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An Introduction to Density Functional Theory (DFT) and
Derivatives

1.1 The Problem of a N-electron System

The density functional theory (DFT) is first resulted from the work by Hohenberg
and Kohn [1], wherein the complicated individual electron orbitals are substituted
by the electron density. Namely, the DFT is entirely expressed in terms of the func-
tional of electron density, rather than the many-electron wave functions. In this case,
DFT significantly reduces the calculations of the ground state properties of materi-
als. That is why DFT is useful for calculating electronic structures, especially with
many electrons. As the foundation of DFT, two theorems are proposed by Hohenberg
and Kohn [1]. The first theorem presents that the ground state energy is a functional
of electron density. The second theorem shows that the ground state energy can be
achieved by minimizing system energy on the basis of electron density.

It should be noted that, although Hohenberg and Kohn point out there are rela-
tions between properties and electron density functional, they do not present the
exact relationship. But fortunately, soon after the work of Hohenberg and Kohn,
Kohn and Sham simplified the many-electron problems into a model of individual
electrons in an effective potential [2]. Such a potential contains the external poten-
tial and exchange-correlation interactions. For exchange-correlation potential, it is
a challenge to describe it rigorously.

The simplest approximation for treating the exchange-correlation interaction is
the local density approximation (LDA) [3], wherein the exchange and correlation
energies are obtained by the uniform electron gas model and fitting to the uniform
electron gas, respectively. LDA can provide a realistic description of the atomic struc-
ture, elastic, and vibrational properties for a wide range of systems. Yet, because LDA
treats the energy of the true density using the energy of a local constant density, it
cannot describe the situations where the density features rapid changes such as in
molecules [4, 5]. To address this problem, the generalized gradient approximation
(GGA) is proposed [6–8], which depends on both the local density and the spatial
variation of the density. And in principle, GGA is as simple to use as LDA. Currently,
in the vast majority of DFT calculations for solids, these two approximations are
adopted.
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By considering the Born–Oppenheimer and non-relativistic approximations, the
effective Hamiltonian of a N-electron system in the position representation can be
given by,

H(r1, r2,… rN ) = T̂ + V̂ ext + V̂ ee = −1
2
∑

i
∇2

i +
∑

i
v̂ne(ri) +

1
2
∑

i

∑
j≠i

1|ri − rj|
(1.1)

The first term is kinetic energy operator. The second term is an external potential
operator. In systems of interest to us, the external potential is simply the Coulomb
interaction of electrons with atomic nuclei:

v̂ne(ri) = −
∑
𝛼

Z𝛼|ri − R𝛼| (1.2)

where the ri is the coordinate of electron i and the charge on the nucleus at R𝛼 is Z𝛼 .
The third term of Eq. (1.1) is the electron-electron operator. The electronic state can
be obtained by the Schrödinger equation:

H(r1, r2, rN )Ψ(r1, r2, rN ) = EΨ(r1, r2, rN ) (1.3)

Here, Ψ(r1, r2, rN ) is a wave function in terms of space-spin coordinates. Apparently,
the wave function is antisymmetric under exchanging the coordinates. Under Dirac
notation, the Eq. (1.1) can be expressed in representation-independent formalism:

H|Ψ⟩ = E|Ψ⟩ (1.4)

In principle, the ground state energy E0 of the N-electron system can be found
based on the variational theorem, which is obtained by the minimization:

E0 = min
Ψ

⟨Ψ|Ĥ|Ψ⟩ (1.5)

Here, the search is over all antisymmetric wave functions Ψ. In this regard, bet-
ter approximations for Ψ can readily result in the ground state energy E0 of the
N-electron system, but the computational cost would be very high. Therefore, the
direct solution is not feasible. To address this issue, DFT is developed, which is based
on a reformulation of the variational theorem in terms of electron density.

