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H-Bonded Cyclic Dimers Taking into Account the
Surrounding. Updating Contributions Involving Davydov
Coupling, Fermi Resonances and Electrical Anharmonicity
Paul Blaise and Olivier Henri-Rousseau

Laboratory of Mathematics and Physics, 52 Av. Paul Alduy, 66100 Perpignan, France

1.1 Introduction

This chapter is devoted to the application of the Henri-Rousseau and Blaise model
[1] which has incorporated quantum mechanically the damping of the H-bond
bridge into the Maréchal and Witkowski model [2] to the experimental infrared
(IR) lineshapes of cyclic centrosymmetric dimers. In Figure 1.1, are depicted for
example linear and cyclic H-bonded carboxylic acids.

One may distinguish the length q of O—H bond and Q one of the H-bond. In
Figure 1.2 are recapitulated the connections between the present applied theory and
diverse older ones.

1.2 Dimer Strong Anharmonic Coupling Theory

1.2.1 Different Theoretical Situations

1.2.1.1 Strong Anharmonic Coupling Within Adiabatic Approximation For
Monomer
Let us consider a single H-bonded system where X and Y are nucleophilic sub-
stituents such as oxygen or nitrogen (See Figure 1.3). Define q and Q as the operators
corresponding to the lengths of X–H and X–Y bonds. Besides, both these lengths are
oscillating, the first one at high frequency and the last one H-bond bridge at low
frequency.

Now suppose that a strong anharmonic coupling may occur between the X-H
high-frequency mode q and the X· · ·Y low-frequency mode Q.

Within the strong anharmonic coupling theory, it is assumed a linear dependence
of the high-frequency mode 𝜔 (Q) on the H-bond bridge coordinate Q, according to:

𝜔 (Q) = 𝜔∘ + bQ with b < 0 (1.1)

where 𝜔∘ is the angular frequency of a isolated X–H bond and b some parameter.
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Figure 1.1 (a) H-bond monomer and the coordinates. (b) H-bond dimer and the
coordinates.
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Figure 1.2 Connections between the present theory and different older models.
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The full Hamiltonian may be partitioned as follows:

Htot = Hfast + Hslow (1.2)

The Hamiltonian of the slow mode may be viewed as either harmonic or anharmonic
(Morse-like)

Harmonic: Hslow = P2

2M
+ 1

2
MΩ2Q2

Morse like: Hslow =
P2

i

2M
ℏΩ + De

[
1 − e−𝛽eQi

√
MΩ
ℏ

]2

with 𝛽e = Ω
√

M
2De

√
ℏ

MΩ
Here, P is the momentum coordinate of the slow mode of reduced mass M and angu-
lar frequency Ω, whereas De is the dissociation energy of the Morse curve.

The Hamiltonian Hfast is corresponding to the 𝜈s(X–H) high-frequency mode.
Within the harmonic approximation and strong anharmonic coupling theory, it is:

Hfast =
p2

2m
+ 1

2
m(𝜔 (Q))2q2 =

p2

2m
+ 1

2
M𝜔∘2q2 + m𝜔∘bq2Q + 1

2
mb2q2Q2

(1.3)

whereas p is the momentum coordinates for the fast mode.
The eigenvalue equations of the fast and slow harmonic modes are given respec-

tively, neglecting the zero-point energy of the fast mode by:(
p2

2m
+ 1

2
M𝜔∘2q2

) |{k}⟩ ≡ Hfree |{k}⟩ = ℏ𝜔∘k |{k}⟩(
P2

2M
+ 1

2
MΩ2Q2

) |(n)⟩ = ℏΩ
(

n + 1
2

) |(n)⟩ (1.4)

Within the adiabatic approximation the full Hamiltonian becomes simply:[
Hadiab

]
=
∑

k

[
H{k}

I

] |{k}⟩ ⟨{k}|
where [

H{0}
I

]
= P2

2M
+ 1

2
MΩ2Q2;

[
H{1}

I

]
= P2

2M
+ 1

2
MΩ2Q2 + ℏbQ + ℏ𝜔∘ (1.5)

Figure 1.4 represents the absorption mechanism generating a coherent state.
It is possible to generalize the above approach by introducing together with the

coupling of the fast mode to the H-bond bridge, another coupling of the fast mode
with some bending mode according to:

Htot = Hfast + H∘
slow + H∘

bend

with, by taking the H-bond bridge potential as Morse-like (See Table 1.1).

Figure 1.3 Coordinates of single
H-bonded system.
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Figure 1.4 Physics of the absorption mechanism. The ground state of the slow mode
H-bond bridge (corresponding to the ground state situation of the fast mode) becomes a
coherent state 𝛼 = a | 𝛼⟩ after excitation towards the first excited state of the fast mode.

Table 1.1 Different sorts of Hamiltonians.

Hfast =
p2

2m
+ 1

2
m
(
𝜔∘ + 𝛼∘Q + 𝛽Q

𝛿

)2q2

H∘
slow = P2

2M
+ De

[
1 − e−Ω

√
M

2De Q
]2

H∘
bend = P2

2M𝛿

+ 1
2

M
𝛿
Ω2

𝛿
Q2

𝛿

where Q𝛿 and P𝛿 are respectively the position and momentum coordinates of the
bending mode having Ω𝛿 as angular frequency and M𝛿 as reduced mass.

1.2.1.2 Introduction of Fermi Resonances
Now, there is the possibility to introduce Fermi resonance [11] in this physical model
as it is illustrated in Figure 1.5.

There is a coupling characterized by the parameter f 𝛿1 between the two situations
evoked in Figure 1.5.

In the absence of damping, the full Hamiltonian involving Fermi resonances is:[
H

Fermi

]
=
[
H

Free
+ Hslow + H

Int

]
+ H

Bend
+ V

Bend
(1.6)

Here, the three first right-hand side Hamiltonians are the components of the bare
H-bond Hamiltonians without Fermi resonance given respectively by equations
given in Table 1.1. Besides, the Hamiltonian H

Bend
corresponding to the bend-

ing mode and the interaction V
Bend

between the fast and bending modes are
respectively:

H
Bend

=
p2
𝛿

2m𝛿
+ 1

2
m𝛿
(
𝜔𝛿
)2 q2

𝛿
; V

Bend
= l𝛿 qq2

𝛿
(1.7)
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∣(m)〉 ⊗ ∣{1}〉 ⊗ ∣[0]〉

∣(m)〉 ⊗ ∣{0}〉 ⊗ ∣[2]〉

f1
δ

f1
δ

Figure 1.5 Fermi resonances interaction coupling parameters f 𝛿1 between two situations of
the fast, slow, and bending modes. Source: Henri-Rousseau and Blaise 2008 [18]/John Wiley
& Sons.

where q𝛿 and p𝛿 are respectively the position and momentum coordinates of the
bending mode of reduced mass m𝛿 and 𝜔𝛿 its angular frequency, whereas l𝛿 is the
coupling parameter between the fast and bending modes. The eigenvalue equations
of the harmonic Hamiltonians corresponding respectively to the fast and slow modes
are respectively given by equations given by Eqs. (1.4) whereas that dealing with the
bending modes is, ignoring the zero-point energy:

H
Bend

|||[l𝛿]⟩ = l𝛿ℏ𝜔𝛿 |||[l𝛿]⟩ (1.8)

Now, within the adiabatic approximation. The Hamiltonian (1.6) becomes:[
HAdiab

Fermi

]
=
[
H

Adiab

]
+
[
V

Bend

]
+
[
H

Bend

]
(1.9)

The different Hamiltonians are given as follows:[
H

Adiab

]
=
[
H{1}

I

] |{1} ⟩ ⟨ {1}| + [H{0}
I

] |{0} ⟩ ⟨ {0}|[
H{k}

I

]
= P2

2 M
+ 1

2
MΩ2Q2 + kbQ + kℏ𝜔∘[

H
Bend

]
= 2ℏ𝜔𝛿 |[2]⟩ ⟨[2]|[

V
Bend

]
=
[|{0}⟩ |[2]⟩ ⟨[0]| ⟨{1}| ] ℏf 𝛿 + hc
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Here, f 𝛿1 is the anharmonic coupling parameter involved in the Fermi resonance
which is a function of l𝛿 .

