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Spectroscopic Ellipsometry: Basic Principles

1.1 Spectroscopic Ellipsometry

Spectroscopic ellipsometry measures the change of light polarization upon its reflec-
tion from the sample. A schematic diagram of the experimental setup is displayed
in Figure 1.1. The detector of spectroscopic ellipsometry measures the quantities Ψ
and Δ at each corresponding wavelength/photon energy. Parameter Ψ denotes the
ratio of the amplitude of p- to s-polarized reflected light, while Δ their phase differ-
ence. Specifically, p-polarized light has the electric field vector parallel to the plane
of incidence, while s-polarized light consists of the electric field vector perpendicular
to the incident plane (Figure 1.2).

Typically, the energy range that is commonly used for spectroscopic ellipsom-
etry measurement is the ultraviolet–visible (UV–vis) regime (∼0.5–6 eV). In this
range, sample properties such as the optical band structures and bandgaps can
be investigated. Nevertheless, other regions of the electromagnetic spectrum
have also been used in spectroscopic ellipsometry measurements. For instance,
the use of mid-to-near-infrared range spectroscopic ellipsometry in the study of
low-energy structures in 1T′-phase two-dimensional transition metal dichalco-
genides (2D-TMDs), such as their fundamental gap and the anisotropic plasmons,
will be discussed in Section 3.4 of Chapter 3.

While spectroscopic ellipsometry is a fast, nondestructive, and surface-sensitive
(down to a few angstroms) optical characterization technique, the mathematical
analysis involved in extracting the optical parameters from the raw (Ψ, Δ) data is
not a straightforward process (see Section 1.5 and Figure 1.7). Generally, to ana-
lytically elucidate the optical parameters from the raw (Ψ, Δ) data, the sample in
consideration must be homogenous, isotropic, and of sufficient thickness. In more
general cases, complications will arise and optical models with associated numeri-
cal approximation techniques are required for the proper elucidation of meaningful
optical results.
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Figure 1.1 Schematic diagram of spectroscopic ellipsometry with the rotating-analyzer
configuration.
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Figure 1.2 Electric and magnetic fields for (a) p-polarized and (b) s-polarized waves [1].

1.1.1 p- and s-Polarized Lights and Fresnel Coefficients

The electromagnetic wave features of light can be expressed in terms of its electric,
E, and magnetic field, B, components [1]:

E⃗(r⃗, t) = E⃗0 exp[i(k⃗ ⋅ r⃗ − 𝜔t + 𝛿)] (1.1)

B⃗(r⃗, t) = B⃗0 exp[i(k⃗ ⋅ r⃗ − 𝜔t + 𝛿)] (1.2)

where k⃗ denotes the wave vector, 𝜔 denotes the angular frequency, and 𝛿 denotes the
initial phase.

When light is reflected or transmitted through a sample/medium via an oblique
angle, the electromagnetic wave can be resolved into two components – p-polarized
(in-plane incidence) and s-polarized (perpendicular to incident plane) E-field com-
ponents, respectively.

For a medium with refractive index n, based on Maxwell’s equations and bound-
ary conditions, the amplitude of the reflection coefficient for the p-polarized light is
expressed as

rp ≡

Erp

Eip
=

n{t} cos 𝜃i − ni cos 𝜃t

nt cos 𝜃i + ni cos 𝜃t
(1.3)

Likewise, the amplitude of the transmission coefficient for the p-polarized light can
be expressed as

tp ≡

Etp

Eip
=

2ni cos 𝜃i

nt cos 𝜃i + ni cos 𝜃t
(1.4)
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whereas the s-polarized counterparts are expressed as

rs ≡
Ers

Eis
=

(ni cos 𝜃i − nt cos 𝜃t)
(ni cos 𝜃i + nt cos 𝜃t)

(1.5a)

rp ≡

Ets

Eis
=

2ni cos 𝜃i

ni cos 𝜃i + nt cos 𝜃t
(1.5b)

These equations are known as the Fresnel equations. When the refractive indices
are complex, ñ, the Fresnel equations still hold. The complex dielectric function can
be obtained via the expression

ñ2
≡ 𝜀 (1.6)

