Contents

Preface *xi* Acknowledgments xiii

1	Introduction to Biomass-Derived Carbon Materials 1
	A. Sivakami, R. Sarankumar, S. Vinodha, and L. Vidhya
1.1	Introduction 1
1.2	Biomass Resources and Composition 3
1.2.1	Plant-Based Biomass 4
1.2.2	Fruit-Based Biomass 5
1.2.3	Microorganism-Based Biomass 7
1.2.4	Animal-Based Biomass 7
1.3	Condition for Precursor Selection of Biomass-Derived Carbon 8
1.4	Production Methods of Biomass-Derived Carbon 8
1.4.1	Carbonization 9
1.4.1.1	Hydrothermal Carbonization 9
1.4.1.2	Pyrolysis 10
1.5	Biomass-Derived Carbons (B-d-CMs) Activation Methods 11
1.5.1	Physical Activation 11
1.5.2	Chemical Activation 13
1.5.3	Combination of Physical and Chemical Activation 14
1.5.4	Modification and Structural Control of B-d-CMs 14
1.5.4.1	Surface Modification and Heteroatom Doping of B-d-CMs 15
1.5.4.2	B-d-CMs Surface Loading of Metal Oxides or Hydroxides 15
1.5.4.3	Surface Incorporation with Different Nanostructures 17
1.6	Production Process Description 17
1.7	Cost Analysis 19
1.8	Summary 19
	References 20
2	Introduction to Biowaste-Derived Materials 27
	Thangavelu Kokulnathan, Balasubramanian Sriram, Sabarison
	Pandiyarajan, Subramanian Ramanathan, and Thangavelu Sakthi Priya

2.1 Introduction 27

- iv Contents
 - 2.2 Synthesis 28
 - 2.2.1 Activation Mechanism of BW-AC by Physical Activation 28
 - 2.2.2 Activation Mechanism of BW-ACs by Chemical Activation 29
 - 2.2.2.1 Influence of Alkaline Activating Agents 30
 - 2.2.2.2 Influence of Acidic Activating Agents 31
 - 2.2.2.3 Influence of Neutral Activating Agents 31
 - 2.2.2.4 Influence of Self-Activating Agents 32
 - 2.3 Characterization *32*
 - 2.3.1 Electron Microscopes 32
 - 2.3.2 HR-TEM Analysis 34
 - 2.3.3 FTIR Spectroscopy 35
 - 2.3.4 Raman Spectroscopy 36
 - 2.3.5 XPS Analysis 38
 - 2.3.6 XRD Patterns 39
 - 2.3.7 BET Analysis 41
 - 2.4 Properties 43
 - 2.4.1 Surface Defects in BW-AC 43
 - 2.4.2 Characterizations of Carbon Defects 46
 - 2.4.3 Intrinsic Carbon Defects Activity 47
 - 2.4.4 Heteroatom Doping Defects (or) Extrinsic Carbon Defects Activity 48
 - 2.4.5 Electronic Band Structure Properties 48
 - 2.5 Summary 50
 - References 50

3 Biomass-derived Carbon-based Materials for Microbicidal Applications 63

Selvamuthu Preethi, Arunachalam Arulraj, Ramalinga Viswanathan Mangalaraja, Velayutham Ravichandran, and Natesan Subramanian

- 3.1 Introduction 63
- 3.2 Biomass Materials 64
- 3.2.1 Carbon and Its Derivatives 65
- 3.3 Microbicidal 66
- 3.3.1 Mechanism of Action 67
- 3.3.2 Microbicidal Resistance 68
- 3.3.3 Factors Affecting Microbicidal Resistance 68
- 3.4 Microbicidal Performance of Biomass-Derived Carbonaceous Materials *69*
- 3.4.1 Role of Material Physicochemical Properties 70
- 3.4.1.1 Structural Destruction 70
- 3.4.1.2 Oxidative Stress 73
- 3.4.1.3 Wrapping Effect 76
- 3.4.1.4 Photothermal Effect 77
- 3.4.1.5 Extraction of Lipid 78
- 3.4.1.6 Metabolic Inhibitory Effect 79
- 3.5 Bioengineering Prospective Toward Carbonaceous Materials 79