As a consequence of the above equations, the full Hamiltonian describing the fast
mode coupled to the H-bond bridge (via the strong anharmonic coupling theory)
and the bending mode (via the Fermi resonance process) may be written within the
tensorial basis (1.10) according to [12]:⎛⎜⎜⎝

||Ψa ({0} (m) [0])
⟩||Ψb ({1} (m) [0])
⟩||Ψc ({0} (m) [2])
⟩ ⎞⎟⎟⎠ =

⎛⎜⎜⎝
|{0} (m) [0]⟩|{1} (m) [0]⟩|{0} (m) [2]⟩

⎞⎟⎟⎠ (1.10)

[
HAdiab

Fermi

]
=
⎛⎜⎜⎜⎝

H{0}

II
0 0

0 H{1}

II
ℏf 𝛿

1
0 ℏf 𝛿

1 H{0}

II
+ 2ℏ𝜔𝛿

1

⎞⎟⎟⎟⎠ (1.11)

1.2.1.3 H-Bonded Centrosymmetric Dimer
Now, look at an H-bonded dimer. It will take place in a Davydov coupling [13].
Within the anharmonic coupling, the physics of the system may be viewed in
Figure 1.6.

It may be observed that because of the symmetry of the dimer, there is a C2 operator
(with C2

2 = �̂�), which exchanges the coordinates Qi of the two slow modes H-bond
bridges of the cyclic dimer according to:

C2Qa = Qb; C2Qb = Qa; C2Pa = Pb; C2Pb = Pa (1.12)

Ignoring for the present time the interaction between the two moieties and assuming
that, within each moiety, the adiabatic approximation may be performed as for a

∣(m)2〉 ⊗ ∣{1}2〉 ∣{0}1〉 ⊗ ∣(m)1〉

∣(m)2〉 ⊗ ∣(0)2〉 ⊗ ∣{1}1〉 ⊗ ∣(m)1〉

V°

V°

Figure 1.6 Davydov coupling interactions. Source: Henri-Rousseau and Blaise 2008
[18]/John Wiley & Sons.
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single H-bond, the Hamiltonian of the symmetric dimer embedded in the thermal
bath, is:[

H{Adiab}
]

=
[
H{Adiab}

]
a
+
[
H{Adiab}

]
b

(1.13)

In Eq. (1.13), the two first right-hand side terms are the adiabatic Hamiltonians of
each moiety. They are given by an expression of the same form which is:[

H{Adiab}
]

i

=
[
H{0}

II

]
i
||{0}i

⟩ ⟨
{0}i
|| + [H{1}

II

]
i
||{1}i

⟩⟨
{1}i
|| with i = a, b

||{k}i
⟩

are the eigenkets of the Hamiltonians of the fast modes harmonic oscillators,
whereas the Hamiltonians of each moiety are respectively:[

H∘{0}

II

]
i
=
[
H{Slow}

]
i[

H∘{1}

II

]
i
=
[
H{Slow}

]
i

+ bQi + ℏ𝜔∘ +
[
ℍ{Int}

II

]
i

Here, the last term is the interacting coupling with the thermal bath that we shall
ignore in the present simplified exposition. The Hamiltonian of the cyclic dimer
involving Davydov coupling between the first excited state of the high-frequency
oscillator a of one moiety and the excited state of the oscillator b of the other moiety
and vice versa is,[

ℍ
Dav

]
=
[
H{Adiab}

]
a
+
[
H{Adiab}

]
b
+ V

Dav
(1.14)

The Davydov coupling Hamiltonian V
Dav

appearing in this equation may be written
either simply or as a function of the two slow modes coordinates [14]:

V
Dav

= V∘ [|| {1}a
⟩ ⟨

{0}b
|| + ||{0}a

⟩ ⟨
{1}b
||]

V
Dav

(
Q1,Q2

)
= V

Dav
+ Θ
(

Q1 + Q2
) [|| {1}a

⟩ ⟨
{0}b
|| + ||{0}a

⟩ ⟨
{1}b
||]

where Θ is a dimensionless parameter governing the linear dependence of the Davy-
dov coupling operator on the H-bond bridge coordinates.

When ignoring the Θ coupling, then, within the following basis:

⎛⎜⎜⎜⎜⎝
||| 𝚽{0,0}

{a,b}

⟩
||| 𝚽{1,0}

{a,b}

⟩
||| 𝚽{0,1}

{a,b}

⟩
⎞⎟⎟⎟⎟⎠
=
⎛⎜⎜⎝
|| {0}a

⟩⨂|| {0}b
⟩|| {1}a

⟩⨂|| {0}b
⟩|| {0}a

⟩⨂|| {1}b
⟩⎞⎟⎟⎠ (1.15)

the Davydov Hamiltonian (1.14) takes the matrix form:

[
ℍ

Dav

]
=

⎛⎜⎜⎜⎜⎝

[
H{0,0}

II

]
0 0

0
[
H{1,0}

II

]
V

Dav

0 V
Dav

[
H{0,1}

II

]
⎞⎟⎟⎟⎟⎠

(1.16)
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with respectively:[
H{0,0}

II

]
=
∑

i

(
P2

i

2M
+

MΩ2Q2
i

2

)
with i = a, b

[
H{1,0}

II

]
=
∑

i

(
P2

i

2M
+

MΩ2Q2
i

2
+ bQi

)
+ ℏ𝜔∘

Then, owing to the symmetry properties given by Eqs. (1.12), it appears that the
parity operator exchanges the two last Hamiltonians:

C2

[
H{1,0}

II

]
=
[
H{0,1}

II

]
(1.17)

To diagonalize the Davydov Hamiltonian, one may perform the following basis
change.