Based on Snell’s law, the Fresnel equations for reflection can be further general-
ized as

rp =
ñ2

ti cos 𝜃i −
(

ñ2
ti − sin2𝜃i

) 1
2

ñ2
ti cos 𝜃i +

(
ñ2

ti − sin2𝜃i
) 1

2

(1.7a)

rs =
cos 𝜃i −

(
ñ2

ti − sin2𝜃i
) 1

2

cos 𝜃i +
(

ñ2
ti − sin2𝜃i

) 1
2

(1.7b)

where ñ denotes the complex refractive index and

ñti =
ñt

ñi
(1.8)

The reflectances of the p- and s-polarized lights are expressed by

Rp ≡

Irp

Iip
=
|||||
Erp

Eip

|||||
2

= |r2
p| (1.9a)

Rs ≡
Irs

Iis
=
||||Ers

Eis

||||2 = |r2
s | (1.9b)

where the light intensity I =n|E|2. Since the difference between rp and rs is maxi-
mized at the Brewster angle [2], ellipsometric measurements are usually performed
at incident angles, 𝜃i, typically in the range of 70–80∘ for the optical characterization
of semiconducting systems [3].

In multilayered systems, the resultant amplitude of the reflection coefficients is
expressed as the sum of individual components of the reflection and transmission
coefficients at each interface. The phase differences of each wave are considered in
the analysis.

1.1.2 Representation of Polarized Lights

Electromagnetic waves traversing along the z-direction can be expressed by super-
imposing two waves that are oscillating parallel to the x- and y-axes. The vector sum
of the respective E-fields, Ex and Ey, is given by
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E(z, t) = Ex(z, t) + Ey(z, t)

= Ex0
exp i(𝜔t − kz + 𝛿x)x̂ + Ey0

exp i(𝜔t − kz + 𝛿y )̂y (1.10)

where x̂ and ŷ denote the unit vectors along the respective axes. Ultimately, the phase
difference, 𝛿y−𝛿x, is the most important quantity that determines the state of the
polarization of the resultant wave.

To mathematically represent the polarization states and analyze the effects of the
optical components in a neat and elegant manner, they are expressed in the form of
Jones vectors and Jones matrices [4].

A complete representation of the polarization of a wave can be expressed in the
form of the Jones vector as

E(z, t) =
[

Ex0
exp i𝛿x

Ey0
exp i𝛿y

]
(1.11)

which can be further simplified as

E(z, t) =
[

Ex
Ey

]
(1.12)

where Ex = Ex0
exp i𝛿x and Ey = Ey0

exp i𝛿y.
Relative changes to the amplitude and phase are important in spectroscopic ellip-

sometry. Jones vectors are therefore expressed in terms of normalized intensities.
Linearly polarized waves along the x- and y-axes are expressed, respectively, as

Elin,x =
[

1
0

]
Elin,y =

[
0
1

]
(1.13)

When light is linearly polarized at an orientation of 45∘,

E+45∘ = 1√
2

[
1
1

]
(1.14)

In the formalism where optical components are expressed in the form of 2× 2 matri-
ces, they are known as Jones matrices. Based on this formalism, the operation per-
formed on the light by each component in spectroscopic ellipsometry, such as the
polarizer, analyzer, and compensator, can be represented as a 2× 2 matrix operator.

For instance, in the case of a linear polarizer with the azimuthal angle,α, relative to
the x–y coordinates of a linearly polarized light, Ei, the process of linear polarization
can be expressed as

Ef =
[

cos α 0
0 sin α

]
(1.15)

Transformations by a series of optical components can be represented by the corre-
sponding series of matrix operations.

While the Jones vector is a concise way for describing polarized light, it is unable
to express unpolarized light and light that is partially polarized. Therefore, the
Stokes parameters (vectors) are used for the description of lights with different
polarization [4].
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The components of the Stokes vector are

S0 = Ix + Iy = ExE∗
x + EyE∗

y (1.16a)

S1 = Ix − Iy = ExE∗
x − EyE∗

y (1.16b)

S2 = I+45∘ + I−45∘ = 2Ex0
Ey0

cosΔ (1.16c)

S3 = IR − IL = −2Ex0
Ey0

sinΔ (1.16d)

where Ix and Iy denote the intensities of the linearly polarization light along the
x- and y-axes, respectively. Likewise, I±45∘ represents light polarization ±45∘ to
the x-axis, while IL/IR represent intensities of left-/right-circularly polarized light.
Finally, Δ = 𝛿x−𝛿y.

