a given point and the
radius-vector of this point, xi. Deformation vector determines the difference in the
distances between closely located points near xi in the deformed and non-deformed
states of the crystal. To provide local information on the deformed state, strain tensor,
eik, is defined in the differential form:

eik = 1
2

(dui

dxk
+

duk

dxi

)
(1.12)

Evidently, the strain tensor, defined by Eq. (1.12), is symmetric one, i.e. eik = eki.
Furthermore, inter-atomic distances within a crystal are also changed upon heat-

ing (see Chapter 3). In that sense, a crystal heated up to some temperature, T1, is in
different “deformation” state as compared with its initial state at temperature, T0.
Thus produced relative change in lattice parameters is mathematically equivalent
to strain (Eq. (1.12)). Tensor of second rank, which relates eik to the temperature
increase, ΔT = T1 −T0 (tensor of rank zero, i.e. scalar), is called as tensor of linear
expansion coefficients, 𝛼ik:

eik = 𝛼ikΔT (1.13)

Note that both crystal states, at T = T0 and T = T1, are thermodynamically equilib-
rium states at respective temperatures, and, therefore, no elastic energy is stored in
such “deformed crystal,” whenever the temperature change is homogeneous across
the crystal. The only energy difference between these two states is in free energy,
which is temperature dependent.

Tensor of second rank may also connect a scalar and two vectors, as tensor of
dielectric permittivity,  ik, does for energy density, W e, of electromagnetic field
within a crystal:

We =
Di i

2
= 1

2
εik ik (1.14)

By using tensor representation for the electric displacement field (see Eq. (1.9)), we
find that the energy density is quadratic with respect to the applied electric field,  i.
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Tensor of third rank has three indices i, k, l = 1, 2, 3. It connects tensor of second
rank and vector, e.g. stress, 𝜎ik, and induced electric polarization, Pi:

Pi = dikl𝜎kl (1.15)

as for direct piezoelectric effect, or strain, eik, and applied electric field,  i:

eik = dlik l (1.16)

for converse piezoelectric effect, both discussed in detail in Chapter 12. Another
example is tensor, rlik, of the linear electro-optic effect (the Pockels effect, also
mentioned in Chapter 12). This tensor of third rank connects the change, Δnik, of
refractive index, n, (which can be described in terms of the second rank tensor)
under applied electric field, with the electric field vector,  l:

Δ
( 1

n2

)
ik
= rlik l (1.17)

For the fourth rank tensor, there are several optional ways for its construction. It
may connect two tensors of rank 2, e.g. stress, 𝜎ik, and strain, elm, as the stiffness
tensor, Ciklm (tensor of elastic modules used in Chapter 3), does:

𝜎ik = Ciklmelm (1.18)

Similar tensor object, 𝜋iklm, is used to describe the photo-elastic effect in crystals,
which provides the change of refractive index under applied stress:

Δ
( 1

n2

)
ik
= 𝜋iklm𝜎lm (1.19)

Another possibility is to connect tensor of second rank (e.g. strain tensor, eik)
and two vectors (e.g. quadratic form of electric field,  l m) as for electrostriction
effect, giklm:

eik = giklm lm (1.20)

or changes in refractive index, as a function of quadratic form of electric filed, as
for quadratic electro-optic effect, riklm (see Chapter 12):

Δ
( 1

n2

)
ik
= riklm lm (1.21)

Eqs. (1.20, 1.21) describe the second order (quadratic) effects in the induced strain
and change of refractive index, respectively, as a result of electric field application to
a crystal. Tensor of rank 4 may also interconnect scalar quantity with two tensors of
the second rank, as the stiffness tensor does when one calculates the density of elastic
energy, W el, stored within a crystal:

Wel =
1
2
𝜎ikeik = 1

2
Ciklmeikelm (1.22)

Therefore, using tensor representation of applied stress via induced strain
(Eq. (1.18)), we find the density of elastic energy to be quadratic with respect to
the induced strain. Tensors of rank higher than 4 describe high-order effects in the
interaction between external fields and materials. These effects are regularly weak
and, hence, are not discussed here.
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Tensors of different ranks are appropriately transformed under local symmetry
operations. All these operations can be exemplified as certain rotations of coordi-
nate system, in which tensors are defined. Transformed tensor forms are compared
with the initial ones, and, on this basis, symmetry restrictions on physical properties
are imposed, to be in accordance with Neumann’s principle. Based on this compar-
ison, the zero tensor components can be determined, as well as symmetry-mediated
relationships between non-zero tensor components. More information on symmetry
aspects in crystals can be found in the dedicated crystallography books.

