
1

1

The Fundamentals of Solar Energy Photocatalysis
Xin Li1 and Jiaguo Yu2

1Institute of Biomass Engineering, South China Agricultural University, 483 Wushan Road, Tianhe District,
Guangzhou 510642, P. R. China
2China University of Geosciences, Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry,
388 Lumo Road, Wuhan 430074, P. R. China

1.1 Background

Solar energy semiconductor photocatalysis has long been considered to be the best
solution to various kinds of energy and environmental problems. During the past
decades, the solar energy semiconductor photocatalysis has attracted more and more
attention. Based on Figure 1.1a, the total number of academic papers on the photo-
catalysis published since 1996 has reached 64 011, with increasing publication year
by year. Especially, there are almost 8000 papers published in 2019 in the field of pho-
tocatalysis. Among all different research fields, the number of papers in photocat-
alytic pollutant degradation is the largest, which is much more than the total number
of publications in both photocatalytic H2 evolution and CO2 reduction (Figure 1.1b).

So far, hundreds of solar energy semiconductor photocatalysts have been exploited
and applied in the different photocatalytic fields, including the plasmonic metals,
metal oxides/hydroxides, sulfides, nitrides, metal-free polymers, organic semicon-
ductors, and their composites. Although some reviews covered the progresses of
these kinds of semiconductors, there are few books systematically summarizing the
advances in these semiconductors. Therefore, it is timely to provide a comprehen-
sive book to thoroughly elaborate the exploitation and application of typical kinds
of solar energy semiconductors in the different photocatalytic fields. We believe that
this book can help the researchers easily grasp the recent achievements for various
kinds of semiconductors and inspire their new ideas in developing new solar energy
semiconductors for efficient photocatalysis.

1.2 History of Solar Energy Photocatalysis

Due to its green and renewable advantages, photocatalysis has been one of the most
active directions in the field of chemistry in recent years.
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Figure 1.1 The number of publications on photocatalysis found by searching with the
following keywords: (a) topic: (photoca*), (b) topic 1: (photoca*), and topic 2: (hydrogen or
H-2 or H2), (carbon dioxide or CO2 or CO-2), or (degradat*). Source: Science Core Collection
26 November 2019.

Semiconductor photocatalysis can be traced back to 1839. Becquerel [1] first dis-
covered the photoelectric phenomenon, although he did not explain it theoretically.

In 1955, Brattain and Garrett [2] gave a reasonable explanation for the photoelec-
tric phenomena, marking the birth of photoelectrochemistry.

Especially in 1972, Fujishima and Honda first found that n-type semiconductor
rutile TiO2 single crystal electrode could achieve the photocatalytic decomposition
of H2O to O2 under the ultraviolet (UV) light (with 380 nm wavelength), while on
the counter electrode Pt simultaneously produces H2 [3]. This great discovery has
caused a sensation all over the world, which revealed the possibility of using solar
energy to decompose water for hydrogen production – or to convert solar energy
directly into chemical energy – thus opening up a new era of semiconductor pho-
tocatalysis research and attracting worldwide attention. Because of its far-reaching
significance in the development of new energy and the protection of ecological
environment, heterogeneous semiconductor photocatalysis has become a hot spot,
attracting the extensive attention of researchers in many fields, such as chemistry,
physics, and materials.

In the middle and late 1970s, Carey et al. [4] and Bard and coworker [5] utilized the
TiO2 suspension to degrade polychlorinated biphenyls and cyanides, respectively,
under UV irradiation, which set off a research upsurge of environmental photocatal-
ysis technology with the main purpose of decomposing environmental pollutants.

Schrauzer also confirmed that TiO2 with rutile and anatase mixed crystal phases
can realize the photocatalytic decomposition of chemisorbed water into H2 and O2
with a 2 : 1 stoichiometric ratio [6].

At the same time, Bard and his coworkers have guided and promoted the
development of photoelectrochemistry. They first extended the theory of photo-
electrochemistry (microelectrode model) to the photocatalysis of semiconductor
particles, advancing the semiconductor photocatalysis technology greatly in theory.
They not only used electron paramagnetic resonance (EPR) spectroscopy to charac-
terize the free radicals such as hydroxyl (•OH) and hydroperoxyl (•OOH) radicals in
the processes of photocatalytic oxidation and photocatalytic reduction of O2 [7, 8],
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respectively, but also used Pt-decorated TiO2 photocatalyst to decompose acetic acid
for generating methane (CH4), which proved that the heterogeneous photocatalysis
process has similar principles to the photoelectrochemical (PEC) process [9, 10].
In terms of its charge transfer mechanism, the suspended semiconductor particle
photocatalyst can be regarded as a short-circuited PEC cell [11, 12].

In 1978, Halmann found that CO2 dissolved in the electrolyte could be reduced
to formic acid (HCOOH), formaldehyde, and methanol (CH3OH) by using p-GaP
single crystal, carbon rod, and K2HPO4–KH2PO4 buffer solution as cathode, anode,
and electrolyte, respectively, under the necessary applied bias voltage [13].

In the same year, Somorjai first used SrTiO3 to achieve the photocatalytic conver-
sion of CO2 and water vapor to CH4 [14].

In 1979, Inoue et al. [15] systematically reported that WO3, TiO2, ZnO, CdS, GaP,
SiC, and other semiconductor catalysts suspend in the saturated aqueous solution of
CO2 could achieve the photoreduction of CO2 to HCOOH, formaldehyde (HCHO),
CH3OH, and CH4 under the illumination of xenon lamp and high-pressure mer-
cury lamp. More importantly, the reaction mechanism of CO2 photoreduction was
proposed.

In 1980, Kawai and Sakata reported that H2 was produced by photocatalytic
reforming biomass and its derivatives (glycine, glutamic acid, proline, white gelatin
protein) in water using Pt/RuO2/TiO2 photocatalyst. Only H2 and CO2 products
were released from the photocatalytic processes [16].

Sequentially, Pt/TiO2 [17] and (Pt) SrTiO3 [18, 19] have also been proved to
exhibit good photocatalytic activity for the decomposition of water into H2. There-
fore, since the early 1980s, heterogeneous photocatalysis technology has gradually
formed two main research directions: environmental photocatalysis and energy
photocatalysis.

Along with the two main research directions, researchers from the fields of
physics, chemistry, materials science, and environmental science have made a
series of remarkable achievements in developing new semiconductor materials,
revealing the mechanism of photocatalysis process and improving the quantum
efficiency of photocatalysis reaction. Table 1.1 systematically summarizes a series
of notable advances in the development of efficient heterogeneous photocatalysts.
As seen from Table 1.1, among various kinds of photocatalysts, TiO2-based photo-
catalysts were undoubtedly the most studied, because TiO2 has many advantages,
such as low cost, nontoxicity, strong oxidation–reduction ability, light and chemical
corrosion resistance, and excellent stability. However, it remains a great challenge
to design and develop high-performance TiO2-based photocatalytic materials. The
key problems lie in how to enhance the quantum efficiency of TiO2 photocatal-
ysis, promote the separation of photogenerated charge carriers, and expand the
visible light response range. So far, TiO2 modification methods have been widely
developed, such as dye and quantum dot (QD) sensitization [30]; cocatalyst loading
[17, 21–23, 70, 73, 74]; metal and non-metal ion doping [31, 37, 39, 40]; reasonable
control of defects and exposed crystal facets [57, 66, 67]; nanostructure modification
(including the construction of colloidal nanocrystals, hierarchical structures,
hollow microspheres, and nanosheet structures) [29, 44, 45, 52, 53, 77]; formation of
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Table 1.1 Some crucial advances in the development of efficient heterogeneous photocatalysts.

No. Photocatalysts Highlights Group
References
(year)

1 TiO2
photoelectrode

The discovery of Fujishima–Honda effect
of TiO2

Fujishima
and Honda

[3] (1972)

2 TiO2 powders Photodechlorination of polychlorinated
biphenyls

Carey [4] (1976)

3 TiO2 powders Photocatalytic oxidation of CN− in
aqueous solutions

Bard [5] (1977)

4 TiO2 powders Overall water splitting on TiO2 consisting
of mixtures of anatase and rutile

Schrauzer [6] (1977)

5 Pt–TiO2 particle
systems

Bard’s concept, “a short-circuited
photoelectrochemical cell”

Bard [9, 11, 12, 20]
(1978)

6 P-type GaP
photocathode

Photo-assisted electrolytic reduction of
CO2 in aqueous phase

Halmann [13] (1978)

7 TiO2, CdS, and
SiC powders

Photocatalytic reduction of carbon
dioxide in aqueous suspensions of
semiconductor powders

Inoue [15] (1979)

8 Pt/TiO2
powders

Decompose H2O into H2 and O2 under
UV irradiation

Sato and
White

[17, 21]
(1980)

9 RuO2/TiO2/Pt
powders

Photocatalytic reforming of carbohydrates
into hydrogen

Kawai [16] (1980)

10 Platinized or
Pt-free SrTiO3
single crystals

Production of H2 Wagner [18, 19]
(1980)

11 Pt and RuO2
co-loaded TiO2
sol

First report on the photocatalytic water
decomposition by loading dual cocatalysts
(with a quantum yield of 30± 10%)

Grätzel [22, 23]
(1981)

12 SrTiO3–NiO The utilization of NiO as H2-evolution
cocatalysts

Domen [24] (1982)

13 CdS–TiO2 Improved photocatalytic efficiency
through inter-particle electron transfer

Grätzel [25] (1984)

14 ZnxCd1–xS solid
solutions

The utilization of solid solutions for H2
evolution

White [26] (1985)

15 SrTiO3–Ni@NiO The utilization of Ni@NiO core/shell
H2-evolution cocatalysts

Domen [27, 28]
(1986)

16 TiO2 particles Size quantization effects of small-particle
titania

Anpo [29] (1987)

17 Colloidal TiO2
films

TiO2-based solar cells sensitized by
Ru-based dyes

Grätzel [30] (1991)

18 TiO2 colloids Metal ion-doped quantum-sized (2–4 nm)
TiO2 colloids

Hoffmann [31] (1994)

19 TiO2
polycrystalline
film

Light-induced amphiphilic surface of
TiO2

Fujishima [32] (1997)
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Table 1.1 (Continued)

No. Photocatalysts Highlights Group
References
(year)

20 BiVO4 particles First report on the BiVO4 photocatalyst Kudo [33, 34]
(1998)

21 In1–xNixTaO4
(x = 0–0.2) solid
solutions

Ni-doped indium–tantalum oxide Zou [35] (2001)

22 (WO3 or
Fe2O3)/dye-
sensitized TiO2

First report on the concept of “direct
Z-scheme”

Grätzel [36] (2001)

23 TiO2
films/powders

First report on N-doped TiO2 Asahi [37] (2001)

24 Pt-loaded
anatase TiO2
and rutile TiO2

The Z-scheme water splitting using
IO3

−/I− redox mediator
Arakawa [38] (2001)

25 TiO2
photoelectrodes

First report on C-doped TiO2 Khan [39] (2002)

26 TiO2 powders First report on F-doped TiO2 Yu [40] (2002)
27 Ta3N5 First report on the Ta3N5 photocatalyst Domen [41] (2002)
28 TaON First report on the TaON photocatalyst Domen [42] (2002)
29 AgInZn7S9 AgInZn7S9 solid solution photocatalyst

for H2 evolution
Kudo [43] (2002)

30 Hierarchical
TiO2

First application of hierarchical TiO2 in
photocatalysis

Yu [44, 45]
(2003)

31 NiO/NaTaO3:La
photocatalyst

An apparent quantum yield of 56% at
270 nm

Kudo [46] (2003)

32 (AgIn)xZn2(1–x)S2
solid solution
(Pt-loaded)

An apparent quantum yield of 20% for H2
evolution at 420 nm

Kudo [47] (2004)

33 GaN:ZnO solid
solutions

Overall water splitting on
(Ga1–xZnx)(N1–xOx) solid solution
photocatalyst

Domen [48–50]
(2005)

34 CdS–Au–TiO2
nanojunctions

All-solid-state Z-scheme system Tada [51] (2006)

35 Mesoporous
anatase hollow
microspheres

Fabrication of hollow TiO2 microspheres
by chemically induced self-transformation

Yu [52, 53]
(2006)

36 BiOX powders First report on the BiOX (X = Cl, Br, I)
photocatalysts

Zhang [54] (2008)

37 TiO2–graphene
composites

The photocatalytic reduction of graphene
oxide using TiO2

Kamat [55] (2008)

38 Au–TiO2 The concept of plasmonic photocatalysts Tatsuma [56] (2005)

(continued)
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Table 1.1 (Continued)

No. Photocatalysts Highlights Group
References
(year)