The Stokes vector can also be expressed as

S =

⎡⎢⎢⎢⎢⎣
S0
S1
S2
S3

⎤⎥⎥⎥⎥⎦
(1.17)

Transformation of a Stokes vector can be expressed via a 4× 4 matrix represen-
tation, also known as a Mueller matrix. The calculation is performed in a fashion
similar to the Jones matrix. For instance, when linear polarization oriented at 45∘
passes a polarizer with transmission axis along the x-direction, the resultant light
that emerges from the polarizer is transformed via the following:

1
2

⎛⎜⎜⎜⎜⎝
1 1
1 1

0 0
0 0

0 0
0 0

0 0
0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1
0
1
0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1∕2
1∕2

0
0

⎞⎟⎟⎟⎟⎠
(1.18)

1.2 Principles of Ellipsometric Measurements

When light is reflected/transmitted from a sample, the p- and s-polarized compo-
nents of the incident light undergo changes to their amplitude and phase. Hence,
spectroscopic ellipsometry is a technique that capitalizes on these changes where
the essential optical parameters are derived. As mentioned, the raw quantities mea-
sured using ellipsometry are Ψ and Δ, representing the amplitude ratio and phase
difference between reflected or transmitted p- and s-polarized waves, respectively.
These two quantities are related complex reflection coefficients via the expression

𝜚 ≡ tanΨexp iΔ =
rp

rs
(1.19)

with rp and rs defined as ratios of the light reflected to the incident E-fields.
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Equation (1.19) can be further expressed as

tanΨexp iΔ =
rp

rs
=

Erp∕Eip

Ers∕Eis
= Erp∕Ers (1.20)

where the final step of simplification can be performed since Eip = Eis.
Different spectroscopic ellipsometry setups are available, of which the rawΨ andΔ

are measured by different means. Generally, the systems are classified into two main
categories – spectroscopic ellipsometers with rotating optical elements and those
with photoelastic modulators. In our study, focus will be on the system with rotating
optical elements (i.e. rotating analyzer with compensator). The working principle of
such spectroscopic ellipsometers will be described briefly in Section 1.2.1.

1.2.1 Rotating-Analyzer Ellipsometer

A rotating-analyzer spectroscopic ellipsometer (Figure 1.1) is one of the few ellip-
sometric setups that is widely used. The changes made to an incident light wave
when passing through a rotating-analyzer spectroscopic ellipsometer can be repre-
sented as a series of matrix operations PSAR, where P, S, and AR denote the polarizer,
the sample, and the rotating analyzer, respectively. In spectroscopic ellipsometry,
the wavelength of the incident photon is typically changed using a monochromator.
However, this slows down the operational speed of the system. Hence, in many spec-
troscopic ellipsometry systems, especially those for real-time monitoring, a grating
spectrometer is typically used in the detector probe, while white light is used as the
incident source.

By applying the Jones vectors and Mueller matrices, the output of the PSAR ellip-
sometric configuration can be expressed as

Lout = AR(A)R(−P)PLin (1.21)

where the Jones vector of the light wave at the detector can be expressed as

Lout =
[

EA
0

]
. Lin =

[
1
0

]
denotes the input Jones vector of the incident light source.

R(A) represents the rotation matrix with a rotation angle of the analyzer at A.
P denotes the rotation angle of the polarizer and S represents the Jones matrix
corresponding to the reflected light off the sample.

Hence, Eq. (1.21) is expressed in the matrix form as[
EA
0

]
=
[

1 0
0 0

] [
cos A sin A
− sin A cos A

] [
sinΨexp iΔ 0

0 cosΨ

] [
cos P − sin P
sin P cos P

] [
1 0
0 0

] [
1
0

]
If polarization angle P = 45∘, it will then take the form[

EA
0

]
=
[

1 0
0 0

] [
cos A sin A
− sin A cos A

] [
sinΨexp iΔ

cosΨ

]
(1.22)

which ultimately leads to the solution

EA = cos A sinΨexp iΔ + sin A cosΨ (1.23)
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Figure 1.3 Normalized intensity of linearly, elliptical, and circularly polarized light based
on the rotating-analyzer configuration.