Additional interesting and important physical phenomenon, also related to sym-
metry operations, is twinning in crystals. For example, it stands behind the crys-
tallography of ferroelectric domains (see Chapter 12) and is one of the channels of
plastic deformation in crystals being competitive with dislocation glide. We stress
that in terms of crystallography, twinning always is the result of symmetry opera-
tions, but those not belonging to the point group of a specific crystal. More informa-
tion about twinning in crystals is given in Appendix 1.B.

1.3 Wave Propagation in Periodic Media and
Construction of Reciprocal Lattice

With no doubts, leading crystal symmetry is translational symmetry, which is of
great importance to the foundations of solid state physics. In particular, it allows
us to deeply understand the essential features of wave propagation in periodic
media, which influence a majority of physical phenomena in crystals. We start now
with the symmetry-based analysis of wave propagation following the ideas of Leon
Brillouin.

Let us consider, first, the propagation of the plane electron wave, Y =Y 0 exp[i(kr −
𝜔t)], in a homogeneous medium. Here, Y 0 is the wave amplitude, k is the wavevector,
and 𝜔 is the wave angular frequency, whereas r and t are the spatial and temporal
coordinates. The phase of plane wave is 𝜑= (kr −𝜔t), i.e. Y = Y 0 exp(i𝜑). According
to the Emmy Noether theorem, the homogeneity of space leads to the momentum
conservation law. It means that an electron wave having wavevector, ki, at a certain
point in its trajectory, will continue to propagate with the same wavevector since
the wavevector, k, is linearly related to the momentum, P, via the reduced Planck
constant ℏ, i.e. P =ℏk. The latter relationship follows from the de Broglie definition
of the particle wavelength (de Broglie wavelength) via its momentum: 𝜆 = 2𝜋

k
= h

P
.

The situation drastically changes for a non-homogeneous medium, in which
the momentum conservation law, generally, is not valid because of the breaking
of the aforementioned symmetry (homogeneity of space). Consequently, in such a
medium, one can find wavevectors, kf , differing from the initial wavevector, ki.

Our focus here is on a non-homogeneous medium with translational symmetry,
which comprises scattering centers in specific points, rs, given by Eq. (1.1). Based
on the translational symmetry only, we can say that in an infinite medium with no
absorption, the magnitude of plane wave, Y , should be the same near each lattice
node. It means that the amplitude, Y 0, is the same at all points, rs, whereas the phase,
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r = rs

r = 0

kf

ki

Figure 1.13 Illustration of the wave scattering
in a periodic medium.

𝜑 = kr −𝜔t, can differ by an integer number m of 2𝜋.Let us suppose that the plane
wave has wavevector, ki, at starting point r0 = 0 and time moment, t0 = 0, and hence
𝜑(0) = 0. If so, at point rs, the phase, 𝜑(rs), should be equal:

𝜑(rs) = kf rs − 𝜔t = 2𝜋m (1.23)

Note that the change of the wavevector from ki to kf physically means that the
wave experiences scattering in point, rs (Figure 1.13). For elastic scattering (with no
energy change):

|kf | = |ki| = |k| = 2𝜋
𝜆

(1.24)

where 𝜆 is the electron wavelength. Furthermore, the time interval, t, for wave prop-
agation between points, r0 = 0 and rs , equals

t =
kirs

∣ ki ∣ Vp
(1.25)

where

Vp = 𝜔

∣ k ∣
(1.26)

is the phase wave velocity. Substituting Eqs. (1.24–1.26) into Eq. (1.23) yields:

𝜑(rs) = (kf − ki)rs = 2𝜋m (1.27)

Introducing a new vector, G, which is called vector of reciprocal lattice,

2𝜋G = kf − ki (1.28)

and combining Eqs. (1.27, 1.28), we find

G ⋅ rs = m (1.29)

According to Eqs. (1.28, 1.29), different values of kf = ki + 2𝜋G are permitted in a
periodic medium, but only those that provide scalar products of certain vectors, G,
with all possible vectors, rs , to be integer numbers, m. By substituting Eq. (1.1) into
Eq. (1.29), we finally obtain:

G ⋅ (n1a1 + n2a2 + n3a3) = m (1.30)
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In order to find the set of allowed vectors, G, satisfying Eq. (1.30), the recipro-
cal space is built, which is based on three non-coplanar vectors b1, b2, and b3. Real
(direct) space and reciprocal space are interrelated by the orthogonality (reciprocity)
conditions:

aibj = 𝛿ij (1.31)

where 𝛿ij is the Kronecker symbol, equal to 1 for i = j or 0 for i≠ j (i, j = 1, 2, 3).
To produce the reciprocal space from real space, we use the following mathematical
procedure:

b1 = [a2 × a3]∕Vc

b2 = [a3 × a1]∕Vc

b3 = [a1 × a2]∕Vc (1.32)

where V c stands for the volume of the parallelepiped (unit cell) built in real space
on vectors a1, a2, a3:

Vc = a1 ⋅ [a2 × a3] (1.33)

By using Eqs. (1.32, 1.33), it is easy to directly check that the procedure (1.32)
provides proper orthogonality conditions (1.31). For example, a1 ⋅ b1 =a1 ⋅ [a2 ×a3]/
V c = V c/V c = 1, whereas a2 ⋅ b1 = a2 ⋅ [a2 × a3]/ V c = 0. Certainly, the volume of the
unit cell, V rec, in reciprocal space

Vrec = b1 ⋅ [b2 × b3] =
1

Vc
(1.34)

is inverse to V c. To prove this statement, we use the relationship well-known in vec-
tor algebra:

[A × B] × [B × C] = {A ⋅ [C × D]}B − {B ⋅ [C × D]}A (1.35)

In the reciprocal space, the allowed vectors, G, are linear combinations of the basis
vectors, b1, b2, b3:

G = hb1 + kb2 + lb3 (1.36)

with integer projections (hkl), known as Miller indices. The ends of vectors,
G, being constructed from the common origin (000), produce the nodes of a
reciprocal lattice. For all vectors, G, Eq. (1.30) is automatically valid due to the
orthogonality conditions (1.31). We repeat that in the medium with translational
symmetry, only those wavevectors, kf , may exist, which are in rigid interrelation
with the initial wavevector ki , satisfying Eq. (1.28). Sometimes Eq. (1.28) is
called as quasi-momentum (or quasi-wavevector) conservation law in the medium
with translational symmetry, which should be used instead of the momentum
conservation law in a homogeneous medium. We remind that the latter law means
2𝜋G =kf −ki = 0, i.e. kf =ki.

Note that each vector of reciprocal lattice, G= hb1 + kb2 + lb3, is perpendicular to
a specific crystallographic plane in real space. This statement directly follows from
Eq. (1.29), which defines the geometric plane for the ends of certain vectors, rs, the
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rs

G

rs

rs

Figure 1.14 Sketch of a crystal plane, normal to the
vector of reciprocal lattice, G, which contains the ends
of vectors, rs , satisfying Eq. (1.29).

kf

ki

2πG2ΘB

Figure 1.15 Graphical interrelation between
wavevectors of the incident (ki) and scattered (kf ) waves
and the vector of reciprocal lattice, G.

plane being perpendicular to the vector G (Figure 1.14). Bearing in mind possible
wave diffraction when propagating through a periodic medium, it is worth to intro-
duce a set of parallel planes of this type (i.e. those given by Eq. (1.29)), which are
separated by the d-spacing

d = 1
∣ G ∣

= 1
∣ hb𝟏 + kb𝟐 + lb𝟑 ∣

(1.37)

In fact, using graphical representation of Eq. (1.28) (Figure 1.15) and solving the
wavevector triangle, we find (with the aid of Eq. (1.24)) that

2|k| sin𝛩B =
4𝜋 sin𝛩B

𝜆
= 2𝜋|G| (1.38)

Substituting Eq. (1.37) into Eq. (1.38), we finally obtain the so-called Bragg law:

2d sin𝛩B = 𝜆 (1.39)

which provides the relationship between the possible directions for the diffracted
wave propagation (via Bragg angles, 𝛩B) and inter-planar spacings (d-spacings), d,
in crystals. We stress that if 𝜆> 2d, Bragg diffraction is not possible.