39 TiO2 nanosheets The fabrication of anatase TiO2 crystals
predominantly exposed with (101) facets

Lu and Qiao [57] (2008)

40 MoS2/CdS The utilization of MoS2 as H2-evolution
cocatalysts

Li [58] (2008)

41 g-C3N4 First report on the g-C3N4 photocatalyst Wang [59] (2009)
42 Pt–PdS/CdS The highest quantum efficiency of H2

generation (93%) by loading Pt and PdS as
dual cocatalysts on CdS

Li [60] (2009)

43 CdS–ZnO Demonstrated ZnO/CdS heterostructures
based on the Z-scheme mechanism

Lu and
Cheng

[61] (2009)

44 (Pt/ZrO2/
TaON)–(Pt/WO3)

The highest quantum yield of 6.3% for
Z-scheme systems

Domen [62] (2010)

45 CdS–NiS The utilization of NiS as H2-evolution
cocatalysts

Xu [63] (2010)

46 Cu and Pt
co-loaded TiO2
nanotube arrays

Photocatalytic conversion of CO2 and
water vapor into hydrocarbon fuels

Grimes [64] (2009)

47 Ag3PO4 First report on the Ag3PO4 photocatalyst Ye [65] (2010)
48 Hollow TiO2

microspheres
and
photocatalytic
selectivity

Tunable photocatalytic selectivity by
using exposed (001) facets and designed
surface chemistry

Yu [66] (2010)

49 TiO2
nanocrystals

First report on black hydrogenated TiO2 Chen [67] (2011)

50 CdS clus-
ter/graphene
composite

Photocatalytic H2 evolution over
graphene-based composite semiconductor

Yu [68] (2011)

51 BiVO4–(Ru/
SrTiO3:Rh)

Construction of all-solid-state Z-scheme
systems by using rGO as a solid-state
electron mediator

Amal [69] (2011)

52 Cu(OH)2 cluster
modified TiO2

Utilization of Cu(OH)2 as H2-evolution
cocatalysts

Yu [70] (2011)

53 Ni(OH)2 cluster
modified TiO2

Enhanced photocatalytic H2 production
activity of TiO2 by Ni(OH)2 cluster
modification

Yu [71] (2011)

54 CuS/ZnS porous
nanosheet
photocatalysts

A visible light-induced interfacial charge
transfer (IFCT) mechanism for enhanced
photocatalysis

Yu [72] (2011)

55 Ultrafine
Pt-loaded TiO2
single crystals

CO2 photoreduction to CH4 with a super
high yield of 1361 μmol g-cat−1 h−1

Biswas [73] (2012)



1.2 History of Solar Energy Photocatalysis 7

Table 1.1 (Continued)

No. Photocatalysts Highlights Group
References
(year)

56 (MoS2 +
graphene)/TiO2
composites

2D–2D hybrid of MoS2 and graphene as
dual-electron cocatalysts for H2 evolution

Yu [74] (2012)

57 rGO–ZnxCd1–xS
nanocomposites

Noble metal-free photocatalysts for
enhanced solar photocatalytic H2
Production

Yu [75] (2012)

58 Direct Z-scheme
g-C3N4/TiO2

Enhanced photocatalytic performance of
direct Z-scheme g-C3N4/TiO2
photocatalyst for decomposition of
formaldehyde in air

Yu [76] (2013)

59 Surface
heterojunction

Surface heterojunction within single TiO2
particles

Yu [77] (2014)

60 Ternary
NiS/ZnxCd1–xS/
rGO
nanocomposites

Co-loading of noble metal-free
reduced graphite oxide (rGO) and NiS
(reduction and oxidation cocatalysts) on
ZnxCd1–xS

Yu [78] (2014)

61 Carbon
nanodot–C3N4

Overall water splitting by the metal-free
photocatalysts

Kang [79] (2015)

62 Hierarchical
CdS–WO3
heterostructure

A direct hierarchical Z-scheme CdS–WO3
heterostructure for photocatalytic CO2
reduction to CH4

Yu [80] (2015)

63 MS2–CdS
(M = W or Mo)
nanohybrids

Wurtzite CdS nanocrystals hybridized
with single-layer MS2 nanosheets for
efficient photocatalytic H2 evolution

Zhang [81] (2015)

64 1D poly(diphe-
nylbutadiyne)
(PDPB)
nanostructures

Metal-free PDPB nanofibers for
photocatalytic degradation of methyl
orange and phenol

Remita [82] (2015)

65 Graphene-g-C3N4
nanocomposites

Sandwich-like graphene-g-C3N4 hybrid
nanostructures for enhanced visible light
photoreduction of CO2 to CH4

Chai [83] (2015)

66 g-C3N4/ZnO
binary
nanocomposite

A direct Z-scheme g-C3N4/ZnO system for
photocatalytic reduction of CO2 to
CH3OH

Peng [84] (2015)

67 Ultrathin
g-C3N4
nanosheet
assemblies

Hierarchical amine-functionalized
ultrathin g-C3N4 nanosheet assemblies for
photoreduction of CO2 to CH4 and
CH3OH

Yu [85] (2016)

68 Hybrid film of
g-C3N4 and
Ti3C2
nanosheets

Ti3C2 (with MXene phase) nanosheets as
cocatalyst for photocatalytic O2 evolution

Qiao [86] (2016)

69 SrTiO3:La, Rh,
and BiVO4:Mo
powders
embedded into
an Au layer

Z-scheme systems for pure water (pH 6.8)
splitting with a solar-to-hydrogen energy
conversion efficiency of 1.1% and an
apparent quantum yield of over 30% at
419 nm

Domen [87] (2016)

(continued)
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Table 1.1 (Continued)

No. Photocatalysts Highlights Group
References
(year)

70 FeCoW
oxyhydroxides

Report on the lowest overpotential
(191 mV) for the oxygen evolution
reaction

Sargent and
Vojvodic

[88] (2016)

71 Hollow
cobalt-based
bimetallic
sulfide

Hollow Zn0.30Co2.70S4 with higher
electrocatalytic HER activity than most
noble metal-free electrocatalysts

Zou [89] (2016)

72 GaAs/InGaP/
TiO2/Ni
photoanode,
Pd/C/Ti mesh
cathode

Solar-driven reduction of 1 atm of CO2 to
formate at 10% energy conversion
efficiency

Lewis [90] (2016)

73 Hierarchical
g-C3N4
nanostructures

Hierarchical porous O-doped g-C3N4
nanotubes for photocatalytic CO2
reduction to CH3OH

Yu [91] (2017)

74 Au/La2Ti2O7
sensitized with
black
phosphorus

An efficient broadband solar-responsive
photocatalyst for H2 production

Majima [92] (2017)

75 Black
phosphorus
nanosheets

Visible light photocatalytic H2 evolution
of black phosphorus nanosheets

Yang and Du [93] (2017)

76 Ti3C2/CdS
nanocomposites

Ti3C2 MXene cocatalysts significantly
boosting photocatalytic H2 production
activity over CdS

Qiao [94] (2017)

77 Ni/CdS
nanoparticles

Photocatalytic H2 evolution by
dehydrogenation of 2-propanol

Xiao [95] (2016)

78 In-plane
(Cring)–g-C3N4
heterostructure

2D g-C3N4-based in-plane
heterostructures for efficient
photocatalytic H2 production

Liu and Wei [96] (2017)

79 W18O49/g-C3N4
heterostructure

First report on the non-metal plasmonic
W18O49

Dong [97] (2017)

80 Defective TiO2 Photocatalytic NH3 production from
water and N2 at atmospheric pressure and
room temperature over surface oxygen
vacancies of TiO2

Shiraishi [98] (2017)

81 Defective
one-unit-cell
ZnIn2S4 atomic
layers

Defect-mediated electron–hole separation
in one-unit-cell ZnIn2S4 layers for boosted
solar-driven CO2 reduction

Xie [99] (2017)

82 CsPbBr3
QD/GO

A CsPbBr3 perovskite quantum
dot/graphene oxide composite for
photocatalytic CO2 reduction

Kuang [100] (2017)

83 Methylam-
monium lead
iodide (MAPbI3)

Photocatalytic H2 generation from
hydriodic acid using methylammonium
lead iodide

Nam [101] (2017)
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Table 1.1 (Continued)

No. Photocatalysts Highlights Group
References
(year)

84 Black
phosphorus/
g-C3N4

Metal-free photocatalyst for H2 evolution
in visible to near-infrared region

Majima [102] (2017)

85 NiS/Ni/g-C3N4 Constructing Ni interface layers in the
g-C3N4 nanosheets/amorphous NiS
heterojunctions for efficient
photocatalytic H2 generation

Li [103] (2017)

86 (Au/CoOx–
BiVO4)/(ZrO2/
TaON)

Photocatalytic Z-scheme overall water
splitting system with an apparent
quantum efficiency of 10.3% at 420 nm

Zhang and Li [104] (2018)

87 β-ketoenamine
COFs

Diacetylene-functionalized covalent
organic framework (COF) for
photocatalytic hydrogen generation

Thomas [105] (2018)

88 High-symmetry
Cu2O
photocatalyst
particle

Demonstrating that the holes and
electrons are transferred to the
illuminated and shadow regions of a
single Cu2O particle, respectively

Li [106] (2018)

89 Ni3C/CdS Ni3C nanoparticles as a new cocatalyst for
photocatalytic H2 evolution

Li [107] (2018)

90 P-doped CdS P-doped CdS for photocatalytic water
splitting without sacrificial agents

Chen [108] (2018)

91 Graphdiyne/TiO2
nanofibers

Graphdiyne as a new photocatalytic CO2
reduction cocatalyst

Yu [109] (2019)

92 WO3/g-C3N4 Firstly proposing the concept of
step-scheme (S-scheme) heterojunction

Yu [110] (2019)

93 TiO2/CdS The direct Z-scheme charge carrier
migration pathway firstly confirmed by in
situ irradiated X-ray photoelectron
spectroscopy

Yu [111] (2019)

94 C3N5 First report of a C3N5 photocatalyst Kumar, and
Shankar

[112] (2019)

95 Atomically thin
CuIn5S8 layers

Selective visible light-driven
photocatalytic CO2 reduction to CH4
mediated by atomically thin CuIn5S8
layers

Xie [113] (2019)

96 Single-atom
Cu/TiO2
photocatalysts

Reversible and cooperative
photoactivation

Hyeon, Kim,
and Nam

[114] (2019)

97 Resorcinol–
formaldehyde
resins

Metal-free semiconductor photocatalysts
for solar-to-hydrogen peroxide energy
conversion

Shiraishi [115] (2019)

98 Y2Ti2O5S2 Oxysulfide photocatalyst for visible
light-driven overall water splitting

Domen [116] (2019)

99 Al-doped SrTiO3 Achieving the upper limit of quantum
efficiency for overall water splitting

Domen [117] (2020)
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heterojunctions (by coupling with other semiconductors and nanocarbon materials)
[55, 74]; etc. The following are some examples.

In 2001, the doping of N into TiO2 (by replacing O in the lattice) [37] was first
reported in the journal Science. The resulting TiO2−xNx material showed high pho-
tocatalytic activity under the visible light (𝜆< 500 nm). The publication of this work
started the research of the second-generation TiO2 photocatalysts. Subsequently, the
visible photocatalytic properties of S-, F-, and C-doped TiO2 have been reported suc-
cessively [39, 40]. Although these studies have greatly improved the light absorption
of photocatalytic materials in the visible light region, the introduced modifiers, N or
C atoms, are easy to disintegrate from the crystal lattice under the light irradia-
tion. Therefore, the stability of these modified visible light photocatalytic materials
is poor, and the reusability in practical application is limited to a certain extent [118].

In 2008, Yang and Qiao successfully synthesized TiO2 nanoflakes with high expo-
sure ratio of (001) crystal facets by using hydrogen fluride (HF) as crystal surface
control agent [57]. Further studies showed that TiO2 hollow nanospheres with high
exposure ratio of the (001) crystal facets and surface fluorination had better pho-
tocatalytic degradation activity and good selectivity for methyl orange [66]. More
interestingly, Yu et al. proposed the concept of surface (crystal surface) heterojunc-
tion [77]. By optimizing the ratio of different exposed crystal facets of TiO2, the best
photocatalytic activity for CO2 reduction to CH4 was achieved [77].

In 2003, Zhang and Yu constructed the hierarchical porous TiO2 microspheres
and confirmed that the hierarchical mesoporous and macroporous structures can
effectively increase the photocatalytic degradation activity of n-pentane in the gas
phase [44, 45]. Meanwhile, Yu et al. synthesized the mesoporous hollow TiO2 micro-
spheres by using a chemical-induced self-transformation strategy, whose photocat-
alytic activity was double that of P25 [53].