The light intensity registered at the detector can then be expressed as the modulus
square of EA:

I = |EA|2
= I0(1 − cos 2Ψ cos 2A + sin 2Ψ cosΔ sin 2A)

= I0(1 + S1 cos 2A + S2 sin 2A) (1.24)

where I0 represents the proportionality constant of the reflected light. The period of
the intensity variation is π radians (180∘). Generally, the Stokes parameters, S1 and
S2, in a rotating-analyzer ellipsometer (RAE) are measured as Fourier coefficients of
cos 2A and sin 2A, respectively. When the analyzer rotates at an angular frequency
of 𝜔, the general expression of the detector intensity is expressed as

I(t) = I0(1 + α cos 2𝜔t + β sin 2𝜔t) (1.25)

where the normalized intensity registered at the detector based on Eq. (1.25) is plot-
ted in Figure 1.3.

1.3 Experimental Setup

The spot size of the beam is in the range of 3–5 mm with additional detachable
microfocus, which can be used to focus the spot size to an even smaller dimension
of about 200 μm. Such a small beam spot is suitable for the optical characterization
of smaller samples to reduce the instances of back reflection and scattering in
transparent samples.

The input unit consists of a lens mount, a polarizer stage, and an alignment detec-
tor socket. Polarization state of the light beam is detected before its incidence on
the sample, which is mounted on the sample stage. After reflecting off the sample
surface, the detector unit converts the reflected beam into a voltage and measures
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Figure 1.4 Woollam VASE spectroscopic ellipsometer.

its polarization state. The software (WVASE32) is then used to analyze the raw data
from which the optical parameters of the sample are derived.

1.3.1 VASE Spectroscopic Ellipsometer

The setup of the Variable-Angle Spectroscopic Ellipsometer (VASE) by J. A. Wool-
lam Co., Inc. is displayed in Figure 1.4. The arc lamp provides a broadband light
source for the HS-190 monochromator (Czerny–Turner Scanning Monochromator),
which the software uses to supply a selected wavelength/photon energy of light for
the system. This spectroscopic ellipsometer provides both high accuracy and preci-
sion along with a wide spectral range of ∼190–2500 nm (∼0.5–6.5 eV), covering the
near-IR, visible, and near-UV regimes. With this broad spectral range, this system is
suitable for characterizing optical bandgaps and electronic transitions for semicon-
ducting and Mott-insulating systems (Figure 1.5).

RAE of the VASE spectroscopic ellipsometer helps to maximize data accuracy near
the “Brewster” angle [1], where the raw Ψ and Δ data are content-rich. The autore-
tarder is a computer-controlled waveplate that modifies the beam polarization (from
linear to circular polarization or vice versa) before reaching the sample. This pro-
cess provides greater accuracy for the measurement of the Δ parameter even when
the phase difference is close to the extremum angles of 0∘ and 180∘. This process
produces optimum measurement conditions for the sample.
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Figure 1.5 Characteristic properties of spectroscopic ellipsometry and the electronic
features that it can detect in the respective spectral region. Source: Adapted from Fujiwara
[5].

1.3.2 IR-VASE Spectroscopic Ellipsometer

The J. A. Woollam IR-VASE has a spectral range of ∼1.7–30 μm (near the far-infrared
regime), and it can measure spectroscopic ellipsometry data in both the reflection
and the transmission modes. Having both the chemical sensitivity of Fourier
transform infrared (FTIR) spectroscopy and precise thin-film sensitivity, this device
is suitable for the characterization of both thin-film and bulk material systems.
Apart from characterizing sample parameters, such as film thickness and dielectric
functions that are typical of spectroscopic ellipsometry, the spectral range within
which IR-VASE falls is also capable of characterizing unique features, such as
chemical bonding (molecular vibrations) and phonon absorption in crystalline
systems (Figure 1.5).