Note that for quasicrystals, the diffraction conditions (like Eq. (1.28)) can be
deduced from the quasi-momentum (quasi-wavevector) conservation law in the
n-dimensional space (hyperspace, n> 3), in which the vectors of reciprocal lattice,
Gqc, are:

Gqc =
n∑
1

hib
qc

i (1.40)

In case of icosahedral symmetry, n = 6, and the set of basis vectors has the follow-
ing form:

Gqc = G0

6∑
1

hib̂
qc
i (1.41)



1.3 Wave Propagation in Periodic Media and Construction of Reciprocal Lattice 17

Figure 1.16 The traces of isoenergetic surfaces (red
curves) in reciprocal space for the incident (ki) and
diffracted (kf ) waves. The point of degeneracy of
quantum states is marked by the letter D.

D

0

ki kf

2πG
πG = π/d

where G0 is some constant and b̂
qc
i are unit vectors expressed via the golden ratio

(Eq. (1.6)), as:

b̂
qc
1 = 1

1 + 𝜏2 (1, 𝜏, 0)

b̂
qc
2 = 1

1 + 𝜏2 (𝜏, 0, 1)

b̂
qc
3 = 1

1 + 𝜏2 (𝜏, 0,−1)

b̂
qc
4 = 1

1 + 𝜏2 (0, 1,−𝜏)

b̂
qc
5 = 1

1 + 𝜏2 (−1, 𝜏, 0)

b̂
qc
6 = 1

1 + 𝜏2 (0, 1, 𝜏) (1.42)

Using this terminology, regular crystals constitute the largest class, for which n= 3
(see Eq. (1.36)).

Considering the latter, we stress that in an infinite periodic medium, the waves
having wavevectors ki and kf =ki + 2𝜋G are identical from quantum-mechanical
point of view that leads to the degeneracy of the corresponding quantum states.
The degeneracy point (marked by letter D in Figure 1.16) is located at the inter-
section of the iso-energetic surfaces (red lines in Figure 1.16) for the incident (ki)
and diffracted (kf ) waves. Being projected onto vector G in reciprocal space, this
point called as the Brillouin zone boundary is in the middle between the 0 and
G-nodes of the reciprocal lattice (Figure 1.16). Construction based on lines and sur-
faces normally cutting corresponding vectors of reciprocal lattices in their middles
is used to build Brillouin zones in two and three dimensions (see Chapter 2). As we
also will see in Chapter 2, the degeneracy of states at the Brillouin zone boundary
is removed by an interaction of electron waves with periodic lattice potential that
results in the formation of the forbidden energy zones (gaps). Within these gaps,
the electron states do not exist. Therefore, we can say that energy gaps in crystals
are formed due to diffraction of free (or almost free) valence electrons, having wave-
vectors comparable with vectors of reciprocal lattice.
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A′B′

a

a

a

ϕ ϕ

Figure 1.17 Illustration of the restrictions
imposed by translational symmetry on
permitted types of rotation axes in crystals.

1.A Symmetry Constraints on Rotation Axes

As was already mentioned, translational symmetry imposes tight constraints on
possible kinds of rotation axes in crystals. This is one of the strongest and most
important results in crystallography. In fact, let us consider the network of
equivalent points in space, which are related to each other by translational sym-
metry (i.e. are produced from some origin by linear combinations of translation
vectors, see Eq. (1.1)). Suppose that the rotation axis, which is characterized
by the elementary rotation angle 𝜙, crosses one of these points (say point A),
perpendicularly to the plane of drawing (Figure 1.17). Point B is shifted from point
A by translation vector a, the distance AB being equal to the translation length, a.
Since point B belongs to the same network, the identical rotation axis is passing also
through it. Let rotate point B by angle 𝜙 about the axis passing through point A.
In such a way, we receive third equivalent point B′. Repeating this procedure for
point A (i.e. rotating it by angle 𝜙 about the axis passing through point B), we
obtain fourth equivalent point A′. Being equivalent, all four points belong to the
same network. It means that the distance A′B′ should be an integer number of
translations, a (since vector A′B′ is parallel to vector AB = a), i.e. A′B′ = pa, where
p is an integer. On the other hand, by considering the geometry in Figure 1.17, one
finds that A′B′ = AB+ 2AB′ ⋅ sin (𝜙−90∘). Using AB = AB′ = a yields pa = a+ 2a⋅
sin(𝜙−90∘), and finally:

cos𝜙 =
1 − p

2
(1.A.1)

Restrictions imposed on possible types of rotation axes by Eq. (1.A.1), mathemat-
ically follow from two conditions: |cos 𝜙 |≤ 1 and integer numbers of p. Possible
values of cos 𝜙 and p, as well as the order of the axis, n = 360∘/𝜙, are given in
Table 1.2.