We know that |Ψ|2 =Ψ*Ψ represents the probability density of measuring the first
electron at r1, the second electron at r2, … and the Nth electron at rN . By integrating
|Ψ|2 over the first N − 1 electrons, the probability density of the Nth electron at rN is
determined. Then the probability electron density that defines any of the N electrons
at the position r is given by:

𝜌(r) = N ∫ …∫ Ψ∗(r1, r2, rN )Ψ(r1, r2,… rN )dr2
… drN

(1.6)

And the electron density is normalized to the electron number:

∫ 𝜌(r)dr = N (1.7)

The energy of the system is expressed as:

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|T̂|Ψ⟩ + ⟨Ψ|V̂ ext|Ψ⟩ + ⟨Ψ|V̂ ee|Ψ⟩ = T + Vext + Vee (1.8)
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Here,

T = ⟨Ψ|T̂|Ψ⟩ = ∑
i
∫ Ψ∗(r1, r2, rN )

(
−1

2
∇2

i

)
Ψ(r1, r2, rN )dr1

dr2
… drN

(1.9)

Vext = ⟨Ψ|V̂ ext|Ψ⟩ = ∑
i
∫ Ψ∗(r1, r2, rN )v̂ne(ri)Ψ(r1, r2,… rN )dr1

dr2
… drN

= ∫ vne(r)𝜌(r)dr = Vext[𝜌] (1.10)

1.2 The Thomas–Fermi Theory for Electron Density

Before discussing the Hohenberg–Kohn theorems, we first introduce the Thomas–
Fermi theory. The Thomas–Fermi theory is important as it gives the relation between
external potential and the density distribution for interacting electrons moving in an
external potential:

𝜌(r) = 𝛾(𝜇 − veff(r))3∕2 (1.11)

veff(r) ≡ vne(r) + ∫
𝜌(r′)|r − r′|dr′ (1.12)

Here,

𝛾 = 1
3𝜋2

(
2m
ℏ2

)3∕2

(1.13)

and 𝜇 is the r independent chemical potential. The second term is Eq. (1.12) is the
classical electrostatic potential raised by the density 𝜌(r). Based on the Thomas–
Fermi theory, Hohenberg and Kohn build up the connection between electron den-
sity and the Schrödinger equation. And in the following, we will introduce the two
Hohenberg–Kohn theorems, which lie at the heart of DFT.

1.3 The First Hohenberg–Kohn Theorem

By replacing the external potential vne(r) with an arbitrary external local potential
v(r), the corresponding ground state wave function Ψ can be found by solving
the Schrödinger equation. Based on the obtained wave function, the ground state
density 𝜌(r) can be computed. And obviously, two different local potentials would
give two different wave functions and thus two different electron densities. This
gives the map:

v(r) → 𝜌(r) (1.14)

Based on the Thomas–Fermi theory, Hohenberg and Kohn demonstrated that the
preceding mapping can be inverted, namely, the ground state electron density 𝜌(r) of
a bound system of interacting electrons in some external potential v(r) determines the
potential uniquely:

𝜌(r) → v(r) (1.15)

This is known as the first Hohenberg–Kohn theorem.
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To demonstrate this theorem, we consider two different local potentials v1(r) and
v2(r), which differ by more than the constant. These two potentials yield two differ-
ent ground state wave functions Ψ and Ψ′ , respectively. And apparently, these two
ground state wave functions are different. Assume v1(r) and v2(r) correspond to the
same ground state wave function, then

Ĥ|Ψ⟩ = E0|Ψ⟩ (1.16)

Ĥ′|Ψ⟩ = E′
0|Ψ⟩ (1.17)

By subtracting Eq. (1.17) from Eq. (1.16), we can obtain:

(V̂ 1 − V̂ 2)|Ψ⟩ = (
E0 − E′

0
) |Ψ⟩ (1.18)

which can be expressed in position representation,∑
i
[v̂1(r1) − v̂2(ri)]Ψ(r1, r2, rN ) =

(
E0 − E′

0
)
Ψ(r1, r2, rN ) (1.19)