In 2011, Chen et al. first developed black TiO2 with disordered surface structure
and confirmed its high hydrogen production activity [67]. This study further stim-
ulated the researchers to control the defects and surface structure of the photocat-
alysts, so as to improve the photocatalytic activity. In addition, various noble metal
and non-noble metal cocatalysts (such as Pt, Cu(OH)2, NiO, MoS2, and graphene)
have been widely developed and applied to greatly enhance the H2 production and
CO2 reduction activities of TiO2-based photocatalysts [22, 23, 27, 28, 64, 73, 74].
All in all, as the core photocatalyst, TiO2 modification research and diversified appli-
cations will continue in full swing.

In addition to TiO2-based photocatalysts, the development of non-TiO2-based
photocatalysts and the exploration of new mechanisms have been the recent focus
of photocatalytic research. Since the 1980s, a variety of new non-TiO2-based photo-
catalysts have been found, such as SrTiO3 [18, 19], ZnxCd1−xS [26], BiVO4 [33, 34],
In1−xNixTaO4 [35], Ta3N5 [41], TaON [42], AgInZn7S9 [43], (AgIn)xZn2(1−x)S2 [47],
(Ga1−xZnx)(N1−xOx) [48–50], BiOX (X = Cl, Br, I) [54], Ag@AgCl [119], g-C3N4
[59, 120], C3N5 [112], resorcinol–formaldehyde resins [115], β-ketoenamine cova-
lent organic frameworks (COFs) [105], Y2Ti2O5S2 [116], Ag3PO4 [65], etc. There is
no doubt that g-C3N4 has become a dazzling new star in the field of photocatalysis
in recent years [120–123]. Importantly, the appearance of graphene, a new type



1.3 Fundamental Principles of Solar Energy Photocatalysis 11

of two-dimensional (2D) ultrathin and highly conductive material, has injected
infinite power into the design and development of new efficient photocatalysts.
Various kinds of graphene-based composite photocatalyst materials are springing
up [68, 74, 75, 124–127]. On the other hand, new photocatalytic mechanisms have
been studied constantly. Bard first proposed the Z-scheme photocatalytic mecha-
nism of biomimetic photosynthesis in 1979 [20]. In 2001, Arakawa and coworkers
successfully constructed the first Z-scheme photocatalytic overall water splitting
system with I−/IO3

− redox pairs, Pt-loaded rutile TiO2 (H2 production catalyst), and
anatase TiO2 (O2 production catalyst) [38]. Domen achieved a quantum efficiency
of 6.3% for photocatalytic overall water splitting under monochromatic light
irradiation (𝜆 = 420.5 nm), by using Pt/ZrO2/TaON, Pt/WO3, and I−/IO3

− as the H2
production photocatalyst, O2 production photocatalyst, and the electron mediator,
respectively [62]. More recently, Zhang and Li reported a photocatalytic Z-scheme
overall water splitting system with an apparent quantum efficiency (AQE) of 10.3%
at 420 nm using [Fe(CN)6]3−/[Fe(CN)6]4−, Au/CoOx–BiVO4, and ZrO2/TaON as
redox mediator, H2-evolving, and O2-evolving photocatalysts, respectively, which
is so far the Z-scheme reaction system with the highest quantum efficiency for
photocatalytic overall water splitting [104]. At the same time, all-solid-state and
direct Z-scheme systems have been successfully developed and applied to photocat-
alytic decomposition of water and reduction of CO2 [51, 69, 80, 84, 111, 128–130].
Moreover, a photoinduced interfacial charge transfer (IFCT) mechanism has
been proved to be useful in the design and construction of novel visible light
photocatalysts [72]. In particular, recently reported black phosphorus [92, 93],
MXene cocatalyst [86, 94], graphdiyne [109], defective one-unit-cell ZnIn2S4 atomic
layers [99], atomically thin CuIn5S8 layers [113], planar heterojunction [96], and
van der Waals heterojunction [131, 132] provide a broader space for the design
of 2D semiconductor photocatalysts. In addition, some other efficient hydrogen
production systems such as Pt–PdS/CdS [60], non-noble metal (MoS2/CdS [58],
graphene/ZnxCd1−xS [75], NiS/ZnxCd1−xS/graphene [78], Ni3C/CdS [107], CdS–NiS
[63], NiS/Ni/g-C3N4 [103], and C3N4–CdS–NiS [133]) as well as metal-free carbon
dots/g-C3N4 [79] have been successfully constructed successively. All in all, the
development of a series of non-TiO2-based heterojunction photocatalytic materials,
new mechanisms, and efficient systems will continue to advance the research in
the field of photocatalysis.

1.3 Fundamental Principles of Solar Energy
Photocatalysis

1.3.1 Basic Mechanisms for Solar Energy Photocatalysis

So far, four basic mechanisms have been extensively employed to describe the
charge carrier generation and migration processes in heterogeneous photocatalysis,
namely, inorganic semiconductor photocatalysis (Figure 1.2a), organic semiconduc-
tor photocatalysis (Figure 1.2b), surface plasmon resonance (SPR, Figure 1.2c), and
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Figure 1.2 Photocatalytic mechanisms for (a) inorganic (TiO2, CdS, WO3, ZnO, BiVO4, Si,
etc.) and (b) organic (dyes, complexes, polymers, g-C3N4, etc.) semiconductors, (c) surface
plasmon resonance (SPR) (Au, Ag, Cu, Bi, etc.), and (d) interfacial charge transfer (IFCT)
(Cu(II), Fe(III), clusters, etc.). Source: Li et al. [134].

IFCT (Figure 1.2d). Among these four basic photocatalytic mechanisms, inorganic
semiconductor photocatalysis and organic semiconductor photocatalysis are the
most commonly used mechanisms for heterogeneous photocatalysis, and they share
the similar principles. Typically, the electrons in the ground-state valence band
(VB) or highest occupied molecular orbital (HOMO) could be photoexcited into the
vacant conduction band (CB) or lowest unoccupied molecular orbital (LUMO) by
absorption of the suitable incident photons. As a result, the separated photoinduced
electrons and holes in CB/LUMO and VB/HOMO can rapidly migrate to the surface
of the semiconductors and initiate the reduction and oxidation reactions, respec-
tively. Clearly, the heterogeneous photocatalysis over the traditional inorganic
semiconductors (i.e. TiO2 [135], ZnO, WO3 [136], CdS [107, 126, 137], and BiVO4
[138]) and organic semiconductors (i.e. dyes [139], complexes [140–143], polymers
[82, 144–147], graphene oxide [148], and g-C3N4 [120–123]) could be well explained
by these two mechanisms, respectively. Notably, the photocatalytic activity for these
two kinds of semiconductors could be further enhanced by different modification
strategies, such as heteroatom doping, molecular doping and their co-doping, and
vacancy creation [120, 149–152]. The third photocatalytic mechanism is the SPR,
as shown in Figure 1.2c, which widely exists in the nanostructured noble metals
(mainly Au and Ag), non-noble metal plasmonic metals (i.e. Bi and Cu) [153–161],
and non-metal plasmonic materials. The plasmonic photocatalysis observed in
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the systems with contacted and separated semiconductors could be explained by
SPR-mediated charge injection [162–173] and the near-field electromagnetic and
scattering mechanisms [163, 174], respectively. On one hand, it is expected that
regulation of composition, morphology, and structure of the metals can be used to
further enhance the plasmonic photocatalysis. On the other hand, more and more
novel plasmonic materials are expected to be exploited in the near future. Addition-
ally, in some cases, it was found that some semiconductors can be excited by the
incident photons with energy smaller than their corresponding bandgap energies,
which could be well explained by the IFCT mechanism (Figure 1.2d). Creutz et al.
first theoretically proposed the IFCT initiated by visible light in 2006 [175]. So far,
the IFCT mechanism has been successfully used to explain the photocatalytic O2
reduction or H2 evolution over several clusters or chemical bonds (i.e. CuS, CrxOy,
Ag, Cu(II), and Fe(III)) that are modified wide band semiconductors. Clearly, these
previously mentioned four mechanisms could be responsible for various kinds of
heterogeneous photocatalysis reactions.

1.3.2 Thermodynamic Requirements for Solar Energy Photocatalysis

The energy band structure of a given semiconductor essentially determines the ther-
modynamic characteristics and largely affects the photocatalytic performance of the
material. According to the theory of solid energy band, the electronic energy levels
near the Fermi level of a semiconductor are separated, while they are continuous
in bulk metal conductors. The band structure is generally composed of a low-energy
VB (composed of electron filled orbits) and a high-energy CB (composed of an empty
orbits). The energy gap between the VB and CB is the bandgap, expressed as Eg.
The bandgap width of a given semiconductor determines its optical absorption per-
formance. The relationship between the absorption wavelength threshold 𝜆g and
the Eg of a semiconductor can be described by Eq. (1.1). It can be seen from the
equation that the bandgap width of a semiconductor directly affects the light uti-
lization for photocatalytic reactions. The wider the bandgap of a semiconductor is,
the higher the energy of the photons it can absorb. These photons with higher energy
correspond to shorter wavelength, and thus a semiconductor with a wider bandgap
typically exhibits narrower absorption range, which is mainly concentrated in the
UV region of the solar spectrum. In contrast, the narrower the bandgap is, the lower
the energy of the photons a semiconductor can absorb, which corresponds to longer
wavelength, indicating that the semiconductor can use more visible light in the solar
spectrum. Because the visible light accounts for about 43% of the solar light, the
development of narrow bandgap semiconductors and the broadening of the light
response range of photocatalysts have become the focus of research.

𝜆g = 1240∕Eg(eV) (1.1)

When the energy of the incident light equals or exceeds the bandgap energy of a
semiconductor, the semiconductor can absorb the incident photons and excite elec-
trons from the VB to the CB. The photogenerated electrons and holes could drive the
reduction and oxidation reactions, respectively, which can lead to the redox reactions
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similar to those in the electrolysis process. In thermodynamics, the width of bandgap
determines the absorption ability of a given semiconductor photocatalyst to pho-
tons, while the CB and VB positions of a semiconductor determine the possibility
of photocatalysis. Therefore, the band structure (mainly the width of bandgap, the
positions of CB and VB) and the redox potential of the adsorbed species essentially
determine the light absorption capacity, the possibility of photocatalytic reaction,
and the strength of the thermodynamic driving force.

From the thermodynamic viewpoint, to accomplish the photocatalytic reactions,
the redox potentials for the surface reduction and oxidation half reactions should
match well with the semiconductors’ CB and VB levels, respectively. The standard
redox potentials of several half reactions have been summarized in Table 1.2
[121, 127, 176]. Notably, the redox potential of almost all these reactions exhibit
the same linear pH dependence (V pH = V pH(0) − 0.059 pH), except for that of
pH-independent single-electron O2 reduction (E0(O2/O2

−)) [176, 177]. The reduc-
tion and oxidation half reactions in different photocatalytic systems are highlighted
in Figure 1.3. Clearly, hydrogen evolution reaction (HER), CO2 reduction reaction
(CRR), and oxygen reduction reaction (ORR) are the three basic reduction half
reactions for the different photocatalytic systems. The four-electron oxygen evolu-
tion reaction (OER), which is crucial for achieving solar fuel production (via overall
water splitting and CO2 reduction), is more challenging, due to its large overpo-
tential and sluggish kinetics. Therefore, any factor that boosts the efficiency of
these half reactions is beneficial for the enhancement of photocatalytic activity.
The relative positions between band levels (at pH = 7 in aqueous solution) for
some commonly used semiconductor photocatalysts relative to the redox potentials
of typical half reactions and their potential applications are listed in Figure 1.4.
Clearly, on one hand, the sufficiently positive VB potentials for some oxidative
semiconductors (e.g. WO3, ZnO, SnO2, SrTiO3, BiVO4, Bi2WO6, BiOCl, and BiOBr)
could drive the production of the •OH radicals (on the left side of Figure 1.4),
thus leading to their promising applications in the photodegradation of organic
pollutants. On the other hand, more negative CB positions in some reductive
photocatalysts (e.g. Ta3N5, TaON, CdS, g-C3N4, SiC, ZnS, BiOCl, Si, Bi2S3, and
Cu2O) could efficiently achieve the photocatalytic H2 evolution and CO2 reduction.
It is noted that several semiconductors (e.g. Ta3N5, TaON, CdS, g-C3N4, SiC, ZnS,
BiOCl, SrTiO3, ZnO, and TiO2) with suitable CB and VB positions for both H2 and
O2 evolution are promising candidates for photocatalytic overall water splitting.