Contents **v**

- 3.5.1 Wound Dressing 80
- 3.5.2 Surface Modifications (Coating) on Medical Devices 81
- 3.5.3 Nanoantibiotic Formulations 82
- 3.6 Biosafety 83
- 3.7 Conclusion and Future Perspectives 84
 Acknowledgment 85
 References 85
- 4 Carbon-Based Nanomaterials Prepared from Biomass for Catalysis 93
 - A. Rajeswari, E. Jackcina Stobel Christy, and Anitha Pius
- 4.1 Introduction 93
- 4.2 Preparation of Biomass-Derived Carbon-Based Nanomaterials 94
- 4.3 Graphene 95
- 4.3.1 Preparation of Graphene 95
- 4.3.2 Graphene from Different Sources 95
- 4.4 Carbon Nanotubes (CNTs) 99
- 4.4.1 Synthesis of CNTs 99
- 4.4.2 Synthesis of CNTs Using Biomass Materials 99
- 4.5 Carbon Quantum Dots (CQDs) 102
- 4.5.1 CQDs from Biomass 102
- 4.6 Catalytic Applications of Carbon-Based Nanomaterials 104
- 4.6.1 Potential Advantages in Using Carbon-Based Nanomaterials for Advanced Catalysts 104
- 4.6.2 Photocatalysts 105
- 4.6.3 Electro Catalysts 107
- 4.7 Conclusions, Future Outlook, and Challenges 107 Acknowledgments 107 References 108
- 5 Biomass-Derived Carbon Quantum Dots for Fluorescence Sensors 113

Somasundaram Anbu Anjugam Vandarkuzhali, Jeyabalan Shanmugapriya, Chinna Ayya Swamy P, Subramanian Singaravadivel, and Gandhi Sivaraman

- 5.1 Introduction 113
- 5.2 Characterization of CDs 114
- 5.3 Optical Properties 115
- 5.3.1 Absorbance 115
- 5.3.2 Fluorescence 115
- 5.4 Methods for the Synthesis of CDs 115
- 5.4.1 Hydrothermal Carbonization Method *116*
- 5.4.2 Microwave Method 116
- 5.4.3 Chemical Oxidation Method 116
- 5.4.4 Pyrolysis 117
- 5.5 Application of CDs 117

vi Contents

- 5.5.1 Metal Ion Sensing 117
- 5.5.1.1 Mercury (Hg²⁺) Sensor 118
- 5.5.1.2 Iron (Fe³⁺) Sensor 119
- 5.5.1.3 Lead (Pb²⁺) Sensor 120
- 5.5.1.4 Copper (Cu²⁺) Sensor 120
- 5.5.1.5 Miscellaneous Metal Ions 122
- 5.5.2 Anion Sensors 122
- 5.5.3 Miscellaneous Molecules 123
- 5.6 Conclusion and Future Perspectives 123 References 124

6 Biomass-Derived Mesoporous Carbon Nanomaterials for Drug Delivery and Imaging Applications 129

Balaji Maddiboyina, Ramya Krishna Nakkala, and Gandhi Sivaraman

- 6.1 Introduction 129
- 6.2 Drug Delivery Systems Based on MCNs 130
- 6.2.1 Immediate-release DDS 130
- 6.2.2 Sustained-release DDS 130
- 6.2.3 Controlled/Targeted DDS 131
- 6.3 Photothermal Therapy 131
- 6.3.1 Synergistic Therapy 135
- 6.3.2 Cell Labeling 135
- 6.3.3 Removal of Toxic Substances 139
- 6.3.4 Transmembrane Delivery 139
- 6.3.5 Photoacoustic Imaging 139
- 6.3.6 Therapeutic Biomolecule Delivery 140
- 6.3.7 Biosensing 140
- 6.3.8 Magnetic Resonance (MR) Imaging 142
- 6.4 Conclusion and Future Perspectives 143 References 143
- 7 Mesoporous Carbon Synthesized from Biomass as Adsorbent for Toxic Chemical Removal 147

Babu Cadiam Mohan, Srinivasan Vinju Vasudevan, Ramkumar Vanaraj, Sundaravel Balachandran, and Selvamani Arumugam

- 7.1 Introduction 147
- 7.2 Synthesized Methods of Mesoporous Carbons from Biowaste or Biomass 148
- 7.3 Application of Mesoporous Activated Carbons 149
- 7.3.1 Removal of Dyes 149
- 7.3.1.1 GWAC as an Adsorbent for Methylene Blue and Metanil Yellow 150
- 7.3.1.2 Rice Husk (RH)-Derived Mesoporous Activated Carbon (AC) for Methylene Blue (MB) Dye Removal 151
- 7.3.1.3 Activated Carbon from Rattan Waste for Methylene Blue (MB) Removal 152