This suggests that

v1(r) − v2(r) = const (1.20)

thus in contradiction with the assumption that v1(r) and v2(r) differ by more than
a constant. Accordingly, two different local potentials that differ by more than the
constant cannot share the same ground state wave function, which demonstrate the
map:

v(r) → Ψ (1.21)

Then, we demonstrate the map:

Ψ → 𝜌(r) (1.22)

Let Ψ and Ψ′ be the ground state wave functions corresponding to v1(r) and v2(r),
respectively. Assuming that Ψ and Ψ′ exhibit the same ground state electron density
𝜌(r), then the variational theorem gives the ground state energy as:

E0 = ⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ′ + V̂ 1 − V̂ 2|Ψ′⟩
= E′

0 + ∫ [v1(r) − v2(r)]𝜌(r)dr (1.23)

E′
0 = ⟨Ψ′|Ĥ′|Ψ′⟩ < ⟨Ψ|Ĥ′|Ψ⟩ = ⟨Ψ|Ĥ − V̂ 1 + V̂ 2|Ψ′⟩
= E0 + ∫ [v2(r) − v1(r)]𝜌(r)dr (1.24)

By subtracting Eq. (1.23) from Eq. (1.24), we can obtain:

E′
0 − E0 < E0 − E′

0 (1.25)

This makes no sense. This finally leads to the conclusion that there cannot exist two
local potentials differing by more than an additive constant that has the same ground
state density.
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1.4 The Second Hohenberg–Kohn Theorem

According to the first Hohenberg–Kohn theorem, the ground state density 𝜌(r) deter-
mines the local potential v(r), and in turn determines the Hamiltonian. Therefore,
for a given ground state density 𝜌0(r) that is generated by a local potential, it is pos-
sible to compute the corresponding ground state wave function Ψ0. That is to say, Ψ0
is also a unique functional of 𝜌0(r):

Ψ0 = Ψ0[𝜌0] (1.26)

According to Eq. (1.26), the ground state energy E0 is also a functional of 𝜌0(r):

E0 = E0[𝜌0] (1.27)

Hohenberg and Kohn define the universal density functional:

F[𝜌] = ⟨Ψ[𝜌]|T̂ + V̂ ee|Ψ[𝜌]⟩ (1.28)

Here, Ψ[𝜌] is any ground state wave function corresponding to the ground state den-
sity 𝜌(r). By combining Eq. (1.10), the total energy functional can be defined as:

E[𝜌] = F[𝜌] + ∫ vne(r)𝜌(r)dr (1.29)

From the Ritz principle, we have:

E0 = min
𝜌

E[𝜌] = min
𝜌

{
F[𝜌] + ∫ vne(r)𝜌(r)dr

}
(1.30)

This is known as the second Hohenberg–Kohn theorem.

1.5 The Kohn–Sham Equations

For a system with noninteracting electrons, the effective Hamiltonian n can be
given by:

Ĥs = T̂ + V̂ s (1.31)

The corresponding Schrödinger equation is:(
−1

2
∇2 + v̂s(r)

)
𝜓i(r) = 𝜀i𝜓i (1.32)

Then the density is given by:

𝜌s(r) =
∑

i
|𝜓i(r)|2 (1.33)

Here, the single particle orbital 𝜓 i(r) is constructed based on the effective potential
vs(r).

The total energy can be expressed as:

Es[𝜌] = Ts[𝜌] + Vs[𝜌] (1.34)
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The first term is the kinetic energy of the noninteracting electrons, which is given by:

Ts[𝜌] = ⟨Ψ[𝜌]|T̂|Ψ[𝜌]⟩ = ∑
i

⟨
𝜓i(r) ∣ −

1
2
∇2 ∣ 𝜓i(r)

⟩
(1.35)

The second term is the effective potential, which is given by:

Vs[𝜌] = ⟨Ψ[𝜌]|V̂ s|Ψ[𝜌]⟩ = ∫ v̂s(r)𝜌(r)dr (1.36)

Accordingly, the total energy can be given by:

Es[𝜌] =
∑

i
𝜀i (1.37)