1.3.3 Dynamics Requirements for Solar Energy Photocatalysis

Thermodynamically speaking, the suitable band structure is necessary for semicon-
ductor materials to drive the photocatalytic redox reactions, but it is not a sufficient
condition for achieving the photocatalytic redox activity. This is because, in the pro-
cess of photocatalysis, there are many dynamic factors that will affect the observed
activity of a given photocatalyst. Generally, the overall photocatalytic quantum effi-
ciency was significantly related to the kinetics of four successive kinetic processes:
light harvesting, charge separation, charge carrier migration/transport, and surface



1.3 Fundamental Principles of Solar Energy Photocatalysis 15

Table 1.2 Standard redox potentials for selected species.

Reaction E∘′ (V) vs. NHE at pH 0

H2

2H+ + 2e− →H2(g) 0

O2 and N2

O2(g)+ e− →O2
−•(aq) −0.33

O2(g)+H2O+ 2e− →HO2
−(aq) +OH− −0.0649a)

O2(g)+H+ + e− →HO2
•(aq) −0.046

HO2
−(aq)+H2O+ e− → •OH + 2OH− 0.184a)

O2
−•(aq)+H2O+ e− →HO2

−(aq) +OH− 0.2a)

O2(g)+ 2H+ + 2e− →H2O2(aq) 0.695
2H2O(aq)+ 4h+ →O2(g)+ 4H+ 1.229
OH− +h+ → •OH 2.69
4OH−(aq)+ 4h+ →O2(g)+ 2H2O 0.401
N2(g)+ 2H2O+ 6H+ + 6e− → 2NH4OH(aq) 0.092
O3(g)+ 2H+ + 2e− →O2(g)+H2O 2.075

Metal ion
MoO4

2− + 4H2O+ 6e− →Mo(s) + 8OH− −0.913a)

Co(OH)2 + 2e− →Co(s) + 2OH− −0.733a)

Ni(OH)2 + 2e− →Ni(s) + 2OH− −0.72a)

Cu2O(s)+H2O+ 2e− → 2Cu(s)+ 2OH− −0.365a)

Co2+ + 2e− →Co(s) −0.277
Ni2+ + 2e− →Ni(s) −0.257
Mo3+ + 3e− →Mo(s) −0.2
AgI+ e− →Ag(s)+ I− −0.1522
AgBr+ e− →Ag(s)+Br− 0.0711
AgCl+ e− →Ag(s)+Cl− 0.2223
Sn4+ + 2e− → Sn2+ 0.15
Cu2+ + e− →Cu+ 0.159
BiOCl+ 2H+ + 3e− →Bi(s)+H2O+Cl− 0.1697
Bi3+ + 3e− →Bi(s) 0.308
Cu2+ + 2e− →Cu(s) 0.340
Cu+ + e− →Cu(s) 0.520
PdCl4

2− + 2e− →Pd(s)+ 4Cl− 0.64
PtCl4

2− + 2e− →Pt(s)+ 4Cl− 0.758
Rh3+ + 3e− →Rh(s) 0.76
Fe3+ + e− →Fe2+ 0.771

(continued)
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Table 1.2 (Continued)

Reaction E∘′ (V) vs. NHE at pH 0

Ag+ + e− →Ag(s) 0.7991
IrCl6

3− + 3e− → Ir(s)+ 6Cl− 0.86
Pd2+ + 2e− →Pd(s) 0.915
[AuCl4]− + 3e− →Au(s)+ 4Cl− 0.93
NiO2 + 4H+ + 2e− → Ni2+ + 2H2O 1.593

CO2

CO2 + e− → CO2
− −1.9

2CO2(g) + 2H+ + 2e− → HOOCCOOH(aq) −0.481
CO2(g) + 2H+ + 2e− → HCOOH(aq) −0.199
CO2(g) + 2H+ + 2e− → CO(g)+H2O −0.11
CO2 + 4H+ + 4e− →C+ 2H2O 0.206
CO2 + 4H+ + 4e− →HCHO+H2O −0.07
CO2 + 6H+ + 6e− →CH3OH+H2O 0.03
CO2 + 8H+ + 8e− →CH4 + 2H2O 0.169
2CO2 + 8H2O+ 12e– →C2H4 + 12OH– 0.07
2CO2 + 9H2O+ 12e– →C2H5OH+ 12OH– 0.08
3CO2 + 13H2O+ 18e– →C3H7OH+ 18OH– 0.09

Other
N2H4(aq)+ 4H2O+ 2e− → 2NH4

+ + 4OH− 0.1
H2S(g)+ 2h+ → S(s)+ 2H+ 0.144
SO2(aq)+ 4H+ + 4e− → S(s)+ 2H2O 0.50
H3AsO3(aq)+H2O+ 2h+ →H3AsO4(aq)+ 2H+ 0.56
NO2(g)+H2O+h+ →NO3

−(aq)+ 2H+ 0.80
NO(g)+ 2H2O(l)+ 3h+ →NO3

−(aq)+ 4H+ 0.957
H2O2(aq)+H+ + e− →H2O+OH− 1.14
Cr2O7

2− + 14H+ + 6e− → 2Cr3+ + 7H2O 1.36
HO2

• +H+ + e− →H2O2(aq) 1.44
H2O2(aq)+ 2H+ + 2e− → 2H2O 1.763

a) Superscripts denote standard redox potentials in basic solutions (pH = 14).
Source: Li et al. [176].

reaction (charge utilization) (Figure 1.5). In particular, it is well recognized that the
overall photocatalytic quantum efficiency (𝜂c) is fundamentally determined by the
product of efficiencies of the four tandem steps, including light harvesting efficiency
(𝜂abs), charge separation efficiency (𝜂cs), charge migration and transport efficiency
(𝜂cmt), and charge utilization efficiency (𝜂cu) for H2 generation. The relationship
between them could be calculated according to Eq. (1.2) [127, 151]:

𝜂c = 𝜂abs × 𝜂cs × 𝜂cmt × 𝜂cu (1.2)
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Figure 1.4 Band positions and potential applications of some typical photocatalysts (at pH
7 in aqueous solution). Source: Li et al. [176].
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Figure 1.5 Kinetic processes of photocatalysis: (1) light harvesting, (2) the separation of
photogenerated electron–hole pairs, (3) the migration and transport of photogenerated
electrons and holes, and (4) the surface charge utilization for the reduction and oxidation of
adsorbed reactants initiated by highly reactive electrons and holes, respectively. Source:
Li et al. [176].

Therefore, to develop highly effective photocatalysts, all kinetic processes in the
previously mentioned four steps must be comprehensively considered.

Among these kinetic processes, charge carrier dynamics, including trapping,
recombination, and transfer, fundamentally determines their overall photocatalytic
efficiency, which is significantly impacted by various factors such as the surface
and interface properties, particle size, and shape of semiconductor materials [178].
Accordingly, understanding the charge carrier dynamics in semiconductors plays
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Figure 1.6 (a) Schematic illustration of charge carrier relaxation following above bandgap
photoexcitation in semiconductors. The vertical straight lines with upward arrow indicate
excitation processes, and the horizontal lines represent the bottom of the conduction band
(CB), the shallow trap (ST) and deep trap (DT) states, and the top of the valence band (VB),
respectively. The wavy lines with downward arrows indicate different relaxation processes:
1© electronic relaxation within CB, 2© trapping into ST and DT states and further trapping

from ST to DT, 4© band edge electron–hole recombination, 5© trapped electron–hole
recombination, and 6© exciton–exciton annihilation. Source: Zhang [179]. (b) Model of
carrier dynamics in BiVO4. Source: Ravensbergen et al. [180].

an essential role in exploring highly efficient photocatalysts for emerging photocat-
alytic applications. Interestingly, various time-resolved spectroscopic techniques
including transient absorption and time-resolved fluorescence could be applied in
investigating the surface and interfacial charge carrier trapping and recombination
dynamics [179]. Figure 1.6a displays schematically the main pathways for charge
carrier relaxation and the pump–probe scheme for monitoring the carrier dynamics
[179]. The CB electronic and VB hole relaxation in band edge states (the excitonic
state) on the time scale of 100 fs or less could result in their fast recombination
on the order of nanoseconds or longer, with the strong band edge luminescence.
However, the surface or internal defect states in the semiconductors could trap
the charge carriers on a time scale of a few picoseconds to tens of picoseconds,
thus resulting in the red-shifted trap state emission, owing to the nonradiative or
radiative recombination. Generally, the nature, energy levels, or trap depth of the
trap states could significantly affect the lifetimes of trap states, ranging from tens of
picoseconds to nanoseconds or microsecond or even longer. For instance, the carrier
dynamics in BiVO4 thin films for PEC water splitting were carefully investigated by
broadband transient absorption spectroscopy (TAS), as shown in Figure 1.6b [180].
The results indicated that the time scales for the hole trapping, the electron relax-
ation, and trapping process were approximately 5 ps, 40 ps, and 2.5 ns, respectively.
Particularly, the trap-limited recombination was estimated to be on time scales
longer than 10 ns. To guide the rational design of photocatalysts, the typical charge
dynamics parameters of widely used semiconductors are summarized in Table 1.3.
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Table 1.3 Comparison of the bandgap structures and charge carrier dynamics for typical
semiconductors [134].

Catalyst
(type)

Bandgap structure
(pH = 7, vs. NHE) Charge carrier dynamics

CB VB Eg (eV) Carrier lifetime
Minority carrier
diffusion length

Charge mobility
(cm2 V−1 s−1

at 300 K)

Si −0.81 0.29 1.1 15 ns ∼2–4 μm 1350
TiO2 (anatase) −0.52 2.7 3.20 >1 μs/80 μs/500 ps 104 nm 4/20
TiO2 (rutile) 3.02 1 ms 10 nm 0.1/1
SrTiO3 −0.75 2.75 3.5 50 ns — 6–8
ZnO −0.61 2.58 3.2 400 ps 250 nm 120–440 [181]/

100–200/205
Cu2O −1.16 0.85 2.0 >117 ps 20–100 nm —
SnO2 0.04 3.54 3.5 ∼500–2000 ps — 260
CdS −0.9 1.5 2.4 50 ns ∼1 μm 3–35/100–300
CdSe −0.71 0.99 1.7 >500 ps/10–100 ns 600–700/∼100
g-C3N4 −1.3 1.4 2.7 1 ns–100 ms/100–200 μs — —
Ta3N5 −0.75 1.35 2.1 <10 ps/2–12 ps — 1.3–4.4
TaON −0.75 1.75 2.5 10–140 ps — ∼17
GaN:ZnO >500 ps — —
WO3 −0.1 2.7 2.8 500 ns/10 μs 150 nm 1
α-Fe2O3 −0.03 2.17 2.2 8 ps 2–4 nm 0.2
BiVO4 −0.3 2.1 2.4 40 ps–10 μs/40 ns 100 nm/70 nm 4× 10–2 [182]
CH3NH3PbI3 100 μs >175 μm 164± 25(h+)/

24.8± 4.1(e−)
Graphene 0.4–1.7 ps 200 000

Source: Li et al. [134].

Obviously, all these semiconductors exhibit relatively short carrier lifetimes ranging
from picoseconds to nanoseconds or microseconds, suggesting that the superfast
charge recombination dynamics in semiconductors should be the main bottleneck
in limiting photocatalytic efficiency. Notably, several semiconductors, such as
TiO2, CdS, WO3, BiVO4, and g-C3N4 with longer carrier lifetimes generally exhibit
much better photoactivity than other semiconductors with shorter carrier lifetimes.
In addition, it is well known that the longer minority carrier diffusion length and
charge mobility (cm2 V−1 s−1 at 300 K) are crucial for better photocatalysis, which
could be employed as important design parameters for developing highly efficient
photocatalysts. In a word, any modification strategy that could effectively prolong
the charge carrier lifetimes of a given semiconductor could be used to boost its
photocatalytic activity.

Notably, more attention should be paid on the effective mass of photogenerated
charge carriers, which aids to understand the underlying physicochemical reasons
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responsible for the different photocatalytic activity of various semiconductor mate-
rials and phases. More recently, Yu’s group performed the first-principles theoretical
calculations to investigate the band structures, density of states, bond populations,
optical properties, and charge carrier effective mass of wurtzite and zinc blende CdS
and anatase, rutile, and brookite TiO2 [183, 184]. Compared with other correspond-
ing phases, wurtzite CdS and anatase TiO2 exhibit the smaller effective masses of
photogenerated charge carriers, thus leading to faster migration and lower recom-
bination rates of photogenerated charge carriers from the interior to surface and
much higher photocatalytic activity [183, 184]. Additionally, it should be noted that
both indirect band structure and distortion-induced internal electric field could also
promote the charge separation and diffusion of photogenerated charge carriers, thus
beneficial for the enhanced photocatalysis. Accordingly, in future studies, more fun-
damental dynamics and band factors should be revealed to better understand the
underlying reasons and to design better photocatalysts for practical applications.