First numerical line in Table 1.2 contains trivial symmetry element, i.e. rotation
axis 1 (n= 1,𝜙= 360∘). It is trivial since each geometrical figure transforms into itself
under rotation by 360∘. According to Table 1.2, as non-trivial elements, there are
only four different rotation axes in crystals, which are compatible with translational
symmetry: 2 (n = 2, 𝜙 = 180∘), 3 (n = 3, 𝜙 = 120∘), 4 (n = 4, 𝜙 = 90∘), and 6 (n = 6,
𝜙 = 60∘).

As next important question, we ask: how many rotation axes of the same high
order (3, 4, or 6) can simultaneously exist in a crystal? To address it, let take one
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Table 1.2 Possible types of rotation axes permitted
by translational symmetry.

p cos 𝝓 𝝓 n = 360∘
𝝓

−1 1 360∘ 1
0 1/2 60∘ 6
1 0 90∘ 4
2 −1/2 120∘ 3
3 −1 180∘ 2

Figure 1.18 Illustration of the simultaneous
appearance of several high-order rotation axes in a
crystal. D

O

B

A

ϕ

δ

δ δ

n-fold axis, marked as OA in Figure 1.18, and add to it another axis of this kind
(OB) inclined by angle 𝛿. Then, we can rotate the axis OB around OA by the ele-
mentary rotation angle, 𝜙= 360∘/n, and produce the third axis, OD. The duplication
procedure can be continued. However, all these axes are equivalent and, thus, the
angles between them should be equal 𝛿. The latter condition imposes strong restric-
tions on possible configurations of equivalent rotation axes in crystals and angles
between them.

In fact, it follows from triangle DOB that DB = 2•DO•sin(𝛿/2). The plane of
triangle DAB is perpendicular to the axis OA and hence the angle ∠ OAD = 90∘.
If so, DA = DO•sin𝛿 and from triangle DAB, the segment DB = 2•DA•sin(𝜙/2) =
2•DO•sin(𝜙/2)•sin 𝛿 . Comparing two expressions for segment DB, given in this
paragraph, yields sin 𝛿

2
= sin 𝜙

2
sin 𝛿 , or

cos 𝛿

2
= 1

2

[
sin

(
𝜙

2

)]−1

(1.A.2)

For a threefold rotation axis (axis 3, 𝜙= 120∘), Eq. (1.A.2) predicts that cos 𝛿

2
= 1√

3
and, correspondingly, cos𝛿 =−1/3. This angle, 𝛿 = 109.47∘, is between the space cube
diagonals, e.g. between the [111]- and [111]-diagonals. In other words, crystal sym-
metry permits the existence of single axis 3, as follows from translational symmetry,
or the simultaneous existence of four such axes (no more, not less), arranged in
3D space as spatial diagonals of a cube. The arrangement of four threefold rotation
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axes is the leading combination in the cubic symmetry system, existing in all five its
classes (point groups) (Table 1.1).

For a fourfold rotation axis (4, 𝜙 = 90∘), Eq. (1.A.2) gives cos 𝛿

2
= 1√

2
, i.e. 𝛿 = 90∘.

This is the angle between cube edges. In other words, crystal symmetry permits
the existence of single axis 4, or three such axes, arranged as cube edges, i.e. with
angles 𝛿 = 90∘ between them. This combination exists in classes 432 and m3m of
the cubic symmetry system (Table 1.1). In cubic class 43m, we find three fourfold
roto-inversion axes, which combine 90∘ rotation followed by inversion operation.

For a sixfold rotation axis (6, 𝜙 = 60∘), Eq. (1.A.2) yields cos(𝛿/2) = 1, i.e. 𝛿 = 0. In
other words, crystal symmetry allows the existence of single sixfold axis only in all
classes of hexagonal symmetry (Table 1.1).

1.B Twinning in Crystals

As was already mentioned, twinning is very interesting and practically important
phenomenon in crystal physics, which is tightly related to specific symmetry opera-
tions. The phenomenon of twinning in crystals has been extensively studied due to
its emergence in crystal growth and phase transformations and its substantial effect
on mechanical, electrical, and optical properties in real crystals. In fact, twinning
is one of the key mechanisms of plastic deformation in metals and ceramics. Quite
often it serves as a structural basis for different types of ferroelectric domains (see
Chapter 12) or structural variants in shape-memory alloys.