⎛⎜⎜⎜⎜⎝
||| 𝚽{0,0}

{a,b}

⟩
||| 𝛃(+){1,0}↔{0,1}

⟩
||| 𝛃(−){1,0}↔{0,1}

⟩
⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
||| 𝚽{0,0}

{a,b}

⟩
||| 𝚽{1,0}

{a,b}

⟩
+ Ĉ2
||| 𝚽{0,1}

{a,b}

⟩
||| 𝚽{1,0}

{a,b}

⟩
− Ĉ2
||| 𝚽{0,1}

{a,b}

⟩
⎞⎟⎟⎟⎟⎠

(1.18)

Then the Davydov Hamiltonian becomes:

ℍ
Dav

=

⎛⎜⎜⎜⎜⎝

[
H{0,0}

II

]
0 0

0
[
H{1,0}

II
+ V∘Ĉ2

]
0

0 0
[
H{1,0}

II
− V∘Ĉ2

]
⎞⎟⎟⎟⎟⎠

(1.19)

Moreover, to make tractable the action of the C2 operator, it is suitable to pass to
the symmetrized coordinates and their conjugate momenta according to Figure 1.7.

In Table 1.2, are given the symmetrized coordinates in the Davydov coupling
model.

Recall here, the improvement brought by Rekik et al. [15–17], by introducing the
electrical anharmonicity. As quoted above, the dependence of the Davydov coupling
on the slow mode coordinates reduces to one on Qg through:

VD
(

Qg
)
= V∘ +

√
2ΘQg

Now, the action of the parity operator on the symmetrized operators and the sym-
metrized ground state and first excited state of Hamiltonian

[
H(Slow)

]
i

appearing in
Table 1.2, is depicted in Figure 1.7:

Table 1.2 Symmetrized coordinates.

Qg =
1√
2

[
Qa + Qb

]
Qu = 1

√
2

[
Qa − Qb

]
Pg = 1

√
2

[
Pa + Pb

]
Pu = 1

√
2

[
Pa − Pb

]

C2Qg = Qg C2Qu = −Qu C2Pg = Pg C2Pu = −Pu
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Symmetric coordinate
G
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u

n
d

 s
ta

te
s

Qg = [Qa   +   Qb] ∣(1)g〉 =

∣(0)a〉

∣(0)b〉

[∣(1)a〉 + ∣(1)b〉

C2

C2 ∣(0)g〉 = ∣(0)g〉

Qb

Qa ∣(0)a〉

∣(0)b〉

C2

C2 ∣(0)u〉 = ∣(0)u〉

Qb

Qa

F
ir

s
t 

e
x
c
it

e
d

 s
ta

te
s

∣(1)a〉

∣(1)b〉

C2

C2 ∣(1)g〉 = ∣(1)g〉

Qb

Qa ∣(1)a〉

∣(1)b〉

C2

C2 ∣(1)u〉 = ∣(1)u〉

–Qb

Qa

1

2

1

2

Antisymmetric coordinate

Qu = [Qa   –   Qb] ∣(1)u〉 = [∣(1)a〉 – ∣(1)b〉1

2

1

2

Figure 1.7 Action of the C2 operator on coordinates and eigenstates. Source:
Henri-Rousseau and Blaise 2008 [18] / John Wiley & Sons.

Next, we may consider the kets (1.18) as the result of the tensorial product of states,
according to:⎛⎜⎜⎜⎜⎝

|||Φ{0,0}

{g,u}

⟩
|||𝛽(+){1,0}↔{0,1}

⟩
|||𝛽(−){1,0}↔{0,1}

⟩
⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
|||{0}g
⟩
⊗ || {0}u

⟩
|||{1}g
⟩
⊗
|||{𝛽(+)}{1}

u+

⟩
|||{1}g
⟩
⊗
|||{𝛽(−)}{1}

u−

⟩
⎞⎟⎟⎟⎟⎠

(1.20)

with: (||| {0}g
⟩

|| {0}u
⟩) =

( 1√
2

[|| {0}a
⟩
+ || {0}b

⟩]
1√

2

[|| {0}a
⟩
− || {0}b

⟩]) (1.21)

within the framework of the symmetrized coordinates the Hamiltonian (1.19) takes
the form:

[
ℍ

Dav

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
H{0}

II

]
g

0 0 0 0

0
[
H{1}

II

]
g

0 0 0

0 0
[
H{0}

II

]
u

0 0

0 0 0
[
H{1}

(+)

]
u+

0

0 0 0 0
[
H{1}

(−)

]
u−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
within

⎛⎜⎜⎜⎜⎜⎜⎜⎝

|||{0}g
⟩|||{1}g
⟩

||{0}u
⟩|||{𝛽(+)}{1}

u+

⟩
|||{𝛽(−)}{1}

u−

⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(1.22)
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with respectively:[
H{0}

II

]
g
=

P2
g

2M
+

MΩ2Q2
g

2[
H{1}

II

]
g
=

P2
g

2M
+

MΩ2Q2
g

2
+ 1√

2
bQg + ℏ𝜔∘

[
H{0}

II

]
u
=

P2
u

2M
+

MΩ2Q2
u

2

and
[
H{1}

(±)

]
u
=

P2
u

2M
+

MΩ2Q2
u

2
+ 1√

2
b Qu ± V∘(Ĉ2

)
u

1.2.1.4 Dimer Involving Damping, Davydov Coupling, and Fermi Resonances
Now, it is possible to introduce Fermi resonances in the precedent model taking into
account direct and indirect dampings, together with the relaxation of the bending
modes [18, 19].

For the special case of a single Fermi resonance, the physics related to this Hamil-
tonian is depicted in Figure 1.8.

Here, the right-hand side Hamiltonian is that dealing with the Fermi resonances
occurring between the g excited state of the fast mode and the g first harmonics of
the bending mode. For one Fermi resonance, this Hamiltonian is:[

ℍ{1}

Fermi

]
g
=
⎛⎜⎜⎝
[
ℍ{1}

II

]
g

ℏf 𝛿

ℏf 𝛿 [H{0}

II
]g + E

⎞⎟⎟⎠
Besides, the fi is the coupling parameters involved in the Fermi resonances

expressed as angular frequencies, whereas the Δ are the angular frequency gap:

E = ℏ𝜔∘ − 𝛼∘2
ℏΩ + ℏΔ𝛿 −

(
𝜔∘ − 2𝜔𝛿

i
)

V

V

f f

Figure 1.8 Davydov coupling with an unique Fermi resonance. Source: Henri-Rousseau
and Blaise 2008 [18]/John Wiley & Sons.
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As a consequence, the Hamiltonian of the dimer involving Davydov coupling,
Fermi resonances between the g excited state of the fast mode and the g first har-
monics of the bending mode is:

[
ℍFermi

Dav

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
ℍ{0}

II

]
g

0 0 0 0

0
[
ℍ{1}

Fermi

]
g

0 0 0

0 0
[
H{0}

II

]
u

0 0

0 0 0
[
H{1}

(+)

]
u

0

0 0 0 0
[
H{1}

(−)

]
u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now, proceed as to the corresponding situation when Fermi resonance is not taken
into account, it is possible to obtain the spectral density of the present system.