1.4 Design, Development, and Modification
of Semiconductor Photocatalysts

1.4.1 Design Principles of Semiconductor Photocatalysts

Clearly, to design better practical photocatalysts, five important features should be
comprehensively considered, namely, low cost, nontoxicity, stability, visible light
and near infrared (NIR) absorption, and efficiency (high activity and selectivity)
(Figure 1.7). Based on these features, the well-known photocatalysts, such as TiO2,
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g-C3N4, graphene, tungsten oxide (WO3), and Bi-based semiconductors [186] should
be very promising for a variety of applications.

According to these basic design principles, the basic roles of the different ele-
ments in exploring semiconductor photocatalysts are shown in Figure 1.8. As seen
from Figure 1.8, the d0 and d10 group elements are generally used to construct the
CB of semiconductors, whereas the non-metal elements are suitable for fabricating
the VB. Moreover, to greatly reduce the research and development cost, the use of
Pt group cocatalysts (including Ru, Rh, Pd, Os, Ir, Pt, and plasmonic Ag and Au)
should be minimized in the practical development process, despite their good elec-
trocatalytic activity. Alternatively, the utilization of cocatalysts based on the first-row
cheap transition metals (i.e. Fe, Co, Cu, and Ni) should be greatly increased. Addi-
tionally, alkaline Earth metals are usually employed to design the crystal structure of
semiconductor photocatalysts due to their low toxicity, abundant reserves, and low
price, which deserve more attention. In a word, cheap and nontoxic metal elements
(such as W, Bi, Zn, Ta, Sn, Fe, Cu, and Mo) and non-metal elements should be given
more attention in exploring semiconductor photocatalytic materials.

Among the five important features, the stability of photocatalysts is crucial for
the long-term practical applications. Generally, on the basis of the relative positions
of thermodynamic potentials and the band levels of semiconductors, there are three
typical kinds of photocorrosion processes, namely, the reductive photocorrosion
(as shown in Figure 1.9a), the oxidative photocorrosion (Figure 1.9b), and dual
photocorrosion (Figure 1.9c) [187]. Some semiconductors with the proper CB
and VB potentials are indeed stable without any photocorrosion (Figure 1.9d).
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The photocorrosion types for some commonly used semiconductors are shown
in Figure 1.10. Various Ag-based semiconductors (e.g. Ag3PO4 [188], AgBr [189],
Ag2CO3 [190], and AgI [191]) and typical non-oxide semiconductors (e.g. CdS
[126, 192], GaAs, GaP, Ta3N5, and CdSe) easily suffer from the reductive and
oxidative photocorrosion, respectively. Additionally, several semiconductors (i.e.
Cu2O [193] and SiC) exhibit extremely poor photostability due to the occurrence of
dual photocorrosion.

Thus, apart from developing novel stable semiconductors, such as p-CuRhO2
[194] and p-AgRhO2 [195], five typical modification strategies (Figure 1.11) have
been developed for effectively suppressing the unexpected photocorrosion of
unstable semiconductors, namely, adding the suitable sacrificial electron donors
(e.g. S2−/SO3

2−, lactic acid, triethanolamine, and CH3OH) and electron acceptors
(e.g. Ag+) into solution; decorating with cocatalysts (e.g. cobalt phosphate (Co-Pi)
or CoOx [196, 197], noble metal, and Earth-abundant metal nanoparticles/clusters
[198–200]); coupling with nanocarbon materials (such as graphene, carbon
nanotubes, and ultrathin amorphous carbon layers [201–206]); creating hetero-
junctions; and constructing protective overlayers. Notably, creating heterojunctions
and constructing protective overlayers have been proven to be the most promising
two strategies to reduce the photocorrosion. In particular, the overall photocatalytic
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activity of unstable Cu2O and CdS semiconductors could be fundamentally boosted
through constructing type-II heterojunctions (i.e. Cu2O/TiO2 [207–211] and
CdS/TiO2 [212–217]) and all-solid-state Z-scheme systems [218–220] due to the
improved photostability. Additionally, various protective overlayers (i.e. TiO2
[221–225], SrTiO3 [226], g-C3N4 [227–229], Al2O3 [230], Ga2O3 [231], and SiO2
[232–237]) have been constructed on the surface of semiconductors to effectively
enhance the overall photocatalytic efficiency, through the favorable “passivation”
and/or “catalysis” effects [238]. In future, it is anticipated that fabricating multiple
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heterojunctions can be used to rationally improve the photostability through
making full use of possible synergism between them [239–245].

1.4.2 Classifications of Semiconductor Photocatalysts

So far, hundreds of semiconductors have been exploited and applied in different
fields of photocatalysis [246]. According to their compositions, these photocatalysts
could be classified into five types: metal oxide/hydroxide, non-oxide, novel, organic,
and metal-free photocatalysts, which are summarized in Figure 1.12. Multicompo-
nent metal oxide and sulfide solid solution photocatalysts are two kinds of most
promising candidates for different photocatalysts. Unfortunately, no one photocat-
alyst could satisfy all requirements for practical photocatalytic applications [192].
Thus, heterojunction photocatalysts and various kinds of modification strategies
have been developed to boost their photocatalytic efficiency. Herein, all these dif-
ferent potential photocatalysts will be thoroughly discussed in this book.

1.4.3 Modification Strategies of Semiconductor Photocatalysts

The main thermodynamic and dynamics processes in unit cells, bulk, and surface
phases can be classified into three steps as shown in Figure 1.13, including (i) pho-
toexcitation of electron–hole pairs in the unit cells of semiconductors, (ii) the charge
separation/migration in bulk and the bulk (iii) and surface (iv) charge recombina-
tion, and surface charge-induced reduction (v) and oxidation (vi) reactions. Clearly,
the overall photocatalytic performance is closely dependent on the thermodynamic
and kinetic balance of all involved processes in the three steps, which is strongly
determined by the surface/bulk properties and the electronic structures of a given
photocatalyst.

Relatively speaking, the processes in the bulk and surface phases are more crucial
for improving the overall photocatalytic efficiency than photoexcitation in the
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unit cell, due to the occurrence of more and more visible light semiconductors.
So far, various kinds of surface and interface modification strategies have been
available for improving both charge carrier dynamics and sluggish surface reaction
kinetics, thus achieving the highly active, selective, and stable solar-to-chemical
energy conversion [247–250]. Particularly, the possible synergistic effects in the
multifunctional integration and optimization of different modification strategies
have been demonstrated to be of great significance for boosting the photocatalysis.
For example, loading suitable amounts of plasmonic metals on semiconductors as
cocatalysts can significantly boost the overall efficiency for different photocatalysts,
owing to the simultaneous enhancement of all processes in the three stages
through the plasmonic Schottky junction, including visible light harvesting, charge
separation, and accelerated surface reaction kinetics [251], thus leading to the
wide photocatalytic applications of the plasmonic metals cocatalysts [252–258].
Moreover, fabricating various kinds of hierarchical semiconductor structures at
the micro/nanometer scale could simultaneously feature the light harvesting,
charge separation, and adsorption of reactants, consequently resulting in boosted
overall photocatalytic efficiency [85, 176, 259–265]. Additionally, loading suitable
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electrocatalysts as cocatalysts can significantly improve the surface electrocat-
alytic reduction and oxidation reactions (surface charge utilization), owing to the
decreased onset overpotential, improved surface reaction kinetics, enhanced charge
separation and photostability of semiconductors [196, 266, 267]. Of note, from the
viewpoint of sustainable development, the stable and nontoxic Earth-abundant
noble metal-free cocatalysts could greatly reduce the costs of practical photocat-
alytic applications, which are essentially important and promising for large-scale
and long-time photocatalysis [70–72, 267–284]. Finally, constructing various
semiconductor-based heterojunctions have been proven to be one of the most
promising strategies to boost light absorption, charge separation, photostability,
adsorption, and reaction kinetics [85, 124, 126, 127, 285, 286], for developing robust
and efficient photocatalysts. In this section, we will thoroughly discuss the two most
important strategies, constructing semiconductor-based heterojunctions and load-
ing cocatalysts, which have been extensively applied in the different photocatalytic
systems.

The formation of semiconductor-based heterojunctions has been proven to be an
appealing strategy to improve the solar energy photocatalysis. So far, fabricating
various kinds of heterojunctions [287–292], such as type-II/p–n heterojunctions
[293–303], surface heterojunction (facet junctions) [77, 304–308], Schottky junc-
tions (with metal and nanocarbons), direct Z-scheme systems [128, 130, 309–329],
and S-scheme (or step-scheme) heterojunction [110, 330], have been success-
fully explored in the different heterogeneous photocatalysis systems. The charge
separation mechanisms of these six types of heterojunctions are displayed in
Figure 1.14.
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Among them, the type-II heterojunction has been dominantly studied during
the past decades since Serpone et al. firstly fabricated interfaces between CdS and
TiO2 to improve the charge separation and transfer in 1984 [25]. Clearly, in type-II
heterojunction, electrons and holes accumulate on SCI and SCII for reduction and
oxidation reactions, respectively [287–289]. Thus, the photogenerated electrons
and holes are spatially separated. However, the claimed charge transfer mode in
type-II heterojunction is disputable, due to the huge electrostatic repulsive forces
[128, 129, 331, 332]. Moreover, from a thermodynamic perspective, the weakened
overall redox ability of the heterojunction is not beneficial for improving the
photocatalytic reaction. Thus, the grievous fundamental problems greatly prevent
the development of type-II heterojunction in the recent years. Similarly, although
the p–n heterojunctions could achieve the favorable charge separation, they suffer
from weakened redox ability during the photocatalysis.

More interestingly, surface heterojunction as an important kind of heterojunc-
tion has been recently developed and applied in photocatalysis. For instance, the
co-exposed (001) and (101) facets in anatase TiO2 formed in the presence of different
amounts of HF have recently been reported. The results showed that when the ratio
of (001) to (101) facets is 6 : 4, the maximum activity of photocatalytic CO2 reduction
to CH4 can be achieved. The first-principles calculation further confirmed that the
density states of anatase TiO2 (001) and (101) crystal faces were significantly differ-
ent, which resulted in the formation of typical surface heterojunction between TiO2
(001) and (101) crystal faces [77]. Therefore, the formation of surface heterojunction
can effectively promote the separation of charge carriers, so that the photocatalytic
activity of CO2 reduction can be significantly improved. Additionally, among these
six types of heterojunctions, constructing the nanocarbon-based Schottky hetero-
junctions seems to be particularly attractive. So far, various kinds of nanocarbon
materials, including carbon spheres, graphene, carbon nanotubes, carbon QDs, have
been frequently exploited and applied in the field of photocatalysis. More impor-
tantly, nanocarbon materials could exhibit better adsorption activity toward reactive
substances and promote the visible light absorption of semiconductors. For example,
Yu and coworkers have successfully constructed CdS nanoclusters/graphene/Pt [68]
and TiO2 nanocrystals/graphene/MoS2 [74] heterojunction composite photocata-
lysts, whose optimized photocatalytic activities were 4.87 and 39 times higher than
the corresponding single semiconductor materials, respectively. The formation of
Schottky heterojunction between nanocarbon materials and semiconductors could
significantly promote the separation of photogenerated electron–hole pairs in the
semiconductors, thus boosting the photocatalytic hydrogen production activity.

Furthermore, to remove the unfavorable influence of the undesirable conduc-
tors in all-solid-state Z-scheme photocatalysts [128, 331], Wang et al. developed
ZnO/CdS Z-scheme heterojunction for improved H2 evolution performance in
2009 [61]. Then, Yu et al. fabricated a direct Z-scheme g-C3N4/TiO2 photocatalyst
for improving photocatalytic formaldehyde decomposition in 2013 [76]. However,
there is a lot of confusion over “direct Z-scheme”; not only it exhibits a lot of
confusion with traditional Z-scheme and all-solid-state Z-scheme but also it
suffers the consequences of the failure of traditional Z-scheme and all-solid-state
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Z-scheme [128, 129, 331, 332]. Thus, S-scheme (or step-scheme) heterojunction, as
a brand new concept describing the photocatalytic mechanism clearly and vividly,
has been firstly proposed by Yu’s group in 2019 [110]. An S-scheme heterojunction
exhibits a completely different charge transfer route from type-II heterojunction.
Distinctly, in S-scheme heterojunction, the powerful photogenerated electrons and
holes accumulated in the CB of reduction photocatalyst (RP) and VB of oxidation
photocatalyst (OP), respectively, could achieve the strong redox ability. Notably, the
charge transfer route in S-scheme mode resembles “step” in macroscopic (from low
CB to high CB) and letter of N in microscopic. In future, to develop better S-scheme
photocatalysts, both thermodynamics and dynamics should be considered. Various
kinds of design strategies, such as suitable cocatalyst loading, morphology control,
and interface optimization, can be employed to lower photocatalytic reaction
activation barrier and improve charge carrier separation and transfer.