By combining Eqs. (1.36) and (1.37), the kinetic energy can be expressed as:

Ts[𝜌] =
∑

i

⟨
𝜓i(r)

||| − 1
2
∇2|||𝜓i(r)

⟩
=
∑

i
𝜀i − ∫ v̂s(r)𝜌(r)dr (1.38)

Using the method of Lagrange multipliers, we can obtain the following equation:

𝜇 =
𝛿Es[𝜌]
𝛿𝜌(r)

=
𝛿Ts[𝜌]
𝛿𝜌(r)

+
𝛿Vs[𝜌]
𝛿𝜌(r)

=
𝛿Ts[𝜌]
𝛿𝜌(r)

+ vs(r) (1.39)

Solution of Eq. (1.39) yields the density 𝜌s(r).
The classical electrostatic interaction energy is given by:

EH[𝜌] =
1
2 ∫ VH(r)𝜌(r)dr (1.40)

And

VH(r) = ∫
𝜌(r′)|r − r′|dr′ (1.41)

Then the following equation is obtained:

E[𝜌] = T[𝜌] + Vee[𝜌] + V[𝜌] = Ts[𝜌] + EH[𝜌]

+ (T[𝜌] − Ts[𝜌] + Vee[𝜌] − EH[𝜌]) + V[𝜌] (1.42)

The third term is exchange and correlation energy functional:

Exc = T[𝜌] − Ts[𝜌] + Vee[𝜌] − EH[𝜌] (1.43)

The exchange-correlation potential is defined as:

Vxc =
𝛿Exc[𝜌]
𝛿𝜌(r)

(1.44)

Using the method of Lagrange multipliers, we can obtain the following equation:

𝜇 = 𝛿E[𝜌]
𝛿𝜌(r)

=
𝛿Ts[𝜌]
𝛿𝜌(r)

+ VH(r) + Vxc(r) + vne(r) (1.45)

And solution to Eq. (1.45) is 𝜌(r).
Therefore, given the relation:

vs(r) ≡ VH(r) + Vxc(r) + vne(r) (1.46)
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We have:

𝜌s(r) ≡ 𝜌(r) (1.47)

We then arrive at the Kohn–Sham equation:(
−1

2
∇2 + V̂ H(r) + V̂ xc(r) + v̂ne(r)

)
𝜓i(r) = 𝜀i𝜓i (1.48)

Solving this equation gives the orbital and then the density of the original interacting
system.

The exchange and correlation functional can be written as:

Exc[𝜌] = ∫ 𝜀xc(r′; 𝜌)𝜌(r′)dr′ (1.49)

Here, 𝜀xc(r′; 𝜌) is the exchange-correlation energy density. And the exchange-
potential is defined as:

Vxc(r; 𝜌) =
𝛿Exc[𝜌]
𝛿𝜌(r)

= 𝜀xc(r; 𝜌) + ∫
𝛿𝜀xc(r′; 𝜌)
𝛿𝜌(r)

𝜌(r′)dr (1.50)

Then the total energy can be given by:

E[𝜌] =
∑

i
𝜀i − EH[𝜌] + Exc[𝜌] − ∫ Vxc(r; 𝜌)𝜌(r)dr (1.51)

From preceding equation, we can see that, except for the exchange-correlation func-
tional, all the aforementioned expressions are exact. In practice, we have to use
approximations for exchange-correlation potential, as the exact form is unknown.

1.6 The Local Density Approximation (LDA)

LDA is one of the most widely used and simplest approximations for Exc. In LDA,
the exchange-correlation functional is approximated as:

ELD
xc [𝜌] = ∫ 𝜌(r)𝜀unif

xc [𝜌(r)dr] (1.52)

Here, 𝜀unif
xc [𝜌(r)] is the exchange-correlation energy per electron in homogeneous

electron gas at density 𝜌. LDA works well for homogeneous electron gas, and thus is
valid for systems where electron density does not change rapidly.