IR-VASE integrates a FTIR interferometer source with a rotating compensator
ellipsometer to provide accurate spectroscopic ellipsometry measurements. It com-
bines a broadband polarizer and a compensator with an optimized beam splitter,
collimators, and a deuterated triglycine sulfate (DTGS) detector, which in turn pro-
vides a very wide spectral range.

During the measurement process, the compensator is rotated by 360∘ in a
series of steps. This intensity spectrum is the outcome of the sample optical
and polarization properties along with the effects of the compensator and polar-
izers. The Ψ and Δ spectra (and other sample quantities) are then calculated
based on the combination of the intensity spectra from each position of the
compensator.
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Table 1.1 Advantages and disadvantages of spectroscopic ellipsometry.

Advantages Nondestructive
High precision
Fast measurement
Multiple characterization (e.g. optical properties and film thickness)
Real-time monitoring

Disadvantages Complicated data analysis
Require large, full-covered sample (at least ∼3× 3 mm2)
Difficulty to characterize materials with low absorption coefficients
Indirect characterization – optical model required
Sample surface roughness must be small
Measurements to be performed at oblique angles

Source: Modified from Fujiwara [5].

1.4 Spectroscopic Ellipsometry: General Profiles

Spectroscopic ellipsometry has a broad range of applications. In terms of real-time
application, not only does it allow for the real-time monitoring of thin-film growth,
but also process diagnoses, such as the tracking of etching and thermal oxidation,
can be carried out [6]. However, the surface roughness of the sample must be small
and optical characterization has to be performed at oblique incident angles. This
is because reflected light intensity can be severely impaired by surface roughness,
which in turn makes it difficult for ellipsometry measurements, particularly
due to the characterization of the polarization state from the light intensity. The
measurement errors increase in correspondence with the magnitude of sample
surface roughness [5].

Table 1.1 provides a comprehensive summary of the advantages and disadvantages
of spectroscopic ellipsometry as an experimental technique. Two important features
of spectroscopic ellipsometry are its high measurement precision and thickness sen-
sitivity (∼1 Å) [5]. These crucial features make it an indispensable instrument for
the precise optical characterization and morphological analysis of thin-film struc-
tures. This will be illustrated in Chapters 3 and 4 where the optical characterization
of 2D-TMDs whose thickness is in the order of ∼2 nm and below [7].

However, with the indirect characterization of the ellipsometry data, data analy-
sis is difficult when the optical profiles and sample structures (e.g. sample thickness)
are unclear. This is because data analysis requires an optical model that includes the
optical parameters and sample film thickness. These factors complicate the analyti-
cal process to elucidate the sample optical data [8].
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1.5 Ellipsometric Data for Multilayered System

The measured quantities Ψ and Δ in spectroscopic ellipsometry are the amplitude
ratio and phase difference between the p- and s-polarized light reflected/transmitted
off a surface, respectively. These two quantities are related via Eq. (1.19) as men-
tioned in Section 1.2 with Figure 1.6 illustrating the optical interference in an ambi-
ent/film/substrate system.

A commonly used sample system for consideration is the ambient/film/substrate
structure. In this case, the amplitude reflection coefficients are expressed as

r012,p =
r01,p + r12,p exp−i2β

1 + r01,p ⋅ r12,p exp−i2β
(1.26a)

r012,s =
r01,s + r12,s exp−i2β

1 + r01,s ⋅ r12,s exp−i2β
(1.26b)

while the transmission coefficients are expressed as

t012,p =
t01,p + t12,p exp−iβ

1 + r01,p ⋅ r12,p exp−i2β
(1.27a)

t012,s =
t01,s + t12,s exp−iβ

1 + r01,s ⋅ r12,s exp−i2β
(1.27b)

The film thickness, d, is related to the phase thickness, β, via the following relation:

β = 2𝜋dN1 cos(𝜃1∕𝜆) (1.28)

r01 t10 t10 t10

t01 r10
r10 r10 Thin-film

r12 r12 r12

t12 t12
t12 t12

n0

n1

Substrate

θi

θ1

θ2

d

n2

Figure 1.6 Optical model for an ambient/film/substrate system.
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Figure 1.7 Flowchart of the data analysis procedure in spectroscopic ellipsometry.