1.2.2 The Spectral Density

The transition dipole moment may be, without and with the electrical
anharmonicity, given by:

Without electrical anharmonicity: 𝜇 (q) = q

With electrical anharmonicity: 𝜇 (q,Q) = q (1 + 𝜁Q)

in which 𝜁 is the electrical anharmonicity parameter.
When ignoring the electrical anharmonicity, the ACFs for the IR and the Raman

absorptions may be given respectively by

G
Dav
(t)(u) = tr

Dav

[
𝜌

Dav

[
𝜇(0)u
]† [

𝜇(t)u
]]

for pure IR

G
Dav
(t)(g) = tr

Dav

[
𝜌

Dav

[
𝜇(0)g
]† [

𝜇(t)g
]]

for pure Raman

At time t the u transition operator is obtained by the Heisenberg transformation
involving the above Hamiltonian H

Dav
:

𝜇u(t) =
1√
2

e
iHDav t∕ℏ

[((
𝜇∘

b

) ||{0}a {1}b
⟩
−
(
𝜇∘

a

) ||{1}a {0}b
⟩)⟨

{0}b {0}a
||] e

−iHDav t∕ℏ

𝜇g(t) =
1√
2

e
iHDav t∕ℏ

[((
𝜇∘

b

) ||{0}a {1}b
⟩
+
(
𝜇∘

a

) ||{1}a {0}b
⟩)⟨

{0}b {0}a
||] e

−iHDav t∕ℏ

It may be shown that the ACF takes the form:[
G

Dav
(t)
]
= [G(t)]g

[[
G(+)(t)

]
u +
[
G(−)(t)

]
u

] (
e−𝛾∘t
)

(1.23)

where 𝛾∘ is the relaxation parameter of the high-frequency mode. Besides, [G(t)]g
is the ACF of the g part of the system and where appears the damping parameter
𝛾 of the H-bond bridge and the function of it �̃� . The quantum calculation of the
damping is somewhat complex and appears only on the g part of the ACF. Besides,
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this last ACF and the
[
G(±)(t)

]
u which are the ACFs corresponding to the u parts, are

respectively:

G(t)g =
(
𝜇∘u
)2 e

i𝜔∘ t
(

e
−i2�̃�∘2

Ωt
)(

e
i�̃�∘2

e−�̃�t∕2 sinΩt
)[

e
�̃�∘2[⟨n⟩+1∕2](2e−�̃�t∕2 cos(Ωt)−e−𝛾t−1)

]
(1.24)

G(±)(t)u = 𝜀
∑
𝜇

∑
nu

|B±
𝜇 nu
|2e

−nuℏΩ ∕kB T

e
i𝜔±𝜇 t

e
−inuΩt

[
[1 ± (−1)nu+1] + 𝜂∘[1 ∓ (−1)nu+1]

]2[
H{1}

±

]
u

||| 𝛽(±)𝜇

⟩
= ℏ𝜔±

𝜇

||| 𝛽(±)𝜇

⟩
with ||| 𝛽(±)𝜇

⟩
=
∑
nu

B±
nu 𝜇
|| (n)u

⟩
[
H{1}

(±)

]
u
=

P2
u

2M
+

MΩ2Q2
u

2
+ 1√

2
b Qu ± V∘(Ĉ2

)
u

The lineshape of the H-bonded dimer is then the Fourier transform of the ACF:[
I

Dav
(𝜔)
]
= ∫

∞

−∞
G

Dav
(t)e−i𝜔t

(
e−𝛾∘ t
)

dt (1.25)

[
I±Dav (𝜔)

]
≃
∑
mg

∑
ng

[
Pmgng

]∑
nu

∑
𝜇

e−𝜆nu
[[

1 ± (−1)nu+1] + 𝜂∘
[
1 ∓ (−1)nu+1]]2

|||B±
nu,𝜇
|||2 [I±mgngnu𝜇

(𝜔)
]

where the components of the above formulas are given as follows:[
I±mgngnu𝜇

(𝜔)
]
≃

𝛾mgng(
𝜔 − Ω±

mgngnu𝜇

)2
+
(
𝛾mgng

)2

with

Ω±
mgngnu𝜇

= 𝜔∘ −
[(

mg − ng + nu
)
Ω − 𝜔±

𝜇

]
− 2 �̃�∘2Ω

𝛾mgng
=
(

mg + ng
)
�̃� + 𝛾∘ with �̃� = 𝛾

√
2[

Pmgng

]
=
[
1 + ⟨n⟩]ng �̃�∘2(mg+ng)

mg!ng!

�̃�∘ = 𝛼∘√
2
, ⟨n⟩ = 1

e�̃� − 1
, and �̃� = ℏΩ

kBT

1.3 Comparison with Experiments

1.3.1 Carboxylic Acid Dimers Ignoring Fermi Resonances

1.3.1.1 Gaseous and Liquid Acetic Acid Dimers
In 2005 [1], it has been proposed an approach of the lineshape in which was
introduced the quantum theory of the lineshapes of H-bonded cyclic dimers. This
approach was applied to gaseous and liquid acetic acid dimers [19].
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Figure 1.9 IR 𝜈XH lineshapes of gaseous cyclic acetic acid CD3CO2H/D dimers at room
temperature. Experimental lineshapes (grayed) of Novak and coworker [20].

Figure 1.9 reproduces the corresponding lineshapes involved in the spectra for
cyclic CD3CO2H/D dimers in the gas phase at room temperature.

The corresponding data are given in Table 1.3.
Moreover, the comparison for the experimental lineshapes dealing with CH3CO2H

in the gas and liquid phase measured by Flakus and the corresponding theoretical
ones [21] resulting from Eq. (1.25) are given in Figure 1.10.

1.3.1.2 Gaseous Acrylic and Propynoic Acids
Now, Figure 1.11a,b compares the experimental lineshapes of O–H and O–D gaseous
acrylic and propynoic acids as measured by Bournay and Maréchal [22] to the cor-
responding theoretical results of [21].
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Table 1.3 Parameters used for fitting the experimental lineshapes of Figure 1.9.

Case Isotope 𝝎∘(cm−1) 𝛀 (cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

(a) O–H
O–D

3320
2317

108
98

1.414
0.95

0.15
0.15

0
0

−1.10
−0.96

0
0

(b) O–H
O–D

3320
2317

108
98

1.414
0.95

0.15
0.15

1.10
1.10

−1.10
−0.96

0
0

(c) O–H
O–D

3100
2263

88
80

1.19
0.77

0.20
0.15

0.20
0.20

−1.50
−1.15

0.30
0.20

2000 3500Wavenumbers

Liquid phase

Gas phase

(cm–1)
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n
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y
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Figure 1.10 Gas and liquid 𝜈(X − H) IR lineshapes of CH3CO2H at room temperature.
Comparison with experiment. Data are given in Table 1.4. Source: Benmalti et al. [21], figure
1 (p. 272)/With permission of Elsevier.

1.3.2 Carboxylic Acids Taking Into Account Fermi Resonances

1.3.2.1 Crystalline Adipic Acid
In this section, we consider the lineshapes of O–H and O–D crystalline adipic acid.
Figure 1.12 gives the comparisons of the experimental lineshapes measured by
Auvert and Maréchal [23] of –OH and –OD crystalline adipic acids at different
temperatures with the corresponding theoretical ones where Fermi resonances are
absent (a) or present (b) in the model [21]. Effect of the 𝜂 parameter is also shown.
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Table 1.4 Parameters used for fitting the experimental lineshapes of acetic acid given in
Figure 1.10.

𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

Liquid 3100 88 1.19 0.10 0.24 −1.55 0.15
Gas 3100 88 1.19 0.24 0.24 −1.55 0.25

2000

D H

3000

Wavenumbers(a) (cm–1)

In
te

n
s
it

y

2000

D H

3000

Wavenumbers(b) (cm–1)

In
te

n
s
it

y

Figure 1.11 Gaseous acrylic (a) and propynoic acids. Comparisons of experimental
(grayed) and theoretical lineshapes for H and D isotopic species. Experiment (grayed). The
data are given in Table 1.5. Source: Based on Bournay and Maréchal [22].

Table 1.5 Parameters used for fitting the experimental lineshapes of Figure 1.11.

Case Isotope 𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

(a) Acrylic
acid

O–H
O–D

3020
2237

71
71

1.09
0.77

0.22
0.24

0.27
1.80

−1.66
−1.08

0.19
0.15

(b) Propynoic
acid

O–H
O–D

3032
2260

86
86

1.25
0.88

0.27
0.18

0.36
1.40

−1.94
−1.25

0.16
0.05

1.3.2.2 Crystalline Polarized and Unpolarized Glutaric Acid Taking Into
Account Fermi Resonances
Figure 1.13 compares theoretical and experimental lineshapes of O–H and O–D crys-
talline glutaric acid as measured by Flakus and Miros [24] at 298 and 77 K for two
different polarizations, taking or not into account Fermi resonances.

Now, in presence of Fermi resonances, the theoretical lineshapes may be improved
(see Figure 1.14).

The corresponding parameters are given in Table 1.9 a and b.

1.3.2.3 Crystalline Thiopheneacetic Acid and Thiopheneacrylic Acids
Rekik et al. [31], have theoretically studied within the standard model, the line-
shapes of crystalline thiopheneacetic acid and thiopheneacrylic acids by taking into
account the coordinate dependenceΘ of the Davydov coupling on slow mode coordi-
nates, and has compared their results to the experimental ones measured by Flakus
and Chelmecki [25] in the case where there the polarization is zero.
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Table 1.6 Parameters used for fitting the experimental lineshapes of crystalline adipic
acid given in Figure 1.12a.

Case T(K) 𝝎∘(cm−1) 𝛀 (cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

O–H 10
100
200
300

2990
2970
2990
3020

115
115
115
115

1.00
1.00
1.00
1.00

0.40
0.40
0.33
0.33

0.00
0.00
0.20
0.40

−0.88
−0.88
−0.88
−0.88

0.80
0.70
0.50
0.41

O–D 10
100
200
300

2199
2199
2203
2199

115
115
115
115

0.39
0.39
0.39
0.35

0.22
0.22
0.20
0.20

0.00
0.00
0.20
0.40

−0.54
−0.54
−058
−0.68

0.95
0.95
0.85
0.75

Table 1.7a Parameters used for fitting the experimental lineshapes of Figure 1.12b. in
presence of Fermi resonances.

case T(K) 𝝎∘(cm−1) 𝛀 (cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

O–H 10
100
200
300

2865
2850
2870
2890

108
108
108
108

0.88
0.88
0.88
0.88

0.11
0.11
0.10
0.12

0.16
0.18
0.34
0.30

−0.88
−0.88
−0.89
−0.93

0.80
0.70
0.50
0.41

O–D 10
100
200
300

2170
2170
2170
2172

108
108
108
108

0.29
0.29
0.29
0.29

0.22
0.22
0.20
0.20

0.00
0.10
0.20
0.35

−0.54
−0.54
−058
−0.68

0.95
0.95
0.85
0.75

Table 1.7b Fermi resonances parameters for crystalline adipic acid in presence of Fermi
resonances given in Figure 1.12b.

Case T (K) f v
1

f v
2

f v
3

f v
4

𝚫v
1 𝚫v

2 𝚫v
3 𝚫v

4 𝜸v
1

𝜸v
2

𝜸v
3

𝜸v
4

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (𝛀) (𝛀) (𝛀) (𝛀)

10
O–H 100

200
300

30 37 36 36 −155 −80 20 220 0.10 0.10 0.10 0.05

10
O–D 100

200
300

17 15 13 13 −33 −21 −0.84 126 0.07 0.04 0.17 0.10
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Figure 1.13 Temperature and isotopic substitution effects at different polarizations for
crystalline glutaric acid without Fermi resonances. Grayed: Experimental lineshapes of
Flakus and Miros [24].

Table 1.8 Parameters used for fitting the experimental lineshapes of Figure 1.13 of
crystalline glutaric acid without Fermi resonance.

Pol (∘) Case T(K) 𝝎∘(cm−1) 𝛀 (cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

O–H 77 3123 85 1.50 0.40 0.10 −1.20 0.60
0 O–H 298 3123 85 1.50 0.15 0.90 −1.20 0.20

O–D 77 2203 85 0.38 0.30 0.10 −0.85 1.30
O–D 298 2203 85 0.38 0.50 0.20 −0.85 0.60
O–H 77 3123 85 1.50 0.40 0.10 −1.20 0.75

90 O–D 298 3123 85 1.50 0.15 0.90 −1.20 0.30
O–H 77 2208 85 0.38 0.30 0.10 −0.85 1.30
O–D 298 2208 85 0.38 0.20 0.20 −0.85 0.70

Crystalline Thiopheneacetic Acid For the crystalline thiophene acetic acid they have
found the spectra given in Figure 1.15.

The corresponding parameters are given in Table 1.10.

Crystalline H(D)-3-Thiopheneacrylic Acid For the crystalline H(D)-3-thiopheneacrylic
acid they obtained the results given in Figure 1.16. (Table 1.11)

The corresponding parameters are given in Table 1.11.

1.3.2.4 l.2-Naphtylacetic Acid (2-NA) Crystals
In this chapter, Ghalla and coworkers [26] presents results of a theoretical study on
𝜈s (O–H(D)) band shapes in the polarized IR spectra of 2-naphtylacetic acid (2-NA)
crystals measured at the temperature of liquid nitrogen, based on our original theory.
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Figure 1.14 Temperature and isotopic substitution effects at different polarizations for
crystalline glutaric acid with Fermi resonances. Grayed: Experimental lineshapes of Flakus
and Miros [24]. Source: Based on Flakus and Miros [24].

Table 1.9a Parameters used for fitting the experimental lineshapes of crystalline glutaric
in presence of Fermi resonance, given in Figure 1.14.

Pol (∘) Case T (K) 𝝎∘(cm−1) 𝛀 (cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(𝛀) 𝜼∘

O–H 77 3063 90 1.50 0.20 0.10 −115 0.55
0 O–H 298 3063 90 1.50 0.15 0.20 −1.15 0.12

O–D 77 2202 90 0.38 0.15 0.20 −0.82 1.00
O–D 298 2217 90 0.38 0.10 0.20 −0.82 0.40
O–H 77 3083 90 1.50 0.20 0.20 −1.15 0.70

0 O–D 298 3083 90 1.50 0.25 0.25 −1.15 0.40
O–H 77 2188 90 0.38 0.20 0.20 -0.82 1.00
O–D 298 2217 90 0.38 0.25 0.25 −0.82 0.50

The line shapes were studied within the frameworks of our original theory of strong
anharmonic coupling, Davydov coupling, Fermi resonance coupling, direct and indi-
rect damping, and a selection rule breaking mechanism for forbidden transitions
in IR.