In the future, some basic problems of heterojunction interface in photocatalysis
are worthy of further deep study, such as the atomic structure and properties
of solid–solid interface, the transport of photogenerated charge carriers across
the interface, the formation and effect of interface defects, the decomposition
mechanisms of organic molecules on the interface, and the formation process of
solid–liquid interface. In this sense, the construction of heterojunction composite
materials and the study of carrier separation mechanism with complex interface
are still very important research topics in the field of photocatalysis, which could
guide the design and development of novel composite semiconductors.

Since the pioneering works by Bard and his group reporting the concept of Pt
islands (cocatalysts) on TiO2 powder for photocatalytic applications [9, 11, 20],
various effective electrocatalysts as active cocatalysts have been obtained to boost
the surface electrocatalytic reactions of excited semiconductors. Interestingly, six
basic configurations of the semiconductor/cocatalyst composite photocatalysts
have been designed and developed over the past decades (Figure 1.15); namely,
(a) semiconductor-supported single reduction or oxidation cocatalyst systems,
(b) semiconductor–dual (reduction and oxidation) cocatalyst systems, (c) plasmonic
metal–semiconductor–cocatalyst systems, (d) dye/QDs–semiconductor (irradiated
or unirradiated)–cocatalyst systems, (e) dye/QDs–cocatalyst systems, and (f)
semiconductor–carbon/metallic bridge-cocatalysts or semiconductor–cocatalysts
with coated layers. Notably, the semiconductors in these six configurations could
be replaced by the p–n and Z-scheme heterojunctions or homojunctions.

1.4.4 Development Approaches of Novel Semiconductor
Photocatalysts

Because the electronic structure of a given semiconductor strongly determines the
redox capacity during the photocatalysis, many researchers focus on studying the
electronic structure of semiconductor photocatalytic materials. Generally, the ele-
ment doping, defect engineering, and nanostructure design can effectively optimize
the electronic structure of various kinds of semiconductor materials, so as to increase
their visible or near-infrared photocatalytic activity. In addition to these traditional
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composites: (a) semiconductor-supported single reduction or oxidation cocatalyst systems,
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or unirradiated)–cocatalyst systems, (e) dye/quantum dots–cocatalyst systems, and
(f) semiconductor–carbon/metallic bridge-cocatalysts or semiconductor–cocatalysts with
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respectively. Source: Li et al. [134].

modification strategies, the development strategies of new photocatalytic materi-
als are as follows: solid solution engineering and first-principles calculation. This
section will focus on the specific applications of these two strategies in the develop-
ment of solar fuel photocatalytic materials.

The simplest and direct way to develop new photocatalytic materials is solid
solution engineering, which has been successfully applied in photocatalytic H2
production, degradation of pollutants, and CO2 reduction. In order to reduce the
workload of seeking new solid solutions, the high-throughput screening method
provides a rapid experimental method for the development of semiconductor pho-
tocatalytic materials. The commonly used high-throughput screening approaches
mainly include scanning electrochemical microscopy (SECM) [333, 334] and
scanning printer [335]. For example, Bard’s group confirmed that 5 mol% W-doped
[334] or 2% W/6% Mo co-doped [336] BiVO4, respectively, exhibited 3 and 10 times
higher activity in PEC water oxidation by using SECM. The main reason for the
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improvement of photocatalytic activity is that W/Mo doping results in the distortion
of BiVO4 lattice structure, which promotes the separation of photogenerated
electrons and holes. Additionally, they also found that the photocurrent of 12 mol%
Zn-doped Bi2WO6 was the highest, which was 1.8 times as high as that of the pure
Bi2WO6 sample. More importantly, these high-throughput screening methods can
also be directly used to find efficient photocatalytic water splitting electrocatalysts
[337–340].

Furthermore, the first-principles simulation method is also widely used in the
design and development of new semiconductor and cocatalyst materials. The
first-principles calculation is a quantum mechanical method based on density
functional theory (DFT) and local density approximation. It can simulate the
electronic structure, bonding properties, charge distribution, and optical properties
of materials without experimental data. Many researchers use the first-principles
method to simulate and calculate the electronic structure, band information,
and the influencing factors of photocatalytic reaction. This method has been
successfully applied to study the physical mechanism underlying the influence of
element doping and substitution on the performance of photocatalytic materials
and to design a batch of new photocatalytic materials. However, in most cases, the
first-principles calculation mainly serves as supplementary theoretical analysis to
the experiments, so as to better understand the structure–activity relationship of a
given photocatalyst. For example, the first-principles calculation confirms that the
energy band structure of TiO2 (001) and (101) faces is significantly different [77].
In another work, the first-principles calculation predicted that N- and C-doped
ZnO had better photocatalytic activity than S-doped ZnO, mainly because N- and
C-doping can introduce vacancy state above the Fermi level of ZnO and lower its
CB, resulting in an obvious reduction of its bandgap width and the increase of
carrier concentration [341]. Recently, DFT calculations have shown that halogen
atom doping can reduce the bandgap of single-layer g-C3N4, increase the visible
light absorption, and reduce the work function, resulting in high photocatalytic
activity [342]. More importantly, the high electronegativity of F atom makes it
tend to occupy the VB and the HOMO of g-C3N4. In contrast, Cl, Br, and I atoms
tend to occupy the CB and the LUMO of g-C3N4. Additionally, the first-principles
calculation shows that layered MPS3 (M = Fe, Mn, Ni, Cd, Zn) and MPSe3 (M = Fe,
Mn) are also potential 2D photocatalytic materials [343]. The energy gap of these
single-layer structures is between 1.90 and 3.44 eV, and they have good absorption
properties over a wide spectrum (including visible light and near-infrared range).
The results show that the single-layer MnPSe3 is a direct bandgap semiconductor
with strong visible light absorption activity. It can completely decompose water
in acidic or neutral environment and produce H2 and O2 at the same time. It can
be predicted that charge carriers in MnPSe3 has a high mobility, and the mobility
of electrons and holes is very different. This indicates that the recombination of
photogenerated electrons and holes of this new MnPSe3 monolayer material can
be effectively suppressed, and its photocatalytic quantum efficiency can be greatly
improved, which is expected to become a new generation of photocatalyst that
can efficiently utilize solar energy to catalyze the total decomposition of water.
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At present, MnPSe3 nanosheet can be prepared. It is hoped that in the near future,
the single-layer structure can be successfully prepared, and further verify the the-
oretical prediction results. Similarly, based on the high-throughput calculation of
DFT, FeVO4 (2.51 eV), β-Cu2V2O7 (2.42 eV), and β-Ag3VO4 (2.51 eV), and other new
visible light water oxidation solid solution catalysts have been successively found
[344, 345]. In contrast, there are few reports on the application of first-principles
calculation in the screening of photocatalytic materials or the analysis of carrier
dynamics before experiments. Therefore, in the future, more research should use
the first-principles calculation to design the visible light-responsive photocatalyst
with better photocatalytic activity.

In addition, it is worth noting that the first-principles calculation is also widely
used in the development of electrocatalysts for photocatalytic H2 evolution. In gen-
eral, DFT calculation can be used to analyze and compare the geometry and elec-
tronic configuration of different electrocatalysts for H2 evolution, the adsorption of
H2O, H and OH, and the free energy of H adsorption (ΔG(H*)), to explore the under-
lying mechanisms for the improvement of catalytic activity. Generally speaking, the
strong adsorption of H2O and the weak adsorption of H and OH are more favorable
for the dissociation of H2O and the desorption of H2. In particular, ΔG(H*) is an
important index to measure the hydrogen evolution activity of a catalyst. The closer
its value is to 0, the higher its catalytic activity is.

1.5 Processes and Evaluation of Solar Energy
Photocatalysis

1.5.1 Processes of Solar Energy Photocatalysis

1.5.1.1 Photocatalytic Water Splitting
Hydrogen is a green energy with high heat of combustion, high efficiency, and
zero discharge of pollution. At present, the production of H2 is mainly from non-
renewable primary energy, which will aggravate the shortage of the non-renewable
energy sources and bring new environmental pollution problems. Although it is
a very challenging work to efficiently convert solar energy into hydrogen energy
by photocatalysis, it is one of the ideal ways to solve the problem of energy
source shortage and environmental pollution fundamentally. Therefore, it has
attracted increasing attention in the different communities. From the viewpoint
of thermodynamics, producing H2 and O2 from water decomposition is an uphill
reaction with large free energy change [151], that is to say, water decomposition is
a chemical reaction that cannot occur spontaneously in thermodynamics. In the
standard state, to decompose 1 mol of water into H2 and O2, at least 237 kJ of energy
is required in theory (for example, see Eq. (1.3)). From the electrochemical point
of view, the theoretical decomposition voltage of water is 1.23 eV. That is to say,
when the voltage increases up to more than 1.23 eV, the electron has the ability to
reduce H+ to H2, while the hole could oxidize the water and emit O2. Therefore,
in order to promote the decomposition of water, we must input enough energy to
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overcome the necessary change of Gibbs free energy. Compared with the downhill
photocatalytic degradation of organic pollutants, the photocatalytic decomposition
of water is usually very difficult. In general, visible light photocatalytic overall water
splitting for H2 production is even considered as the “Holy Grail” of chemistry
[346]. However, photocatalytic water decomposition technology can use solar
energy to drive water decomposition reaction to produce H2. Water and sunlight
are inexhaustible, and H2 obtained from water can be transformed back to the
form of water (H2 + 1/2O2 →H2O) after being used as energy. It is a completely
sustainable development and utilization. Therefore, with the development of a
series of new electrocatalysts for hydrogen release (used in electrolytic or PEC
decomposition of water), and the discovery of many new visible light photocatalysts
besides TiO2, the technology of hydrogen production from water decomposition by
solar photocatalysis has received more and more attention.

H2O(l) → H2(g) +
1
2

O2(g) ΔG0 = 237.2 kJ∕mol,ΔH0 = 237 kJ∕mol,

ΔE0 = 1.23 V (1.3)

2H+ + 2e− → H2(g) ΔE0 = −0.41 V, pH = 7 (1.4)

2H2O(l) → O2(g) + 4H+ + 4e− ΔE0 = +0.82 V, pH = 7 (1.5)

According to the types of photocatalyst and reactions, the photocatalytic hydro-
gen production systems can be divided into two categories: half-reaction hydrogen
production systems and overall water splitting systems (Figure 1.16). Notably, the
overall water splitting systems can be further divided into three sub-types: single
photocatalyst, Z-scheme (liquid and all-solid-state), and heterojunction. Figure 1.17
shows the specific principles of photocatalytic H2 production in these two kinds
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Figure 1.16 Systems for photocatalytic water splitting.
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of reactions. Among them, the single catalyst system of overall splitting of water
under visible light is the most difficult (as shown in Figure 1.17a). Most of the metal
oxide photocatalysts and almost all of the metal sulfide photocatalysts can only
complete the H2 or O2 production half reactions in the presence of sacrificial agents
(Figure 1.17b). Although a large number of UV-responsive photocatalysts have
been developed for water splitting, few progresses have been made in theoretical
research [46]. In fact, using a single photocatalyst to achieve overall water splitting
under visible light has strict requirements on the CB, VB, and bandgap width
of a given semiconductor photocatalyst. Theoretically, such photocatalysts must
meet the following thermodynamic requirements: the energy of photons must
be greater than or equal to the theoretical minimum energy required for water
splitting, i.e. 1.23 eV, which is approximately equal to the energy of photons of
1100 nm wavelength; the CB and VB positions must match the reduction and
oxidation potentials of water, that is, the position of the CB bottom (ECB) must be
more negative than the redox potential of H+/H2 (−0.41 V vs. normal hydrogen
electrode [NHE] at pH = 7), and the position of the VB top (EVB) must be more
positive than the redox potential of O2/H2O (0.82 V vs. NHE at pH = 7). Therefore,
considering the existence of overpotential, the bandgap width of semiconductor
should be at least greater than 1.8 eV [130]. The band structure of most metal
oxide semiconductors does not meet the conditions of H2 and O2 production at
the same time; on the other hand, the few photocatalysts that meet the preceding
conditions are not responsive to the visible light due to their wide bandgap (for
example, the Eg of TiO2 and ZnO are 3.2 and 3.3 eV, respectively). Some non-oxide
semiconductor photocatalysts (such as CdS and g-C3N4, with Eg values 2.4 and
2.7 eV, respectively) have visible light response, and their band positions can
meet the requirements of the total splitting of water. However, their lower water
oxidation overpotential or their own strong anodizing corrosion limits their appli-
cation in the single-component visible light-driven overall water splitting system.
On the contrary, the photocatalysts in the hydrogen evolution half reaction or
comprising the Z-scheme systems do not need all the requirements simultaneously.
For the photocatalytic H2 production half reaction (as shown in Figure 1.17a),
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the semiconductor photocatalyst just needs to have a CB potential that is more
negative than the redox potential of water reduction half reaction (that is, more
negative than −0.41 V, at pH = 7, vs. NHE). The key point of optimizing this kind of
reaction is to select the appropriate hydrogen evolution cocatalysts and electron
donors with the appropriate redox potential to consume the photogenerated holes
accumulating on the surface of the semiconductor. For the liquid-state Z-scheme
system for simultaneous H2 and O2 production (Figure 1.17c), it is obvious that
two types of photocatalysts are needed. But for either of the photocatalysts, it only
needs to meet the potential requirements of photocatalytic H2 production or O2
production. For this kind of two-photon liquid-state Z-scheme system, the biggest
advantage is that the active sites of H2 production and O2 production are effectively
separated, so the undesired reverse reaction can be avoided. The electron transfer
between the two photocatalysts in a Z-scheme system is a rate control step [347]. So
far, various ionic redox pairs (such as IO3