Therefore, the fundamental ellipsometric equation can be expanded from
Eq. (1.19) into the following:

tanΨ exp iΔ =
rp

rs

=

[
r01,p + r12,p exp−i2β

1 + r01,p ⋅ r12,p exp−i2β

]
∕
[ r01,s + r12,s exp−i2β

1 + r01,s ⋅ r12,s exp−i2β

]
(1.29)

Procedures to extract the relevant optical parameters are carried out in four
main steps (Figure 1.7). Firstly, spectroscopic ellipsometry measurements yield
reflected/transmitted light intensity ratio (tan Ψ) and phase difference (exp iΔ)
between the respective polarization states. By constructing a sample model based
on the actual sample structure and fitting the raw experimental data (Ψ, Δ) to
the model, the exact optical parameters such as the dielectric function, optical
conductivity, and/or sample thickness are eventually derived.

Model selection is the most vital and complex segment of the fitting procedure
in the derivation of the optical parameters. Two key methods can be employed for
modeling and fitting analysis – the commonly employed parameterized or oscillator
model and the wavelength-by-wavelength best-match model.

1.6 Dielectric Models

Characterization of materials using spectroscopic ellipsometry allows the possibil-
ity of fitting the optical response data to physical models. These models describe the
dynamics of charge carriers (e.g. electrons) in a system. The Drude model of elec-
trical conduction models a system as a charged carrier (electron) gas executing a
diffusive motion in the presence of positively charged ionic cores [9, 10]. They are
effectively free electrons not bound by any positively charged ions in the system.
Hence, the Drude model is mainly used to describe the transport properties of elec-
trons in metallic or doped semiconducting systems.

As for dielectric materials, several types of oscillations may occur when perturbed
by an external electromagnetic field. This includes bound electron oscillations
and phonon vibrations [11]. The Lorentz model is employed to model the optical
responses of such systems when subject to external electromagnetic radiation.
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It is commonly used to study the optical properties of band semiconductors and
insulators [9].

For more general cases such as doped semiconductors where both insulating and
conducting properties are present, the collective model known as the Drude–Lorentz
model can be used to model such systems that contain both free and oscillating
charged carriers.

1.6.1 Drude Model

Several assumptions have been made in consideration of this model.

1. Electrons in the system are considered free electrons. No interaction between the
electrons takes place during the interval between collisions.

2. Electron collisions occur at an average of once every time 𝜏, where 𝜏 is known as
the average relaxation time and its inverse, 𝜏−1, is known as the scattering rate, 𝛾 .

3. Electrons only achieve thermal equilibrium with the surroundings through
collisions [10].

4. Long-range interaction between the electrons and the ions is neglected. Besides,
there is no interaction between electrons. The only form of interaction is the
instantaneous collision between an electron and an ion. The instantaneous colli-
sion results in the change of electron velocity.

In the absence of an external electric field E⃗, the mean electron momentum ⟨p⃗⟩ = 0
and the rate equation of the mean electron momentum ⟨p⃗⟩ can be expressed as

d⟨p⃗⟩
dt

= −
⟨p⃗⟩
𝜏

(1.30)

In this case, assumptions 2 and 3 come into play, such that the average relaxation
time, 𝜏, determines the relaxation of the system to equilibrium [9]. In the presence
of the external electric field, E⃗, Eq. (1.30) takes the form

d⟨p⃗⟩
dt

= −
⟨p⃗⟩
𝜏

− eE⃗ (1.31)

where −e denotes the electronic charge.
The current density due to the electrons is

J⃗ = −ne⟨v⃗⟩ = − ne
me

⟨p⃗⟩ (1.32)

where n denotes the charge density, me the electron mass, and ⟨v⃗⟩ the mean electron
velocity.