The exchange-correlation energy density can be broken down into two parts:

𝜀unif
xc [𝜌(r)] = 𝜀unif

x [𝜌(r)] + 𝜀unif
c [𝜌(r)] (1.53)

The first term is the exchange term, which is given by:

𝜀unif
x [𝜌(r)] = Const. × 𝜌1∕3(r) (1.54)

While for the second term of Eq. (1.53), it is the correlation density, which does
not have an analytic formula. However, the correlation energies can be obtained
numerically from quantum Monte Carlo (QMC) calculations by Ceperley and
Alder [9].
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And for spin-polarized systems, the spin-up and spin-down densities are taken as
two independent densities in the exchange-correlation energy. And in this case, the
Eq. (1.52) can be expressed as:

ELSD
xc [𝜌] = ∫ 𝜌(r)𝜀unif

xc [𝜌↓(r), 𝜌↓(r)]dr (1.55)

For calculating the electronic structure, LDA approach is estimated to be successful.
However, for some systems, it does not work. As a result, many efforts are devoted
to improve it. One of them is to include the gradient of the density in the exchange
correlation functional, as we will show next.

1.7 The Generalized Gradient Approximation (GGA)

To introduce the gradient of the density in the exchange correlation functional, the
gradient expansion approximation (GEA) is first proposed. Starting from the uni-
form electron gas, a slowly varying external potential v(r) is introduced. And then
the exchange-correlation energy is expanded in terms of the gradients of the density:

EGEA
xc [𝜌] = ELD

xc [𝜌] + ∫ Cxc(𝜌(r))𝜌(r)4∕3
(

∇𝜌(r)
𝜌(r)4∕3

)2

dr (1.56)

Here, Cxc(𝜌) is the sum of the exchange and correlation coefficients of the gradient
expansion. As the reduced density gradient is small, GEA approach should be supe-
rior to LDA approach. However, because the reduced density gradient can be large
in some region of space for real systems, GEA is shown to be worse than LDA.

To overcome the shortcomings of GEA, the GGA is developed. In GGA, the
exchange-correlation functional is approximated as:

EGGA
xc [𝜌] = ∫ f (𝜌(r),∇𝜌(r))dr (1.57)

Here, f is some function. Many GGA functionals have been proposed, including B88
[10], Lee-Yang-Parr (LYP) [11], PW91 [12], and Perdew–Burke–Ernzerhof (PBE) [13]
exchange-correlation functionals.

1.8 The LDA+U Method

While LDA and GGA are estimated to be able to deal with the many systems and phe-
nomena, they do not work well for the systems with rare-earth and late-transition
metal elements. This is because the effective single-particle methods are applica-
ble for highly delocalized band states but not for strongly localized states. For the
d and f electrons of rare-earth and late-transition metal elements, they essentially
retain their atomic character in solids. As a consequence, standard DFT function-
als such as LDA, local spin density approximation (LSDA), and GGA itinerant d
states and metallic ground state for many transition metal oxides, for which semi-
conducting behavior is demonstrated experimentally. For improving these issues,
LDA+U method is developed [14–16]. Here, if not specified elsewhere, +U indicates
a Hubbard, and LDA indicates the standard DFT functionals, i.e. LDA, LSDA, and
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GGA. The idea of LDA+U method is on the basis that the strongly correlated elec-
tronic states (i.e. d and f sates) are treated by the Hubbard model, and the rest of
the valence electrons are described by the standard DFT functionals. Therefore, the
total energy within LDA+U method can be given by:

ELDA+U[𝜌] = ELDA[𝜌] + EHub
[{
𝜌I𝜎

mm′

}]
− Edc[{𝜌I𝜎}] (1.58)

Here, the first term is the standard DFT total energy functional being corrected,
the second term represents the Hubbard Hamiltonian to model correlated states,
and the third is the double-counting term. The LDA+U method can well describe
the electronic properties of the Mott insulators and increase the band gaps in the
Kohn–Sham spectrum.

