Contents

About the Author *ix* Preface xi Acknowledgments xiii

- 1 Introduction 1 1.1
- Electrochromism: A Brief Note on the History and Recent Evolution 1

v

Part I Materials 7

2	Electrochromic Materials 9
2.1	Inorganic Electrochromic Materials 11
2.1.1	Transition Metal Oxide Cathodic Materials 12
2.1.2	Transition Metal Oxide Anodic Materials 23
2.1.3	Anodic and Cathodic – Transition Metal Oxide Materials: V_2O_5 28
2.2	2D Materials 31
2.2.1	2D Transitional Metal Oxides 32
2.2.2	Graphene 35
2.3	Organic Electrochromic Materials 36
2.3.1	Prussian Blue 36
2.3.2	Viologens: Small Molecules, Polyviologens, and Hybrid Composite
	Materials 38
2.3.3	Semiconducting Polymers 45
3	Mixed Ionic and Electronic Conductors 55
3.1	Semiconducting Polymers and Small Molecules 57
3.2	Structure-Property Relationship and Charge Transport in Disordered
	Organic Materials 62
3.3	Potential Impact of Mixed Conductors on the Design of New EC and
	Multifunctional Devices 65
4	Electrolytes 67

- 4.1 Liquid Electrolytes 68
- Polymer Electrolytes: From Gel to Solid Polymers 69 4.2

- vi Contents
 - 4.2.1 Ionic Conductivity and Transport Properties in Polymer Electrolytes 81
 - 4.3 Inorganic Electrolytes 85

5 Electrodes 89

- 5.1 Transparent and Conducting Oxides 89
- 5.2 Carbon-Based Electrode Materials *91*
- 5.3 Metal Nanowires and Metal Grids 93
- 6 Critical Material Issues 99

Part II Devices 105

- 7 Device Structure: The Key Role of the Interfaces in the Device Design 107
- 7.1 Electrochromic Devices 108
- 7.1.1 All-Solid-State Double-Substrate Electrochromic Device 110
- 7.1.2 Monolithic Single-Substrate Electrochromic Device 116
- 7.2 Electrochromic Multifunctional Devices 121
- 7.2.1 Photoelectrochromic and Photovoltachromic: Device Architectures 122
- 7.2.1.1 Power Supply of Photoelectrochromic Devices: Semitransparent Silicon, DSSC, Polymers, and Perovskite PV Cell *128*
- 7.2.2 Electrochromic and Electroluminescent Devices: ECOLEDs and ECLECs 140
- 7.2.2.1 Electroluminescence, Electrofluorescence, and Electrochromism: Multifunctional Devices Based on Thereof 151
- 7.2.3 Electrochromic Energy Storage Devices 156
- 7.2.4 Self-Rechargeable Electrochromic Transparent Battery and Self-Powered Photovoltaic Electrochromic Energy Storage Devices *163*

8 Thin-Film Processing Technologies 169

- 8.1 Chemical Deposition 170
- 8.1.1 Spin Coating, Dip Coating, Spray Coating, and Inkjet Printing 170
- 8.1.2 Sol-Gel Method 172
- 8.1.3 Electrochemical Deposition *173*
- 8.1.4 Langmuir–Blodgett Film Deposition 174
- 8.1.5 Chemical Vapor Deposition 175
- 8.2 Physical Depositions 176
- 8.2.1 Thermal and Electron-Beam Evaporation 177
- 8.2.2 Sputtering Deposition 178
- 8.2.3 Pulsed Laser Deposition 178
- 8.2.4 Molecular Beam Epitaxy 179

9 Analysis of Device Performance 181

- 9.1 Optical Spectroscopy 182
- 9.1.1 UV–Vis Spectroscopy and Optical Properties 182
- 9.1.2 Infrared Spectroscopy 186

Contents vii

- 9.2 Electrochemical Analysis 187
- 9.2.1 Cyclic Voltammetry 188
- 9.2.2 Chronoamperometry 194
- 9.2.3 Electrochemical Impedance Spectroscopy: Interface Properties and Ion Diffusion Constants 196
- 9.2.4 Cyclic Stability and Long-Term Durability 199
- 9.3 Chemical and Physical Methods for Electrochromism and Analysis of Material Properties 209
- 9.3.1 X-Ray Photoemission Spectroscopy 210
- 9.3.2 FTIR and Raman Spectroscopy 214
- 9.3.3 Nuclear Magnetic Resonance Spectroscopy 216
- 9.3.4 X-Ray Diffraction Analysis 218
- 9.4 Characterization of Mixed Ionic and Electronic Conduction Materials 222
- 9.4.1 Direct Measurement of Ion Mobility in OMIECs 225

Part III Scale-Up, Energy and Environment, and Next-Generation Technologies 231

10	Construction of Smart Windows: From Laboratory to Industry
	Scale 233
10.1	Manufacturing Processes: Materials and Deposition Techniques 234
10.2	Scale-Up Procedures: Electrochromic Windows and Large-Area
	Photovoltaic Modules 248
10.3	Laminated Smart Windows and Adhesive Electrochromic Smart
	Films 261
11	Energy-Efficient Electrochromic Glazings for Green
	Buildings 263
11.1	Energy Demand and Consumption in Buildings: Energy Saving of
	Electrochromic Glazings 267
11.2	Effect of Electrochromic Glazings on Visual Comfort: Usable UDI and DGI 270
12	Emerging and Next-Generation Technologies for Fabrication
	of Dynamic Tintable Windows 273
12.1	Smart Photoelectrochromic and Thermochromic Windows: Green Technologies Toward More Sustainable Buildings 273
12.2	Emerging and Next-Generation Technologies 283
12.3	The New Era of Artificial Intelligence: Toward Immersive Reality and
	Invisible Technologies 291

 References
 299

 Index
 337

 \oplus