−/I− and Fe3+/Fe2+), metal nanoparticles
(such as Pt, Au, and Ag), and conductive carbon nanomaterials (such as graphene
and carbon nanotubes) have been widely used in the construction of liquid and
all-solid-state Z-scheme systems. However, there are some negative effects brought
by the experience of electron mediator [348]: (i) under certain conditions, the redox
intermediate will react with H2 or O2, and the photogenerated electrons and holes
will selectively redox the electron mediator instead of H2O; and (ii) if the electron
mediator has a color, it will absorb part of the incident light. Therefore, the removal
of the electron mediator can make the electrons and holes directly transfer between
two kinds of semiconductor materials at high speed, which can improve the
photocatalytic efficiency. Recently, direct Z-scheme photocatalytic systems (such
as TiO2/g-C3N4 [76], Ru/SrTiO3: Rh–BiVO4 [348], CdS–ZnO [61], and CdS–WO3
[80, 349]) with no electron transporters have also been successfully constructed and
applied in photocatalytic pollutant degradation, CO2 reduction, and H2 production
[128]. In addition, it should also be noted that the Z-scheme reaction system itself
is more complex than the traditional photolytic water splitting systems, increasing
the possibility of side reactions and making it difficult to regenerate the deactivated
catalyst. All in all, in addition to H2 production half-reaction semiconductors, it
is very important to select proper cocatalysts, as well as electron acceptors and
electron donors with appropriate redox potentials for designing and constructing
these two kinds of photocatalytic H2 production systems.

Photocatalytic water splitting is usually very difficult to occur in systems without
sacrificial agents. The sacrificial agents used in photocatalytic water decomposition
systems can be divided into two categories (Figure 1.18): (i) electron donors, or hole
trapping agents, for photocatalytic hydrogen production and (ii) electron acceptors,
or electron trapping agents, for oxygen production. Commonly used electron donors
mainly include biomass (e.g. sugar, cellulose, lactic acid) and other organic matter
(e.g. triethanolamine, methane, CH3OH, ethanol, ethylene diamine tetraacetic acid
[EDTA]), as well as inorganic reductants (e.g. H2S, Na2S, K2S, Na2SO3, Na2S2O4,
NaI, potassium thiocyanate [KSCN]). When biomass is used as the reducing
agents, a fraction of the produced H2 is released from the photocatalytic reforming
biomass or biomass derivatives. However, this process couples solar energy and
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Figure 1.18 Photocatalytic H2-generation and O2-generation reactions in the presence of
hole and electron sacrificial agents, respectively.

biomass energy, and its application value is obvious. In contrast, when Na2S,
K2S, Na2SO3, Na2S2O4, NaI, and KSCN are used as electron donors, even without
any photocatalyst, HER will occur under UV irradiation [350]. Therefore, when
we use these reductants as sacrificial agents for photocatalytic H2 evolution, we
should consider the photo-induced H2 evolution behavior of these electron donors
without photocatalyst. On the other hand, commonly used sacrificial agents for
photocatalytic oxygen production reactions include Ag+, Fe3+, Ce4+/Ce3+, Fe3+,
PtCl2

−, AuCl4
−, Na2S2O8, and K2S2O8. Photogenerated electrons in the CB of

semiconductor photocatalysts can be consumed by these oxidants in time, and
the oxygen production reaction can be enhanced. However, it should be noted
that although some oxidants (such as Ag+) have a suitable oxidation potential, the
reduced products (e.g. elemental Ag) may not be water soluble, which is deposited
on the surface of the photocatalyst particles, hindering the light absorption, thus
reducing the rate of OER and finally terminating the reaction. Therefore, it is
generally observed that in the half-reaction system containing Ag+, the oxygen
production activity will gradually decrease over reaction time [34]. These reactions
using sacrificial agents can be performed to evaluate whether a particular pho-
tocatalyst meets the thermodynamic and kinetic requirements for photocatalytic
H2 or O2 production. However, even though a photocatalyst shows an activity
of producing H2 and O2 in these reactions, the result does not guarantee that
the photocatalyst has the activity for overall water splitting without a sacrificing
agent. From this point of view, the term “water decomposition” should be treated
differently from the hydrogen and oxygen production reactions in the presence
of sacrificial agents. Water decomposition means that water can be completely
decomposed to produce H2 and O2 at the stoichiometric ratio when there is no
sacrificial agent. Additionally, for the specific half-reaction photocatalytic hydrogen
production system, different sacrificial agents often have different H2 production
effects. For example, the photocatalytic H2 production activity of g-C3N4 in the
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presence of triethanolamine as sacrificial agent is significantly higher than that
observed using CH3OH, ethanol, or EDTA as sacrificial agent [59]. Therefore, for a
specific system, we should pay attention to optimize the type and concentration of
sacrificial agents.

1.5.1.2 Photocatalytic CO2 Reduction
The rapid consumption of fossil energy has led to the increase of CO2 concentra-
tion in the atmosphere year by year, which has caused global warming and energy
shortage problems. Therefore, reducing CO2 emissions and sustainably transform-
ing CO2 have become hot spots for both alleviating environmental pressure and
realizing the recycling of carbon resources. From the chemical point of view, the
stable CO2 molecules with standard formation heat of −394.38 kJ mol−1 are inert,
thus making its chemical fixation and transformation very difficult. In the process
of CO2 reduction, H2O is generally selected as the best hydrogen source and electron
donor species.

Thermodynamically speaking, HCHO, HCOOH, CH3OH, and CH4 are the sim-
plest products of CO2 reduction by H2O through the uphill reactions (see Table 1.4),
due to the positive Gibbs free energy ΔG0 of these reactions. These uphill reactions
are obviously different from several spontaneous downhill CO2 hydrogenation reac-
tions (to CH3OH, CH4, and low carbon olefins; see Table 1.5) with negative ΔG0

values. Therefore, a large amount of energy must be input to convert CO2 and H2O
into different organic molecules. Among various facile technologies, photocatalytic
CO2 reduction has been considered as the most promising CO2 conversion tech-
nology, which could convert abundant and renewable solar energy, water, and CO2
into useful organic fuels without consuming auxiliary energy in the reaction pro-
cess, thus effectively reducing the CO2 emission into the atmosphere. Therefore,
through artificial photosynthesis, solar fuels, such as alkanes, alkenes, and alcohols,
and other organic substances could be obtained by abiotic reduction under the sun-
light, thus truly realizing the recycling of the carbon element.

At present, due to the difficulty in achieving the half reaction of O2 evolution,
current studies mainly focus on the half reaction of CO2 reduction through
introducing the proper sacrificial agents to consume photogenerated holes. More
importantly, these reduction half reactions are mainly dependent on the ther-
modynamic reduction potentials required, instead of the number of electrons
involved in the reactions. The reaction difficulty is decreased in the following order:

Table 1.4 The standard molar enthalpy ΔH0
298 and the Gibbs free energy ΔG0

298
for the reduction reactions of CO2 with H2O.

Reaction 𝚫H0
298

(kJ mol−1) 𝚫G0
298

(kJ mol−1)

CO2(g)+H2O(l)→HCOOH(l)+ 1/2O2(g) 541 275
CO2(g)+H2O(l)→HCHO(l)+O2(g) 795.8 520
CO2(g)+H2O(l)→CH3OH(l)+ 3/2O2(g) 727.1 703
CO2(g)+H2O(l)→CH4(g)+ 2O2(g) 890.9 818
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Table 1.5 The standard molar enthalpy ΔH0
298 and the Gibbs free energy ΔG0

298 of
CO2 hydrogenation reactions [351].

Reaction 𝚫H0
298

(kJ mol−1) 𝚫G0
298

(kJ mol−1)

CO2 +H2 →CO+H2O(g) 41.2 28.6
CO2 +H2 →HCOOH(l) –31.2 33.0
CO2 + 3H2 →CH3OH+H2O(l) –131.0 –9.0
CO2 + 4H2 →CH4 + 2H2O(g) –164.9 –113.5
2CO2 + 6H2 →C2H4 + 4H2O(g) –127.91 –57.52
3CO2 + 9H2 →C3H6 + 6H2O(g) –249.84 –125.69
4CO2 + 12H2 →C4H8 + 8H2O(g) –360.44 –179.95

Source: Data from Chen et al. [351].

HCOOH (–0.61 eV), CO (–0.53 eV), HCHO (–0.48 eV), CH3OH (–0.38 eV), and CH4
(–0.24 eV). The Latimer–Frost diagram of CO2 reduction by multiple electrons and
protons in pH = 7 ionic solution (Figure 1.19) further confirms that the increase
of the number of electrons could greatly decrease the reduction potential, making
the CO2 reduction much easier. On the other hand, a more negative CB bottom
potential could achieve much stronger reduction ability for selective reduction
of CO2 into different products. At this point, semiconductors with selectivity for
HCOOH formation must be used to achieve the reduction of CO2 into other energy
products with more positive reduction potentials such as CO, CH4, CH3OH, and
HCHO. Therefore, g-C3N4, SiC, CdS, and ZnS with relatively negative CB bottom
potentials can selectively reduce CO2 to different products such as HCOOH, HCHO,
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Figure 1.19 Latimer–Frost diagram for the multi-electron, multi-proton reduction of CO2
in aqueous solution at pH 7. Source: Li et al. [352].
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CH3OH, or CH4 [353–356]; whereas, rutile TiO2 and BiVO4 with relatively positive
CB bottom potentials can reduce CO2 and selectively produce CH4, CH3OH, or
ethanol [357, 358]. Therefore, it is crucial to choose a semiconductor with suitable
CB position in the selective reduction of CO2 into different products.

Moreover, the dynamic factors, such as reaction conditions, the separation, and
migration of photogenerated charge carriers, as well as the lifetime of electrons and
holes, play key roles in highly efficient photoreduction of CO2. Typically, the semi-
conductor photoreduction of CO2 systems can be divided into two main categories:
the aqueous suspension system (with dissolved CO2 and carbonate) and the gas-
phase reaction system (with water vapor and CO2). The amount of H2O in the aque-
ous suspension system is excessive, so it is impossible to adjust the ratio of H2O/CO2
by effective means for research. Therefore, more researchers choose the gas-phase
system. Therefore, the gas–solid reaction model is used to analyze the influence of
various factors on this kinetics of photocatalytic CO2 reduction, as illustrated in
Figure 1.20. It can be seen from the Figure 1.20 that in the process of photocat-
alytic reduction of CO2, in addition to the excitation (process 1), charge transfer
and separation (process 2), bulk recombination (process 3), and surface recombina-
tion (process 6) of photogenerated charge carriers, other important surface processes
should also be considered, such as photocatalytic reduction of CO2 (process 4) and
water oxidation (process 5). In addition, we should pay attention to the undesired
processes such as H2 production on the surface of the photocatalyst (process 7) and
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Figure 1.20 Processes involved in photocatalytic CO2 reduction over a heterogeneous
photocatalyst. CRC, CO2 reduction cocatalysts; WOC, water oxidation cocatalysts. Step (1)
the excitation of photogenerated electron–hole pairs; step (2) the separation of excited
electrons and holes and their migration to the surface; step (3) the bulk charge
recombination; step (4) the electrocatalytic reduction of CO2 by photogenerated electrons
trapped in the CRC or the surface active sites; step (5) the electrocatalytic oxidation of
water by the photogenerated holes trapped in the WOC or the surface active sites; step (6)
the surface charge recombination; step (7) the electrocatalytic H2 evolution by trapped
photogenerated electrons in the CRC or the surface active sites; and step (8) the
electrocatalytic oxidation of reduction products over the WOC. Source: Li et al. [352].
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re-oxidation of CO2 reduction products (process 8). Therefore, from the viewpoint
of system engineering, in order to build an efficient solar energy CO2 conversion
system, various possible factors, including the adsorption and activation of CO2 by
the photocatalytic materials, the efficiency of photogenerated electron–hole separa-
tion, the selection of cocatalysts, the promotion of target reactions (CO2 reduction
and water oxidation), and the inhibition of unexpected reactions (water reduction
and re-oxidation of CO2 reduction products), should be considered and optimized
comprehensively.