1.9 The Heyd–Scuseria–Ernzerhof Density Functional

In standard DFT, the Fock exchange energy is computed based on a local energy
density and its derivatives. However, the exact form for the Fock exchange energy
is known as nonlocal from the Hartree–Fock theory. To improve the accuracy,
the PBE exchange energy should be mixed with a fraction of the exact non-
local Fock exchange energy, giving rise to the hybrid functionals, such as the
Heyd–Scuseria–Ernzerhof (HSE) functional [17]. The HSE exchange-correlation
energy is given by:

EHSE
xc = 𝛼EHF,short

x [𝜇] + (1 − 𝛼)EPBE,short
x [𝜇] + EPBE,long

x [𝜇] + EPBE
c [𝜇] (1.59)

Here, EHF
x and EPBE

x , respectively, represent the exact Fock exchange energy and the
PBE exchange energy. EPBE

c is the PBE correlation energy. 𝜇 is the range-separation
parameter. 𝛼 is the mixing parameter. From Eq. (1.59), it can be seen that the HSE
functional is split into short- and long-range terms. In this case, it can improve the
accuracy, while avoiding the computational cost.

1.9.1 Introduction to Tight-Binding Approximation

Consider in a single atom there are multiple atomic orbitals 𝜑m(r) with m being the
orbital indices. Here,𝜑m(r) must be eigenfunctions of the Hamiltonian of that single
atom Hatom. When we place it in a crystal with plenty of atoms, the wave function
of different atoms overlap each other to form a different wave function. Due to that
𝜑m(r) is not a real eigenfunction for a Hamiltonian of crystal and we need to find
out what the true eigenfunctions are. If the overlap of one atom on another is small
enough, we can still assume that electrons are tightly bound to the corresponding
atoms, which is exactly the reason why we call it as tight-binding approximation. The
approximate Hamiltonian is H(r) = Hatom(r)+ΔU(r), whose Bloch wave function
can be taken as a combination of all the isolated orbitals: [18, 19]

𝜓m(r) =
∑
Rn

bm(Rn)𝜑m(r − Rn),

where Rn denotes all lattice points and bm(Rn) is just a coefficient number for orbital
m. In the presence of translation symmetry, coefficient numbers can be replaced by
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a Bloch form, which gives:

𝜓m(r) ≈
1√
N

∑
Rn

eik⋅Rn𝜑m(r − Rn).

1.9.2 Matrix Elements of Tight-Binding Hamiltonian

To get Hamiltonian in the momentum space, we shall do a basis transformation such
as: [20]

𝜓k(r)|H|𝜓k(r) =
1
N
∑

i,j
e−ik⋅(Ri−Rj)⟨𝜑(r − Ri)|H|𝜑(r − Rj)⟩.

When Ri is equal to Rj, we will find the onsite energy represented for the atomic
energy shift due to the overlap of other atoms, which can be given as:

𝛽i = ⟨𝜑(r − Ri)|H|𝜑(r − Ri)⟩.
If Ri is not equal to Rj, hopping energy between different lattice sites can be defined
as:

tij = −⟨𝜑(r − Ri)|H|𝜑(r − Rj)⟩.
1.9.3 Matrix Elements with the Help of Wannier Function

Usually, Bloch wave functions are not orthogonal, which may result in some prob-
lems. To resolve that we should define the orthogonal Wannier function as:

w(r − Ri) =
1√
N

∑
k

e−ik⋅Ri𝜓k(r).

By using a bra-ket notation, the Hamiltonian in the real space takes the form of: [21]

H = 𝛽i

∑
Ri

|Ri⟩⟨Ri| − tij

∑
i≠j

|Ri⟩⟨Rj|,
where 𝛽 i and tij denote the onsite energy and hopping energy, respectively. To get
the energy of Hamiltonian, we shall do a basis transformation into the momentum
space, which is implemented by a Fourier transform:

H =
∑

i
𝛽i

∑
k
|k⟩⟨k| − tij

∑
i≠j

1
N
∑

k
e−ik⋅(Ri−Rj)|k⟩⟨k|.