- 7.3.1.4 Activated Carbon from Cattail Biomass (CAC) for Malachite Green (MG) Removal 152
- 7.3.1.5 Wood Sawdust Waste Activated Carbon (WACF-P) for Xylenol Orange (XO) Removal 152
- 7.3.1.6 Mesoporous Activated Carbon from Agricultural Waste for Methylene Blue Removal 153
- 7.3.1.7 Mesoporous Activated Carbon from Edible Fungi Residue (EFR-AC) for Reactive Black 5 Removal 153
- 7.3.1.8 Mesoporous Activated Carbon from Plant Wastes for Methylene Blue (MB) Removal 153
- 7.3.1.9 Mesoporous Activated Carbon from *Corozo oleifera* Shell for Methylene Blue (MB) Removal 154
- 7.3.1.10 Mesoporous Activated Carbon from Coconut Coir Dust for Methylene Blue (MB) and Remazol Yellow (RY) Removal 154
- 7.3.1.11 Mesoporous Activated Carbon from Macadamia Nut Shell (MNS) Waste for Methylene Blue (MB) Removal 155
- 7.3.1.12 Mesoporous Activated Carbon from Neobalanocarpus Heimii Wood Sawdust (WSAC) for Methylene Blue (MB) Removal 155
- 7.3.2 Removal of Metal Ions 155
- 7.3.2.1 Use of Chicken Feather and Eggshell to Synthesize a Novel Magnetized Activated Carbon for Sorption of Heavy Metal Ions 157
- 7.3.2.2 Meso/micropore-Controlled Hierarchical Porous Carbon Derived from Activated Biochar as a High-Performance Adsorbent for Copper Removal 158
- 7.3.3 Removal of Phenolic Compounds 158
- 7.4 Conclusion and Future Outlooks 165 References 165
- 8 Biomass-derived Carbon as Electrode Materials for Batteries 171
 - P. Vengatesh, C. Karthik Kumar, T.S. Shyju, and M. Paulraj
- 8.1 Introduction 171
- 8.1.1 Batteries 172
- 8.1.2 Classification of Batteries 172
- 8.1.3 Characteristics of Batteries 172
- 8.2 Role of Carbon with Mechanism of Rechargeable Batteries (RBs) 174
- 8.2.1 Li-Ion Batteries (LIBs) 174
- 8.2.2 Li-S Batteries (Li-S) 175
- 8.2.3 Na-Ion Batteries (SIBs) 176
- 8.2.4 Zn-Air Batteries (ZABs) 178
- 8.3 Biomass-derived Carbonaceous Materials 179
- 8.4 Electrochemical Performances of RBs using Biomass-derived Carbon Electrodes 181
- 8.4.1 Li-Ion Batteries (LIBs) 181
- 8.4.1.1 Biomass-derived Undoped Carbon Electrodes 181

8.4.1.2	Metal Oxides @ Biomass-derived Carbon Nanocomposite
0 4 1 2	Electrodes 186
8.4.1.3	Metal Sulfides @ Biomass-derived Carbon Nanocomposite
842	Na-Jon Batteries (SIBs) 189
8.4.2.1	Biomass-derived Undoped Carbon Electrodes 190
8.4.3	Li-S batteries 195
8431	Biomass-derived Carbon Hosts 198
8.4.4	Zn-Air Batteries 199
8.5	Biomass-derived Heteroatom-Doped Carbon Electrodes for RBs 201
8.5.1	Single-Heteroatom-Doped Carbon Electrodes 202
8.5.2	Dual-Heteroatom-Doped Carbon Electrodes 204
8.6	Summary and Future Prospectives 206
	References 207
9	Recent Advances in Bio-derived Nanostructured Carbon-based
	Materials for Electrochemical Sensor Applications 215
0.1	Aksilut Mathur, Jayasharkar Das, and Sashiria Dave
9.1	Conclusion and Euture Deconcetives 224
9.2	Poforonoon 225
	References 225
10	Porous Carbon Derived From Biomass for Fuel Cells 229
	A. Sivakami, Aristatil Ganesan, P. Sakthivel, Kishore Sridharan,
	Sabarinathan Venkatachalam, and Sudhagar Pitchaimuthu
10.1	Introduction 229
10.2	Fuel Cells – Theory and Fundamentals 233
10.3	Catalyst Support Materials 234
10.3.1	As a Catalyst 236
10.3.2	Synthesis Methods of Porous Carbon from Biomass 236
10.4	Porous Carbon Synthesis from Different Biomass 237
10.4.1	Oxygen Reduction Reaction (ORR) 237
10.5	Synthesis of Biomass-Derived ORR Catalyst for Fuel Cell 238
10.6	Future Outlook 245
10.7	Summary 245
	References 246
11	Biomass-Derived Carbon-Based Materials for Supercapacitor
	Applications 253
	G. Murugadoss, M. Rajaboopathi, M. Rajesh Kumar, and
	A. M. Kamalan Kirubaharan
11.1	Introduction 253
11.1.1	Capacitor 253
11.1.2	Battery 254
11.2	Supercapacitor 255