The present approach (see Figure 1.17) correctly fits the experimental line shape
of the hydrogenated compound and predicts satisfactorily the evolution in the line-
shapes with isotopic substitution. Numerical calculations show that mixing of all
these effects allows one to reproduce satisfactorily the main features of the experi-
mental IR lineshapes of hydrogenated and deuterated 2-NA crystals and is expected
to confirm the importance of the Fermi resonances in reproducing the experimental
spectra. Parameters are given in Tables 1.12 and 1.13.
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Figure 1.15 Crystalline H(D)-3-thiophenacrylic acid experimental (H-3TAcetic) (grayed)
and theoretical lineshapes at different temperatures and H/D isotopic species. Source:
Modified from Rekik et al. 2015 [31].

Table 1.10 Parameters used for fitting the experimental lineshapes of the
3-thiopheneacetic (H-3TAcetic) acid crystals dimers and their deuterated analogs (Pol = 0).

Species T (K) 𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) VD∘(𝛀) 𝚯

H-3TAcetic 77 3180 105 1.55 0.35 0.35 0.50 0.15
H-3TAcetic 300 3050 105 1.2 0.3 0.25 1.2 0.22
D-3TAcetic 77 2250 80 0.67 0.15 0.25 0.52 0.2
D-3TAcetic 300 2250 85 0.63 0.17 0.25 0.7 0.2

1.3.2.5 Crystalline Aspirin Dimers Involving Slow Mode Morse Potential
The application of our treatment for Davydov coupling has been performed with
aspirin by Rekik and coworkers [27] by accounting for the anharmonicity of the
slow mode which is described by a “Morse” potential with a dissociation energy of
De = 2100 cm−1 to reproduce the polarized IR spectra of the hydrogen and deuterium
bond in acetylsalicylic acid (aspirin) crystals.

Within the adiabatic approximation, the Hamiltonian of each moiety of the dimer
may be put on the form of sum of effective Hamiltonians which are depending on
the degree of excitation of the fast mode.
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Figure 1.16 Crystalline H(D)-3-thiophenacrylic acid experimental (black line); theoretical
(red line) lineshapes at different temperatures for H and D isotopic species. Source: Rekik
et al. 2015 [31]/With permission of Elsevier.

Table 1.11 Parameters used for fitting the experimental lineshapes of the crystalline
3-thiopheneacrylic (H-3TAcrylic) acid dimers and their deuterated analogs.

Pol = 0 T (K) 𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) VD∘(𝛀) 𝚯

H-3TAcrylic 77 2950 85 1.1 0.3 0.3 0.9 0.23
H-3TAcrylic 300 3020 85 1.23 0.3 0.15 1 0.23
D-3TAcrylic 77 2125 75 0.65 0.22 0.2 0.65 0.12
D-3TAcrylic 300 2150 75 0.63 0.24 0.25 0.65 0.4

These corrections are introduced in the usual procedure for taking into account
the Davydov coupling. The theoretical lineshapes obtained are compared to the
experimental ones obtained by these authors for the two isotopic species at 77 and
300 K temperatures. Their results are given in Figure 1.18 and the coresponding
parameters in Table 1.14.
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Figure 1.17 2-Naphtylacetic Acid (2-NA). Comparison of experimental lineshapes with
theoretical ones for different polarizations and isotopic substitutions, without and with 3
Fermi resonances. Source: Issaoui et al. 2013 [26]/ Springer Nature.

Table 1.12 Parameters used to fit experimental H/D-2-NA spectra.

Species Pol(∘) 𝝎∘
(
cm−1) 𝛀

(
cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) V∘(ℏ𝛀) 𝜼

–H 0 3135 67 1.56 0.20 0.05 −1.55 0.45
–H 90 3110 65 1.60 0.22 0.002 −1.65 0.20
–D 0 2221 90 0.364 0.30 0.10 −0.857 0.98
–D 90 2221 90 0.364 0.17 0.10 −1.00 0.98

1.3.2.6 Phthalic and Terephthalic Acid Crystals
Phthalic (PAC) and terephthalic (TAC) acid crystals have been studied by Rekik et al.
[36].

They have studied two interacting cyclic dimers shown in Figure 1.19 in which the
qi and Qi are respectively the fast and slow modes position coordinates while V∘

D1

and V∘
D2

are the Davydov coupling involved in each system of the superdimer. They
have considered the full Hamiltonian of the superdimer for its diagonal part as the
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Table 1.13 Values of Fermi coupling parameters used for fitting experimental H/D-2-NA
spectra.

Pol
(∘) f 1(cm−1) f 2(cm−1) f 3(cm−1) 𝚫1(cm−1) 𝚫2(cm−1) 𝚫3(cm−1) 𝜸𝚫1

(
𝚫1

)
𝜸𝚫2

(
𝚫2

)
𝜸𝚫3

(
𝚫3

)

–H 0 10 10 20 60 −80 42 0.4 0.4 10
–H 90 20 10 10 110 120 150 0.2 0.2 0.2
–D 0 20 30 30 140 110 −180 0.2 0.2 0.2
–D 90 20 30 30 140 110 −180 0.2 0.2 0.2
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Figure 1.18 Comparison between the experimental (grayed) and theoretical (dashed line)
spectra for Aspirin-H (polycrystalline acetylsalicylic acid) at 300 and 77 K. Source: Ghalla
et al. 2010 [27]/ With permission of Elsevier.

Table 1.14 Parameters used for fitting experimental Aspirin-H and Aspirin-D acid dimer
spectra.

Compound T(K) 𝝎∘
(
cm−1) 𝛀

(
cm−1) 𝜶∘ V∘ 𝜸∘(𝛀) 𝜸(𝛀) 𝜼

Aspirin-H 300 2910 76 0.95 −1.75 0.25 0.1 0.85
Aspirin-H 77 3095 77 1.62 −1.70 0.35 0.1 0.8
Aspirin-D 300 2185 86 0.743 −1.69 0.25 0.7 0.7
Aspirin-D 77 2228 77 1.238 −1.65 0.25 1.1 0.8
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Figure 1.20 Crytalline phthalic (PAC) and terephthalic (TAC) acids at 77 and 298 K.
Comparison of experimental (grayed) and theoretical (full line) lineshape. Source: Based on
Rekik et al. 2020 [36].

sum of the diagonal parts of each component and as for its off parts as the sum of
the Davydov couplings of each component. Their results are shown in Figure 1.20 for
the H6 and D6 isotopomers of Phthalic (PAC) and terephthalic (TAC) acid crystals
using the parameters given in Table 1.15.

1.3.2.7 Liquid Formic Acid Mixing of Monomer and Dimer
A full quantum-theoretical approach has been used by Fathi et al. [28] to study
the mOAH experimental IR lineshapes of liquid formic acid. For this purpose, the



28 1 Linear Response Theory Applications to IR Spectra

Table 1.15 Theoretical parameters used for the fitting of the experimental lineshapes of
PAC and TAC.