The case of a constant E⃗ field (i.e. dc fields), d⟨p⃗⟩
dt

= 0, results in dc conductivity,

𝜎dc = J⃗∕E⃗ = ne2𝜏∕me (1.33)

In the case of an oscillating E⃗-field in the form E⃗(t) = E⃗0 exp−i𝜔t, Eq. (1.31) can
be expressed in the form of a second-order differential equation:

me
d2r⃗
d2t

+
me

𝜏

dr⃗
dt

+ eE⃗(t) = 0 (1.34)
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whose solution yields a frequency-dependent complex conductivity in the form [9]

𝜎(𝜔) = ne2𝜏

me

1
1 − i𝜔𝜏

(1.35)

Here, we define a new parameter known as the plasma frequency:

𝜔p =
√
(ne2∕𝜀0me) (1.36)

The plasma frequency,𝜔p, is proportional to the square root of the electron density
over its mass. More generally, 𝜔p ∝

√
(n/m*), where n refers to the general charged

carrier density, while m* denotes the effective mass of the charged carriers. Hence,
Eq. (1.35) can be re-expressed in the form

𝜎(𝜔) =
𝜀0𝜔

2
p

1∕𝜏 − i𝜔
(1.37)

where the real and imaginary components are resolved into the following:

𝜎1(𝜔) =
𝜀0𝜔

2
p𝜏

1 + 𝜔2𝜏2 (1.38a)

𝜎2(𝜔) =
𝜀0𝜔

2
p𝜔𝜏

2

1 + 𝜔2𝜏2 (1.38b)

When expressed in terms of dielectric function, Eq. (1.37) takes the form

𝜀(𝜔) = 1 −
𝜔2

p

𝜔2 − i𝜔
𝜏

(1.39)

which can be further resolved into its respective components:

𝜀1(𝜔) = 1 −
𝜔2

p𝜏

𝜔2 + 1∕𝜏2 (1.40a)

𝜀2(𝜔) =
1
𝜔𝜏

𝜔2
p

𝜔2 + 1∕𝜏2 (1.40b)

The frequency-dependent dielectric function, 𝜀(𝜔), modeled typically for good
metals based on the Drude model Eqs. (1.40a) and (1.40b) is depicted in Figure 1.8.

1.6.2 Lorentz Model

Extension was made to The Drude model, named after Paul Drude in 1900, was
extended and further modified to account for quantum phenomena years [12].
A notable extension to the Drude model is known as the Lorentz model in the study
of optical properties in semiconductors and insulators. In the Lorentz oscillator
model, electrons are bound to a nucleus with a resonant frequency of 𝜔0. This is
modeled after the classical model of electrons bound to a heavy nucleus by springs,
which results in an atomic oscillatory motion with natural frequencies 𝜔0 =

√
K∕μ

(Figure 1.9). Here, K denotes the spring constant, while μ, the reduced mass of the
oscillatory system, is expressed as

1∕μ = 1∕mn + 1∕me (1.41)
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Figure 1.8 Dielectric function, 𝜀, of a Drude system plotted with respect to wave number
in semi-logarithmic scale where plasma frequency 𝜔p = 104 cm−1 and scattering rate
𝛾 = 1/𝜏 = 17 cm−1. Note that the zero-crossing for 𝜀1 takes place at the plasma frequency as
annotated in the figure.

Figure 1.9 Oscillatory system to
illustrate the Lorentz model.

–eE: electric force
–Kx: “spring” force

–meγx: damping force˙
+ –

where mn and me denote the nuclear and electron mass, respectively.
Such resonant frequencies are now known to correspond to the quantized transi-

tion energy [11] of the quantum harmonic oscillator. Since it can be assumed that
mn ≫me, the approximation μ ≈me can be made. Dynamics of the oscillatory elec-
tron can be modeled after a damped harmonic oscillator system where the damping
process occurs due to energy lost due to particle collisions. Hence, the Lorentz model
can be expressed as a second-order differential equation:

me
d2r⃗
dt2 +

me

𝜏

dr⃗
dt

+ me𝜔
2
0r⃗ = −eE⃗(t) (1.42)

where the damping effect is taken into consideration by the parameter 𝜏. E⃗(t) ∝
exp−i𝜔t represents the time-dependent electric field of the incident electromag-
netic wave.