1.9.4 Example for a Graphene Model

By using graphene lattice [22] as an example, we give a detailed description about
how to use tight-binding method. Here, we consider two atoms with s orbital in a
single unit cell of unit lattice constant, whose lattice vector can be written as:

a1 = 1
2

(
3,
√

3
)
, a2 = 1

2

(
3,−

√
3
)
.

Each atom is connected with three nearest-neighbor atoms with a distance of:

𝛿1 = 1
2

(
1,
√

3
)
, 𝛿2 = 1

2

(
1,−

√
3
)
, 𝛿3 = (−1, 0).
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In the momentum space, we consider the onsite energy for two s orbitals is 𝜖1. The
nearest-neighbor hopping strength is t, which leaves a Hamiltonian matrix as fol-
lows:

H =

||||||||
𝜖1 −t

∑
j

eik𝛿j

−t
∑

j
e−ik𝛿j 𝜖1

||||||||
.

We can get the energy dispersion with an implementation of diagonalization,
which results in:

E(kx, ky) = 𝜖1 ± t
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A single electron in a periodic potential V(r) obeys a Schrödinger equation, and such
a form can be written as [23, 24]:[

p2

2m
+ V(r)

]
𝜓(k,r) = E𝜓(k,r),

where the eigenvalues and eigenfunctions can be written as En(k) and 𝜓n(k, r) =
eik • run(k, r). The periodic part that is called as a Bloch function satisfies such an
equation as:

H0(k)un(k, r) = En(k)un(k, r),

where the Hamiltonian located at momentum point of k0 can be given as: H0(k0) =
p2

2m
+ ℏ

m
k0 ⋅ p + ℏ2k2

0
2m

+ V(r). If the eigenvalues and eigenfunctions are assumed to be
solved for point as k0, we can get the solutions of nearby points such as k = k0 + 𝛿k
through the following equation:[

H0(k0) +
ℏ

m
𝛿k ⋅ p

]
un(k, r) =

[
En(k0) +

ℏ2

2m
(
k2

0 − k2)] un(k, r).

Then, the perturbation Hamiltonian gains a form of H′(k) = ℏ

m
𝛿k ⋅ p. With the help

of perturbation theory, we can solve the energy of nearby points under two different
situations, which is illustrated in the following chapter.

1.10.1 Solution for Non-degenerate Bands

If the bands are not degenerate for k0, the perturbated eigenvalues of the points
k = k0 + 𝛿k can be given by [25, 26]:

En(k) = En(k0) +
2

2m
(

k2
0 − k2) + ℏ

m
𝛿k⟨unk0(r) ∣ p ∣ unk0(r)⟩

+ ℏ2
m2

∑
n′≠n

⟨unk0
(r) ∣ p ∣ un′k0

(r)⟩⟨un′k0
(r) ∣ p ∣ unk0

(r)⟩𝛿k2

En(k0) − En′ (k0)
,
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where the first term and second term of right-hand side are zero order approxima-
tion, and the third term and fourth term serve as the first and second order approx-
imation. Here, we give an explicit example to describe how to get a Hamiltonian
based on the following equation. We assume the eigenvalues and eigenfunctions of
k0 = 0 are known by first-principles calculations or experiment. Consider a cubic
lattice with a point group of Oh and two bands |u1k(r)⟩ and |u2k(r)⟩ that transform
as Γ+

1 and Γ−
1 representation, and the symmetry representation of H′ is the vector

representation as Γ−
15.

For the first order approximation, the direct product Γ+
1 ⊗ Γ−

15 ⊗ Γ+
1 = Γ−

15 changes
the representation Γ+

1 into Γ−
15, resulting in a vanishing matrix. While for the second

order approximation, the direct product Γ−
15 ⊗ Γ+

1 = Γ−
15 limits the |un′k0

(r)⟩ to the
Γ−

15 representation, which is just the band representation of antibonding p bands.
There are three basis x, y, and z for Γ−

15 representation; only three terms can exist as
a cross term of

⟨
Γ+

1 |px|x⟩,
⟨
Γ+

1 |py|y⟩, and
⟨
Γ+

1 |pz|z⟩ according to the selection rules.
Finally, we can get the total eigenvalues as:

E1(k) = E1(0) +
ℏ2k2

2m
+ ℏ2k2

m2

∑
n′≠1

|⟨u1k0
(r)|px|x⟩|2

E1(0) − En′ (0)
.