Cases T(K)
𝝎∘D1

(cm −1)
𝜶∘D2

(cm −1)
𝛀D1

(cm −1)
𝛀 D2

(cm −1) 𝜶 𝜿 𝜸∘(𝝎∘∘ D1
) V∘

D
1
(𝛀D1

) V∘
D2

(𝛀D2
)

D6 PAC 77 2180 2193 69 62 0.85 0.95 0.32 0.84 0.8
D6 PAC 298 2150 2167 64 60 0.96 0.87 0.31 1.29 1.35
D6 TAC 77 2130 2142 70 66 1.15 1.04 0.27 1.76 1.8
D6 TAC 298 2130 2119 62 65 1.02 1.13 0.25 1.83 1.8
H6 PAC 77 3200 3188 68 61 1.26 1.36 0.37 0.68 0.6
H6 PAC 298 3050 3012 64 71 1.45 1.39 0.34 1.02 1.06
H6 TAC 77 2860 2895 66 68 1.49 1.57 0.24 1.06 1.10
H6 PTAC 298 2850 2887 63 65 1.52 1.48 0.28 1.46 1.41

Table 1.16 Parameters used in the theoretical fitting of formic acid species.

Species 𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ V∘
D 𝜸∘(𝛀) 𝜸(𝛀) 𝜼 r

HCOOH 3030 95 1.4 −1.2 0.5 0.1 0.0 0.25
HCOOD 2340 110 0.85 −1.0 0.5 0.1 0.3 0.12
DCOOH 3080 95 1.5 −1.2 0.7 0.03 0.1 0.15
DCOOD 2240 110 0.62 −0.75 0.3 0.02 0.08 0.25

authors use our original theory, based on the strong anharmonic coupling between
the high-frequency mode and the H-bond bridge, and including the Davydov cou-
pling between the excited states of the two moieties, multiple Fermi resonances
between the mOAH (Bu) mode and combinations of some bending modes, together
with the quantum direct and indirect dampings. They have studied the influence of
the proportion of dimers species with respect to monomers to obtain the best fitting
with experimental spectra. This model reproduces satisfactorily the main features of
the experimental lineshapes of liquid hydrogenated and deuterated formic acid, by
using a minimum set of independent parameters as it may be seen in Figure 1.21.

In Tables 1.16 and 1.17 are given the parameters used in the calculation. r is the
ratio Dimer/Monomer. The other parameters are those used in our original theory.

Parameters used to reproduce the experimental spectra of HCOOH and its deuter-
ated derivatives DCOOH, HCOOD, and DCOOD of Figure 1.21.

1.3.2.8 Crystalline Furoic Acid Dimer with Slow Mode Morse Potential
and Fermi Resonances
Ghalla et al. [29], have compared the experimental IR lineshapes of polarized
crystalline Furoic acid dimers [30] at 77 K with their theoretical ones calculated
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Figure 1.21 Liquid formic acid mixing of monomer and dimer of several H/D species.
Experiment: grayed: Dashed red: theory. The corresponding parameters are given in
Tables 1.16 and 1.17. Source: Modified from Fathi et al. 2017 [28].

Table 1.17 Fermi resonances parameters for crystalline glutaric acid (cf. Figure 1.14.

Species
f1
(cm−1)

f2
(cm−1)

f3
(cm−1)

f4
(cm−1)

𝝎1
(cm−1)

𝝎2
(cm−1)

𝝎3
(cm−1)

𝝎4
(cm−1)

𝜸
𝜹1

(𝛀)
𝜸
𝜹1

(𝛀)
𝜸
𝜹3

(𝛀)
𝜸
𝜹4

(𝛀)

HCO2H 30 85 95 – 3130 2660 2850 – 0.1 0.05 0.02 –
HCO2D 60 75 75 50 2285 2670 2110 2495 0.01 0.01 0.01 0.01
DCO2H – 75 135 – – 2710 2850 – – 0.01 0.01 –
DCO2D 50 30 70 35 2060 2350 2680 2140 0.02 0.2 0.02 0.0

by introducing Morse potential for the slow modes. Their results are given in
Figure 1.22.

They have improved the agreement with experiment by introducing in the model
3 Fermi resonances. In both situations, the theoretical lineshapes appear as contin-
uous lines whereas the experimental ones are grayed.

In Figure 1.23 is given the comparison between the experiment (grayed) and the-
ory as computed by Eq. (1.25). The slow modes are described by a Morse potential.
The parameters used in the computations are given in Tables 1.18 and 1.19.
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Figure 1.22 Lineshapes of polarized 2-furoic acid when the Fermi resonances are ignored,
at 77 K. Source: Ghalla et al. [29]/John Wiley & Sons.

Table 1.18 Parameters involved for fitting the experimental spectra of 2-furoic acid.

Species Pol(∘) 𝝎∘
(
cm−1) 𝛀

(
cm−1) 𝜶∘ V∘(ℏ𝛀) 𝜸∘(𝛀) 𝜸(𝛀)

H 0 3030 80 1.45 1.10 0.2 0.1
D 0 2142 90 0.331 0.786 0.15 0.1
H 90 2995 85 1.36 1.13 0.15 0.1
D 90 2144 87 0.318 0.857 0.18 0.1
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Figure 1.23 Lineshapes of polarized 2-furoic acid when there are three Fermi resonances
at 77 K. Source: Ghalla et al. [29]/John Wiley & Sons.

Table 1.19 Fermi coupling parameters (in cm−1) used for fitting experimental 2-furoic acid
spectra.

Pol
(∘) f 1(cm−1) f 2(cm−1) f 3(cm−1) 𝚫1(cm−1) 𝚫2(cm−1) 𝚫3(cm−1) 𝜸𝚫1

(
𝚫1

)
𝜸𝚫1

(
𝚫2

)
𝜸𝚫3

(
𝚫3

)

H 0 95 95 80 30 20 10 0.2 0.2 0.2
D 0 93 105 116 10 10 10 0.2 0.2 0.2
H 90 95 95 100 20 20 10 0.2 0.2 0.2
D 90 83.1 105 106 10 10 10 0.2 0.2 0.2
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Table 1.20 Parameters used for fitting the experimental line shapes of the 𝜈S (N–H)
stretching band of (𝛼∕𝛽)-hydrogenated and (𝛼∕𝛽)-deuterated oxindole complexes at
T = 77 K and T = 293 K.

Compound T(K)
𝝎∘1(
cm−1)

𝝎∘2(
cm−1) 𝜶

1
𝜶

2

𝛀1= 𝛀2(
cm−1) 𝜸∘(𝛀)

V HH∕DD
Dav(
cm−1)

𝛼-D oxindole 77 2350 2460 0.65 0.726 65 0.37 85.8
𝛽-D oxindole 77 2352 2293 0.50 0.518 67 0.40 93.4
𝛼-D oxindole 293 2350 2475 0.65 0.712 65 0.35 65
𝛽-D oxindole 293 2280 2367 0.70 0.714 65 0.36 91
𝛼- H oxindole 77 3160 3335 1.0 1.230 75 0.39 167.5
𝛽-H oxindole 77 3070 3159 1.0 1.068 70 0.38 179
𝛼-H oxindole 293 3110 3296 1.0 1.160 80 0.40 144
𝛽-H oxindole 293 3120 3230 1.0 1.040 70 0.40 176

1.3.2.9 Other Kinds of H-Bonded Compounds
Combined Crystalline Oxindole Acid Dimers Another application was done by Ghalla
et al. on oxindole crystals (2,3-dihydro-1H-indol-2-one) which form cyclic dimers
with two different H-bonds [34]. In these molecules, we find the group H-N-C=O
which is involved in the formation of cyclic dimer of H-bonds (𝛼-form; 𝛽-form).
They studies 2 forms of oxindol crystal, the 𝛼- and the 𝛽 forms. The oxindole acid
molecules form a cyclic, non-centrosymmetric acid dimer with two different H-bond
bridges because they have different bond lengths as it is shown in Figure 1.24.