viii C

Contents ix

- 11.2.1 Types of Supercapacitors 255
- 11.2.2 Electrical Double-Layer Capacitors (EDLC) 256
- 11.2.3 Pseudocapacitor 257
- 11.2.4 Hybrid Capacitors 258
- 11.3 Activated Carbon Obtained from Biomass for Supercapacitor Application 259
- 11.3.1 Essential for Carbon-based Electrodes 259
- 11.4 Electrochemical Measurements 262
- 11.5 Structural Diversities of Biomass-Derived Carbon for Supercapacitor Applications 262
- 11.5.1 Spherical Structure 263
- 11.5.2 Fibrous Structure 263
- 11.5.3 Tubular Structure 263
- 11.5.4 Sheet Structure 263
- 11.5.5 Porous Structure 265
- 11.5.6 Mesocrystal Structure 268
- 11.6 Conclusion and Future Perspectives 269 References 269

12 Biomass-Derived Carbon for Dye-Sensitized and Perovskite Solar Cells 275

N. Santhosh, P. Vijayakumar, M. Senthil Pandian, and P. Ramasamy

- 12.1 Introduction 275
- 12.2 DSSC Working Principle 276
- 12.3 DSSC Components 277
- 12.3.1 Transparent Conducting Substrate (TCO) 277
- 12.3.2 Photoanode 277
- 12.3.3 Dye Sensitizer 277
- 12.3.4 Electrolyte 278
- 12.3.5 Counter Electrode 278
- 12.4 Perovskite Solar Cells 278
- 12.5 Tunability of Bandgap Energy 280
- 12.6 Development of Perovskite Solar Cells from Dye-Sensitized Solar Cells 280
- 12.6.1 Working Principle of PSC 281
- 12.6.2 Perovskite Solar Cells Architecture 281
- 12.6.3 Hole Transport Material 282
- 12.7 Biomass-Derived Carbon Counter Electrode for DSSC 283
- 12.7.1 Performance of DSSC with Counter Electrode via Bio-derived Carbon 284
- 12.7.2 Biomass-Derived Carbon as a Counter Electrode for Perovskite Solar Cells 285
- 12.8 Conclusion and Future Perspectives 287 References 287

x Contents

13	Recent Advances of Biomass-Derived Porous Carbon Materials
	in Catalytic Conversion of Organic Compounds 293
	N. Mahendar Reddy, D. Saritha, Naveen K. Dandu, Ch.G. Chandaluri, and
	Gubbala V. Ramesh
13.1	Introduction 293
13.2	Synthesis Procedures 295
13.2.1	Carbonization 295
13.2.1.1	Hydrothermal Carbonization (HTC) 296
13.2.1.2	Pyrolysis 297
13.2.2	Activation 297
13.2.2.1	Physical Activation 297
13.2.2.2	Chemical Activation 298
13.2.3	Physicochemical Activation 299
13.2.4	Microwave-based synthesis 299
13.2.5	Functionalization/Doping/Composites of ACs 300
13.3	Applications 302
13.3.1	Heterogeneous Catalysis 302
13.4	Conclusion and Future Challenges 308
	References 309
14	Summary on Properties of Bio-Derived Carbon Materials and
	their Relation with Applications 317
	S. Vinodha, L. Vidhya, and T. Ramya
14.1	Removal of Toxic Chemicals 321
14.2	Electrode Materials for Batteries 322
14.3	Electrochemical Sensor Applications 323
14.4	Fuel Cell Applications 324
	References 329

Index 331