1.10.2 Solution for Degenerate Bands

If the bands are degenerate for k0, the eigenfunction must be a linear combination
of degenerated bands. Here, we assume band i is degenerate with band j, and the
first order perturbation equation can be written as: [27]

|||||
⟨i|H0 + H′|i⟩ − 𝜀 ⟨i|H0 + H′| j⟩⟨ j|H0 + H′|i⟩ ⟨j|H0 + H′| j⟩ − 𝜀

||||| = 0.

The four terms on left-hand side can change the forms as ⟨i|H0 + H′|i⟩ = E0
i − 𝜀,⟨j|H0 + H′|j⟩ = E0

j − 𝜀, ⟨i|H0 +H′ |j⟩ = (ℏ/m)k • ⟨i|p|j⟩, and ⟨j|H0 +H′ |i⟩ = (ℏ/m)k •⟨j|p|i⟩. The solution yields:

𝜀(�⃗�) =
E0

i + E0
j

2
± 1

2

√(
E0

i − E0
j

)2
+ 4ℏ2

m2 k ⋅ p↔
ij ⋅ k,

where p↔
ij is a third order tensor. For a cubic lattice, such a tensor has a form of:

p↔
ij =

⎛⎜⎜⎜⎝
p2

ij 0 0
0 p2

ij 0
0 0 p2

ij

⎞⎟⎟⎟⎠
.

1.10.3 Explicit Hamiltonian of k • p Perturbation Theory

Generally, any 4× 4 Hamiltonian can be expanded with 16 Dirac matrices as:

H = 𝜖(k)I +
∑

i
di(k)Γi +

∑
ij

dij(k)Γij,



References 13

where I is the identify matrices, and the five Dirac Γi matrices can be defined as
Γ1 = 𝜎1 ⊗𝜏1, Γ2 = 𝜎2 ⊗𝜏1, Γ3 = 𝜎3 ⊗𝜏1, Γ4 = 1⊗𝜏2, Γ5 = 1⊗𝜏4, and Γij = [Γi, Γj]/2i
with 𝜎i and 𝜏 i are two sets of Pauli matrices.

First, we should write the symmetry matrix in the basis we choose. Taken Bi2Se3
as an example, [28, 29] we choose four states as:|||P1+−,

1
2

⟩
,
|||P2−+,

1
2

⟩
,
|||P1+−,−

1
2

⟩
, and |||P2−+,−

1
2

⟩
. According to the transformation

formula, four symmetry matrices D(R) can be constructed as:

1. Time-reversal symmetry: T = i𝜎yK ⊗ 1.
2. Threefold rotation symmetry along z axis: R3 = ei(𝜎3⊗1)𝜋∕3.
3. Twofold rotation symmetry along x axis: R2 = i𝜎1 ⊗𝜏3.
4. Inversion symmetry: P = 1⊗𝜏3.

Second, we apply the symmetry matrices into 16 Dirac matrices to get the repre-
sentation of matrices, which is implemented by D(R)ΓiD(R)−1. In the presence of
time-reversal symmetry, we only need to take into consideration one identity matrix
and five Dirac Γi matrices.

Third, we combined the Dirac matrices with corresponding polynomials of the
momentum k who share get the Hamiltonian. It can be written as:

H = 𝜖k + M(k)Γ5 + B(kz)Γ4kz + A(k∥)(Γ1ky − Γ2kx),

where 𝜖k = C0 + C1k2
z + C2k2

∥, M(k) = M0 + M1k2
z + M2k2

∥,B(kz) = B0 + B2k2
z , and

k2
∥ = k2

x + k2
y .
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