In contrast to what we have learned until now, symmetry operations involved into
twinning processes are not included into the point group of a particular crystal, in
which twinning occurs. Correspondingly, twins are crystal parts (sometimes called
individuals), which are transformed into each other under such symmetry opera-
tions. In fact, if a specific symmetry element, considered for twinning, belongs to the
crystal point group, its application to one crystal part would produce perfect contin-
uation of the crystal, rather than a twin. In principle, every basic symmetry element,
introduced earlier in Section 1.1, may serve for twinning, if it does not belong to
the point group set for a given crystal. However, most frequently twins are produced
by reflection in a mirror plane or by a 180∘ rotation about the twofold rotation axis
perpendicular to the boundary plane between the twinned parts. If a crystal has an
inversion center, both operations result in identical twins.

Let us illustrate these considerations by two examples, the first being taken for
monoclinic lattice, which is characterized by lattice translations a, b, and c and angle
𝛾 ≠ 90∘ between vectors a and b. Correspondingly, vector c is perpendicular to both
the vectors a and b. In monoclinic crystals, containing mirror plane as symmetry
element (classes m and 2/m, see Table 1.1), this plane is horizontal, i.e. perpendicular
to the c-translation (in our setting). Consequently, the planes containing translations
a and c or b and c are not mirror planes (Figure 1.19). However, if nevertheless,
part of the crystal is produced according to this “forbidden” symmetry operation (as
fault during growth or because of stress application), one obtains twins shown in
Figure 1.19. The angle between twinned parts equals 180∘ – 2𝛾 .



1.B Twinning in Crystals 21

Figure 1.19 Illustration of
twin formation in
monoclinic lattice via mirror
reflection in plane
containing the b- and
c-translations. The latter is
perpendicular to the plane
of drawing. The a- and
b-translation vectors are
indicated by red arrows.
Twins are crystal parts
located at right-hand and
left-hand sides from the
trace of the twinning plane
(blue solid line).
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Figure 1.20 Illustration of twin formation in orthorhombic lattice via mirror reflection in
plane containing the (b + a)- and c-translations. The latter is perpendicular to the plane of
drawing. The a- and b-translation vectors are indicated by red arrows. Twins are crystal
parts located at right-hand and left-hand sides from the trace of the twinning plane (blue
solid line).

As second example, let us consider orthorhombic lattice with lattice translations
a, b, c, being mutually perpendicular to each other. In orthorhombic crystals (classes
222, mm2, and mmm, see Table 1.1), the faces of rectangular prism, which represents
unit cell, are related to certain symmetry elements. For class mm2 they are mirror
planes, while for class 222 the normals to these planes are the twofold rotation axes.
For class mmm both assertions are valid. Therefore, if we apply these symmetry
operations to one part of the respective crystal, we will obtain its perfect contin-
uation. Situation is changed, if we consider mirror plane, which contains one of
the face diagonals of the prism as well as translation vector situated normally to
the face chosen. This geometry is shown in Figure 1.20, for mirror plane, which
contains vectors a +b (as face diagonal) and vector c. Application of such mirror
plane to a part of the crystal produces twin as is clearly seen in Figure 1.20. If the
angle between vector b and the trace of the twinning plane equals 𝛼, then the angle
between twinned parts is 2𝛼.
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Despite all twins can be considered as being produced by certain symmetry
operations, historically twins are also classified with respect to physical processes,
through which they appear. In this classification, twins are sub-divided by three
categories: growth twins, transformation twins, and deformation twins. Note that
these classes not always have lucid boundaries, since crystals may experience
deformations also during growth and especially during phase transformations.
Note that adjacent ferroelectric domains in perovskite structure (e.g. in BaTiO3
considered in Chapter 12) are good example of transformation twins, if the latter
are produced during paraelectric/ferroelectric phase transformation.

Twin boundaries are planar structural defects, which increase free energy of
the system, as compared with perfect crystal structure. Correspondingly, twinning
planes that require less energy for twin formation are more favorable from energy
point of view. For this reason, quite often, twin boundary is a compactly packed
atomic plane that prevents re-arrangement of short (and therefore strong) bonds
during atomic movements, which accompany the twin formation.