They have introduced for the coupling of the fast mode angular frequency with
the slow mode coordinate of the hydogenated and deuterated compounds, a subtil
dependence on the slow mode coordinate The consequence is that there are two dif-
ferent coupling parameters. Using the parameters of Table 1.20 the following spectra
are given in Figure 1.25.

1.3.2.10 Phosphinic Acid Dimer
Hydrogen-bonded dimers of phosphinic acid (See Figure 1.26) and their deuterated
analogs [(R2POOH(D), with R = CH2Cl, CH3], IR lineshapes of phosphinic acids
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Figure 1.25 Lineshapes of (𝛼∕𝛽 )-hydrogenated and (𝛼∕𝛽)-deuterated oxindole complexes
at T = 77 K and T = 293 K. Grayed: experimental spectra. Source: Rekik et al. 2020 [36] /
With permission of Elsevier.
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Figure 1.26 Dimer of phosphinic
acid.
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Table 1.21a Parameters used for fitting the experimental lineshapes of (CH2Cl)2PO2H∕D
and (CH3)2PO2H∕D.

T(K) 𝝎∘(cm−1) 𝛀(cm−1) De(cm−1) 𝜶 𝜸∘(𝛀) 𝜸(𝛀) VD(𝛀) 𝜼

(CH2Cl)2PO2H 435 2300 205 2100 0.80 0.40 0.1 1.68 0.9
(CH2Cl)2PO2D 475 1860 202 2100 0.25 0.35 0.1 0.55 0.49
(CH3)2PO2H 530 2415 206 2100 0.95 0.55 0.1 1.9 0.6
(CH3)2PO2D 515 1880 204 2100 0.30 0.65 0.1 0.78 0.29

R2PO2H dimers in the gas phase have been studied by Rekik and Alshammari [32]
and compared with experiment [35] (See Figure 1.27)

The theoretical model is based on a model for a centrosymmetric hydrogen-bonded
dimer that treats the high-frequency OH stretches harmonically and the
low-frequency intermonomer (i.e. O· · ·O) stretches anharmonically. This model
takes into account the following effects: anharmonic coupling between the OH
and O· · ·O stretching modes; Davydov coupling between the two hydrogen bonds
in the dimer; promotion of symmetry-forbidden OH stretching transitions; Fermi
resonances between the fundamental of the OH stretches and the overtones of the
in- and out-of-plane bending modes involving the OH groups; direct relaxation
of the OH stretches; and indirect relaxation of the OH stretches via the O· · ·O
stretches. Using a set of physically significative parameters into this model, the
authors reproduce the main features in the experimental OH(D) bands of these
dimers. By increasing the number and strength of the Fermi resonances and by
promoting symmetry-forbidden OH stretching transitions in our simulations, they
directly see the emergence of the ABC structure, which is a characteristic feature in
the spectra of very strongly hydrogen-bonded dimers. However, in the case of the
deuterated dimers, which do not exhibit the ABC structure, the Fermi resonances
are found to be much weaker.

The parameters corresponding to Figure 1.27 are given in Tables 1.21a and b.

1.3.2.11 Monomer of (CH3)2O · · ·HCl
Taking Into Account Coupling Between Slow and Bending Modes In a recent paper,
Rekik et al. [33] have calculated the IR spectral density of the 𝜈S (Cl − −→H) band in
gaseous (CH3)2O· · ·HCl complex in order to fit the experimental spectra obtained
by Lassegues and Huong [37]. (See Figure 1.28) They have used a Morse curve for
the potential of the slow mode and introduced an additional bending mode effect
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Figure 1.27 Comparison between experimental (grayed) and theoretical lineshapes of
dimeric CH3− and CH2Cl− phosphinic acids H/D analogs. Source: Rekik et al. 2012 [33]/
American Chemical Society.

Table 1.21b Fermi resonance parameters for used for fitting the experimental lineshapes
of (CH2Cl)2PO2H∕D and (CH3)2PO2H∕D (Continuation of Table 1.21a).

𝚫1(cm−1) 𝚫2(cm−1) f1(cm−1) f2(cm−1) 𝜸𝜹
1
(𝛀) 𝜸𝜹

2
(𝛀)

(CH2Cl)2PO2H 380 320 96 120 0.02 0.02
(CH2Cl)2PO2D 225 115 30 10 0.02 0.02
(CH3)2PO2H −255 −220 110 120 0.02 0.02
(CH3)2PO2D 5 25 15 20 0.02 0.02

for improving the fitting by the theoretical lineshape. This procedure writes the total
Hamiltonian of the complex as the sum:the parameter 𝛼∘ and 𝛽 are the coupling of
the fast mode with respectively the slow and bending modes. They have compared
their results with the experimental lineshape (grayed) with the parameters given in
Table 1.22.

Taking Into Account Electrical Anharmonicity On the same compound, Rekik et al. [16,
17] take into account the electrical anharmonicity and dampings in explaining the IR
spectrum of gaseous (CH3)2O · · ·HCl complex (see Figure 1.29 and corresponding
data in Table 1.23).
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Figure 1.28 (CH3 )2 O· · ·HCl complex in gas phase at 226 K . Source: Rekik et al. 2019
[34]/With permission of Elsevier.

Table 1.22 Parameters used in the theoretical lineshape of Figure 1.28.

𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ 𝜷 𝛀
𝜹
(cm−1) 𝜸∘(𝛀) 𝜸

𝜹
(𝛀)

2600 66 0.7985 0.3275 30 0.125 0.275

Without electrical anharmonicity (ζ = 0)
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Figure 1.29 Gaseous (CH3)2 O· · ·HCl complex. Effect of the 𝜁 electrical anharmonicity
parameter. Source: Rekik et al. 2017 [17]/ Royal Society of Chemistry.
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Table 1.23 Parameters used for fitting the lineshapes of gaseous (CH3)2O· · ·HCl complex.

𝝎∘(cm−1) 𝛀(cm−1) 𝜶∘ 𝜸∘(𝛀) 𝜸(𝛀) 𝜻

CH3O···HCl 2579 106 0.721 0.30 0.20 −0.15

They demonstrated the ability of a simple anharmonic model of the dipole
moment function of the X–H stretching band to explain a set of spectroscopic
features of hydrogen bonding formation.

1.4 Conclusion

In this chapter, before exposing the experimental tests of our theory of IR spectra
of cyclic H-bonded dimers, we have given the main theoretical elements to allow its
use, from the basic idea of an anharmonic coupling between a mode of low frequency
and a mode of high frequency, through the introduction of various effects such as the
Davydov effect, Fermi resonances or electrical anharmonicity.

The good results obtained for the adjustment of the experimental spectra by those
who have systematically used this theory can find in this work a good recognition of
their efforts towards a good understanding of the behavior of hydrogen bonds.
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