In view of these key thermodynamic and kinetic factors affecting the efficiency
of photocatalytic CO2 reduction, Figure 1.21 systematically summarizes the corre-
sponding design strategies of various high-efficiency photocatalytic CO2 reduction
photocatalysts [352]. These design strategies can be summarized into five aspects:
(i) increasing the visible light absorption and excitation of photogenerated charge
carriers, by means of elemental doping, introducing defects [359], building solid
solutions, using the SPR effect [360], introducing photosensitizers, etc.; (ii) promot-
ing carrier transfer and separation (mainly by building appropriate heterojunctions,
such as Schott junction [355], type-II heterojunction [353, 354], direct Z-scheme sys-
tem [80, 84], surface heterojunction [77, 361], and semiconductor/nanocarbon het-
erojunction [124, 125, 285, 362]); (iii) enhancing CO2 adsorption and activation, such
as increasing the surface area of the photocatalyst, introducing basic amino groups
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Figure 1.21 Factors influencing photocatalytic efficiency and corresponding design
strategies for highly efficient photocatalysts used in the photocatalytic reduction of CO2.
Source: Li et al. [352].
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[363, 364] or defect sites on the semiconductor surface; (iv) accelerating the reduc-
tion kinetics of CO2 by loading various cocatalysts (such as Pt, AuCu alloy [365],
RuOx [366], and Ni@NiO [367]); and (v) inhibiting unexpected surface reactions,
such as effectively inhibiting the H2 generation reaction competing with carbon
species for photogenerated electrons [368] and the re-oxidation reaction of the orig-
inal product [369]. In the actual design of efficient CO2 reduction photocatalysts,
these modification strategies should be considered at the same time, so as to design
the photocatalyst system with the best comprehensive performance.

In addition, the low selectivity and complex mechanism of photocatalytic reduc-
tion of CO2 are also worthy of attention. So far, the use of photocatalytic reduction
technology to synthesize organic compounds with CO2 as raw material is still in
the preliminary stage of research [134]. The key reason is that the conversion of
CO2 is not high and the selectivity of products is poor, due to the complex reaction
mechanism. Considering the practical application of these compounds, it is highly
desirable to control the selectivity of photocatalysts for a specific product and
produce it with a purity as high as possible. However, the key factors affecting
the selectivity of photocatalytic CO2 reduction are still not well understood. So
far, six typical strategies, including modulating surface morphological structures,
tailoring surface chemical compositions, tuning the acidity–basicity of the supports,
using the solvent effects, improving the interfacial properties, and loading suitable
cocatalysts, have been explored to improve the product selectivity of the CO2
photoreduction (as shown in Figure 1.22), which have been thoroughly discussed
in a previous review [134].

1.5.1.3 Photocatalytic Degradation
In the past few decades, environmental pollution from discharge of toxic wastew-
ater, solid waste, or flue gas has been regarded as a serious problem threating the
sustainable development of human society. Semiconductor-based heterogeneous
photocatalysis as an advanced oxidation process (AOP) has been extensively inves-
tigated for the pollution control and environmental remediation [370–375], due to
its relatively easy operation and low costs. The photocatalytic degradation reactions
could be generally classified into two types (Figure 1.23) [185]: (i) degradation of var-
ious organic pollutants (e.g. organic dyes, pharmaceuticals, antibiotics, pesticides,
organic acids and aromatics, and recalcitrant polyfluorinated compounds [376, 377])
and toxic ions in aqueous solution and (ii) removal of gaseous pollutants (e.g. volatile
organic compounds (VOCs), NOx, ammonia, acetaldehyde, trichloroethylene,
formaldehyde, and so on). Both types of photocatalytic reactions could be easily
achieved in the laboratory by utilizing either photocatalyst powders or films immo-
bilized on a support or substrate. However, industrial or pilot-scale applications of
photocatalysis for environmental decontamination are still rare, due to unsatisfac-
tory photocatalytic efficiency, selectivity, and stability of the currently developed
photocatalysts.

According to the five design principles of semiconductor photocatalysts as
shown in Figure 1.7, the potential practical photocatalysts for the degradation of
pollutants could be evaluated. The stable, nontoxic, and inexpensive TiO2 is the
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Figure 1.22 Typical strategies for selective CO2 photoreduction. Source: Li et al. [134].

most frequently and thoroughly investigated semiconductor in environmental
applications, because it has the excellent photoactivity for both reduction of O2 and
oxidation of surface H2O/hydroxyl group to generate reactive oxygen species (ROS)
such as the superoxide radical anion (•O2

−) and •OH radicals, owing to its suitable
energy band structure. Notably, ZnO exhibits similar activity for the formation of
•O2

− and •OH radicals. However, its low photostability induced by Zn2+ release
significantly restricts its extensive applications; actually, ZnO nanoparticles can
undergo substantial dissolution even in the absence of light. In the last decade, the
environmentally benign g-C3N4 materials have been widely recognized as a promis-
ing family of next-generation semiconductors for visible light-driven photocatalysis,
owing to the unique 2D structure, tunable electronic properties, and excellent chem-
ical stability. However, it should be noted that the photogenerated holes in g-C3N4
cannot drive the oxidation of surface H2O/OH groups to •OH radicals, and any •OH
radicals generated by g-C3N4 are the result of further transformation of the •O2

−

radicals. In addition, it should be pointed out that some visible light-driven semicon-
ductors with more positive VB potentials, such as WO3, BiVO4, and Bi2WO6, have
excellent abilities for the oxidation of surface H2O/OH groups to •OH radicals, sug-
gesting their potential applications in environmental remediation. Particularly, the
visible light-responsive Bi-based photocatalysts are appealing for the application of
environmental photocatalysis. In contrast, the applications of CdS, ZnxCd1−xS, and
Ag-based semiconductors in environmental remediation are not encouraged due
to the toxicity of Cd, high cost of Ag, and their low stability. Accordingly, it is clear
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that the thorough identification of ROS generation should be paid more attention
in the investigations of photocatalytic environmental remediation.

In addition, due to the complex kinetics, bulk semiconductors commonly exhibit
poor activity and stability to completely decompose the organic and inorganic con-
taminants. Many factors, such as light absorption, charge recombination dynamics,
IFCT kinetics, surface structure and charge, and adsorption and photodegradation
kinetics of photocatalysts, ROS generation, and O2 reduction properties, play crucial
roles in determining the overall photocatalytic degradation efficiency, all of which
should be comprehensively considered for designing and optimizing environmen-
tal photocatalysts [370]. Accordingly, to effectively enhance the photocatalytic
efficiency for durable degradation, a great number of semiconductor modification
strategies have been exploited (Figure 1.24), such as creating semiconductor
heterojunctions (type-II and multicomponent heterojunctions and homojunctions),
constructing Schottky junctions or loading cocatalysts (e.g. coupling with metal
nanoparticles and carbon nanomaterials), fabricating unique nanostructures
(hollow one-dimensional (1D) nanorods/nanowires, 2D nanosheets, and three-
dimensional (3D) hierarchical structures), loading suitable supports (e.g. activated
carbon, Nafion, alumina, and silica), and designing the direct Z-scheme systems.
Moreover, a combination of the different strategies seems to be very promising for
heterogeneous photocatalytic degradation of pollutants, due to the simultaneously
boosted light absorption, reactant adsorption, charge transport and separation, and
surface catalysis.

Modification

strategies for

heterogeneous

photodegradation

Loading suitable

supports

A
bs

or
pt

io
n Adsorption

CatalysisTransport

C
o
st

ru
ct

in
g
 S

ch
o
tt
k
y

ju
n
ct

io
n
 o

r 
co

ca
ta

ly
st

sF
a
b
rica

tin
g
 u

n
iq

u
e

n
a
n
o
stru

ctu
re

s

Designing direct

Z-schem
e system

sCre
atin

g se
m

ico
nducto

r

hetero
juncti

ons

S
e
p
a
ra

ti
o
n

Figure 1.24 Semiconductor modification strategies for photocatalytic degradation. Source:
Li et al. [185].
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1.5.2 Evaluation of Solar Energy Photocatalysis

Evaluation of solar energy photocatalysis could be carried out according to the fol-
lowing three aspects: activity, photocatalytic mechanism, and semiconductor pho-
tocatalyst characterization. For the activity evaluation in different photocatalytic
reactions, the stability and quantum efficiency should be examined in the practi-
cal applications. For the photocatalytic mechanism evaluation, the ROS species and
reaction active sites should be carefully identified to elucidate the exact reaction
mechanism. Additionally, the chemical composition, physical properties, and band

Semiconductor
photocatalysts

Band
structure

Physical
properties

Chemical
composition

Elemental composition
EDX, EELS, HAADF

Chemical state and structure
XPS, XAS, FTIR, Raman

Physical structure
SEM, TEM, AFM, Gas ad.

Crystallographtic and optical properties
XRD, HRTEM, SAED, DRS, FDTD

Charge dynamics
PLS, TAS, SPVS, PCS, EIS

Defects, colloidal, and thermal stability
ESR, PAS, XPS, Potential, TGA

Band gap
DFT, Tauc plot, PLS

Band edges and band edge offsets
DFT, XPS, UPS

Ef(Φ and Vfb)
DFT, KPFM, XPS, UPS, PE

Figure 1.25 Characterization of some important properties of semiconductor
photocatalysts. Source: Zhang et al. [378]. Abbreviations: Ef, Fermi level; f, work function;
V fb, flat-band potential; EDX, energy dispersive X-ray spectroscopy; EELS, electron
energy-loss spectroscopy; HAADF, high-angle annular dark-field imaging; XPS, X-ray
photoelectron spectroscopy; XAS, X-ray absorption spectroscopy; FTIR, Fourier transform
infrared spectroscopy; SEM, scanning electron microscopy; TEM, transmission electron
microscopy; AFM, atomic force microscopy; gas ad., gas adsorption–desorption analysis;
XRD, X-ray diffraction; HRTEM, high-resolution transmission electron microscopy; SAED,
selected area electron diffraction; DRS, diffuse reflectance spectroscopy; FDTD,
finite-difference time-domain method; PLS, photoluminescence spectroscopy; TAS,
transient absorption spectroscopy; SPVS, surface photovoltage spectroscopy; PCS,
photocurrent spectroscopy; EIS, electrochemical impedance spectroscopy; ESR, electron
spin resonance; PAS, positron annihilation spectroscopy; z potential, ζ potential; TGA,
thermogravimetric analysis; DFT, density functional theory; UPS, ultraviolet photoelectron
spectroscopy; KPFM, Kelvin probe force microscopy; PE, photoelectrochemical methods.
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structure of semiconductor photocatalysts need to be properly analyzed by the dif-
ferent technologies listed in Figure 1.25 [378]. It should be noted that one or two
technologies are applied to identify these properties. It is not necessary to use all
these technologies to identify these properties in one time.

1.6 The Scope of This Book

So far, semiconductor photocatalysis technology has been widely used in many dif-
ferent fields, including photolysis of water for H2 production, degradation of organic
pollutants and heavy metal ions, or conversion of pollutants or CO2 into solar fuel.
As a new and effective way to deal with energy crisis and environmental problems,
these areas have attracted growing attention, especially photocatalytic H2 produc-
tion and pollutant degradation. In recent years, the research on photocatalytic reduc-
tion of CO2 and selective organic synthesis has gradually increased. Due to space
limitation, this book focuses on the applications of different semiconductors in
various photocatalytic research fields: photocatalytic decomposition of water for H2
production, photocatalytic degradation of pollutants, and photocatalytic reduction
of CO2.

The book is roughly divided into six chapters. In Chapter 1, the fundamentals
of solar energy photocatalysis are introduced. Chapter 2 focuses on various kinds
of heterojunction systems for photocatalysis. In Chapter 3, the graphene-based
photocatalysts are discussed. Chapter 4 focuses on the preparation of metal
sulfide semiconductor photocatalysts and its application in the photocatalytic
reactions. Chapter 5 and 6 focus on the preparation and applications of organic
semiconductor photocatalysts and graphitic carbon nitride-based photocatalysts,
respectively.

All in all, the selected content of this book is the hot research topics in semicon-
ductor photocatalysts for different applications. The author hopes that this book will
provide a professional, systematic, and up-to-date reference for researchers, who
have been engaged in research in this field, as well as teachers and students. Solar
energy photocatalysis is recognized as a very challenging research topic. We hope
that this book can help you in the design, development, and improvement of new
solar energy photocatalytic materials.
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