A solution to the differential Eq. (1.42) is [9]

r⃗(𝜔) = −
eE⃗
me(

𝜔2
0 − 𝜔2

)
− i𝜔

𝜏

(1.43)
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The optical conductivity modeled after the Lorentz model can be derived and
expressed as

𝜎(𝜔) = ne2

me

𝜔

i
(
𝜔2

0 − 𝜔2
)
+ 𝜔∕𝜏

= 𝜀0
𝜔2

p𝜔

i
(
𝜔2

0 − 𝜔2
)
+ 𝜔∕𝜏

(1.44)

where the plasma frequency 𝜔p =
√

(ne2/𝜀0me).
The respective components of Eq. (1.44) are

𝜎1(𝜔) = 𝜀0
𝜔2

p𝜔
2∕𝜏(

𝜔2
0 − 𝜔2

)2 + 𝜔2∕𝜏2
(1.45a)

𝜎2(𝜔) = −𝜀0
𝜔2

p𝜔
(
𝜔2

0 − 𝜔2)(
𝜔2

0 − 𝜔2
)2 + 𝜔2∕𝜏2

(1.45b)

In terms of dielectric function, Eq. (1.44) takes the form

𝜀(𝜔) = 1 +
𝜔2

p(
𝜔2

0 − 𝜔2
)
− i𝜔∕𝜏

(1.46)

with the respective components as

𝜀1(𝜔) = 1 +
𝜔2

p
(
𝜔2

0 − 𝜔2)(
𝜔2

0 − 𝜔2
)2 + 𝜔2∕𝜏2

(1.47a)

𝜀2(𝜔) =
𝜔2

p𝜔∕𝜏(
𝜔2

0 − 𝜔2
)2 + 𝜔2∕𝜏2

(1.47b)

with Figure 1.10 displaying the dielectric profiles akin to a narrow-gap semiconduc-
tor. It can be seen from Eq. (1.46) that by setting the resonant frequency 𝜔0 = 0,
Eq. (1.39) belonging to the Drude model can be derived.

Generally, there are multiple bound electron oscillators in a dielectric material.
Hence, the optical conductivity according to the Lorentz model is expressed in a
general form as

𝜎(𝜔) =
∑

k
𝜀0

𝜔2
pk𝜔

i
(
𝜔2

0k − 𝜔2
)
+ 𝜔∕𝜏k

(1.48)

to sum up the contributions to the optical conductivity by multiple dipole oscillators.
Notice that a resonance peak occurs at𝜔0 (=𝜔/2πc). 1/𝜏 denotes the peak broaden-

ing due to damping and plasma frequency and𝜔p may be understood as the oscillator
strength [9].

1.6.3 Drude–Lorentz Model

When the system has both metallic and semiconducting properties, both the Drude
and the Lorentz components can be included in the model. In this case, while the
electrons in the system are unbound, there is a spring-like interactive force with the
positively charged nuclei. The dielectric functions that comprise both the Drude and
Lorentz components are depicted in Figure 1.11.
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Figure 1.10 Dielectric function 𝜀 of a Lorentz oscillator plotted with a semilogarithmic
scale with the respective profiles indicated [9].
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Figure 1.11 (a) 𝜀1 and (b) 𝜀2 components based on the Drude–Lorentz model with both
metallic and semiconducting properties.

1.6.4 Sellmeier and Cauchy Models

In the case of large-bandgap insulating samples with a simple band structure at the
pre-edge (where 𝜀2 ≈ 0) [5], the Lorentz oscillator model equation can be rewritten
as the Sellmeier equation where 𝜔≪𝜔[0,j].

As a function of wavelength, 𝜆, the expression is given as

𝜀(𝜆) = A +
∑

k

Bk𝜆
2

𝜆2 − 𝜆2
0,k

(1.49)

where 𝜆[0,k] denotes the peak position of the jth oscillator. The Sellmeier Eq. (1.49)
can be further expanded to the Cauchy form to simplify the data analysis [5]

ñ(𝜆) = A + B
𝜆2 + C

𝜆4 + · · · (1.50)
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1.7 Chapter Summary

This chapter has provided sufficient experimental and theoretical groundwork for
the analysis and discussion of experimental data obtained via spectroscopic ellip-
sometry. Readers have been given a basic understanding of the inner workings of
spectroscopic ellipsometry. In addition, the Drude, Lorentz, and other related opti-
cal models have been introduced. These will be essential in the study of the optical
responses of metallic and semiconducting materials. The Drude–Lorentz model has
been discussed for the analysis of materials comprising both metallic and dielec-
tric properties. This will help in the understanding and analysis of the 2D quantum
systems as presented in Chapters 3 and 4.
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