Contents

Preface *ix*

1	Introduction of Optical Imaging and Sensing: Materials,	
	Devices, and Applications 1	
	Qimiao Chen, Hao Xu, and Chuan S. Tan	
1.1	Optoelectronic Material Systems 1	
1.1.1	Si Platform 1	
1.1.2	Two-dimensional Materials and Their van der Waals	
	Heterostructures 3	
1.1.2.1	Graphene 3	
1.1.2.2	Transition Metal Dichalcogenides 4	
1.1.2.3	2D Heterostructures 5	
1.2	Challenges and Prospect of Nano-optoelectronic Devices 5	
1.2.1	III–V Compounds 6	
1.2.2	Perovskites 7	
1.2.3	Organic Optoelectronic Materials 7	
	References 8	
2	2D Material-Based Photodetectors for Imaging 11	
	Wenshuo Xu, Zhuo Wang, and Andrew T. S. Wee	
2.1	Introduction 11	
2.2	Visible-Light Photodetectors 15	
2.3	Infrared Photodetectors 21	
2.4	Broadband Photodetectors 26	
2.5	Plasmon-Enhanced Photodetectors 36	
2.6	Large-Scale and Flexible Photodetectors 44	
2.7	Summary 49	
	References 50	
3	Surface Plasmonic Resonance-Enhanced Infrared	
	Photodetectors 55	
	Boyang Xiang, Guiru Gu, and Xuejun Lu	
3.1	Introduction 55	

v

vi Contents

- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures 56
- 3.2.1 Plasma Oscillations in Metals 56
- 3.2.2 Complex Permittivity and the Drude Model 56
- 3.2.3 Surface Plasmonic Waves at the Semi-infinite Dielectric and Metal Interface 57
- 3.2.4 Prism-Coupled Surface Plasmonic Wave Excitation 59
- 3.2.5 Surface Grating-Coupled Surface Plasmonic Wave Excitation 60
- 3.3 Surface Plasmonic Wave-Enhanced QDIPs 61
- 3.3.1 Two-Dimensional Metallic Hole Array (2DSHA)-Induced Surface Plasmonic Waves *61*
- 3.3.2 2DSHA Surface Plasmonic Structure-Enhanced QDIP 64
- 3.4 Localized Surface Plasmonic Wave-Enhanced QDIPs 68
- 3.4.1 Localized Surface Plasmonic Waves 68
- 3.4.2 Near-Field Distributions 68
- 3.4.3 Nanowire Pair 69
- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement 71
- 3.5 Plasmonic Perfect Absorber (PPA) 72
- 3.5.1 Introduction to Plasmonic Perfect Absorber 72
- 3.5.2 Plasmonic Perfect Absorber-Enhanced QDIP 74
- 3.5.3 Broadband Plasmonic Perfect Absorber 76
- 3.5.4 2DSHA Plasmonic Perfect Absorber 76
- 3.6 Chapter Summary 76 References 78

4 Optical Resistance Switch for Optical Sensing 83

Shiva Khani, Ali Farmani, and Pejman Rezaei

- 4.1 Introduction 83
- 4.2 Graphene Optical Switch 85
- 4.2.1 DC Mode of the Gate Capacitor 87
- 4.2.2 AC Mode of the Gate Capacitor 89
- 4.3 Nanomaterial Heterostructures-Based Switch 93
- 4.3.1 Situation 1: $n_2 L \gg n_2 H$ 95
- 4.3.2 Situation 2: $n_2 H \gg n_2 L$ 96
- 4.3.3 Situation 3: $n_2 H \simeq n_2 L$ 96
- 4.4 Modulation Characteristics 104
- 4.5 Summary 115
 - References 115

5 Optical Interferometric Sensing 123

Hailong Wang and Jietai Jing

- 5.1 Introduction 123
- 5.2 Nonlinear Interferometer 124
- 5.2.1 Experimental Implementation of Phase Locking 125
- 5.2.2 Quantum Enhancement of Phase Sensitivity 131
- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation 136

- 5.3 Other Types of Nonlinear Interferometers 143
- 5.3.1 Nonlinear Sagnac Interferometer 143
- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam-splitter *151*
- 5.3.3 Experimental Implementation of a Phase-Sensitive Parametric Amplifier 155
- 5.3.4 Interference-Induced Quantum-Squeezing Enhancement 160
- 5.4 Nonlinear Interferometric SPR Sensing 164
- 5.5 Summary and Outlook *173* References *173*

6	Spatial-frequency-shift Super-resolution Imaging Based on		
	Micro/nanomaterials	175	

Mingwei Tang and Qing Yang

- 6.1 Introduction 175
- 6.2 The Principle of SFS Super-resolution Imaging Based on Micro/nanomaterials *177*
- 6.3 Super-resolution Imaging Based on Nanowires and Polymers 178
- 6.4 Super-resolution Imaging Based on Photonic Waveguides 184
- 6.4.1 Label-free Super-resolution Imaging Based on Photonic Waveguides 184
- 6.4.2 Labeled Super-resolution Imaging Based on Photonic Waveguides 186
- 6.5 Super-resolution Imaging Based on Wafers 189
- 6.5.1 Principle of Super-resolution Imaging Based on Wafers 189
- 6.5.2 Label-free Super-resolution Imaging Based on Wafers 194
- 6.5.3 Labeled Super-resolution Imaging Based on Wafers 195
- 6.6 Super-resolution Imaging Based on SPPs and Metamaterials 197
- 6.6.1 SPP-assisted Illumination Nanoscopy 199
- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM 200
- 6.6.1.2 Graphene-assisted PSIM 202
- 6.6.2 Localized Plasmon-assisted Illumination Nanoscopy 203
- 6.6.3 Metamaterial-assisted Illumination Nanoscopy 204
- 6.7 Summary and Outlook *206*
 - References 208
- 7 Monolithically Integrated Multi-section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics 215

Jin Li and Tao Pu

- 7.1 Introduction 215
- 7.2 Monolithically Integrated Multi-section Semiconductor Laser (MI-MSSL) Device 219
- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI-OFLs) 219
- 7.2.1.1 Passive Feedback Lasers (PFLs) 220
- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) 224

viii	Contents

- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI-MISLs) 225
- 7.3 Electro-optic Conversion Characteristics 229
- 7.3.1 Modulation Response Enhancement 229
- 7.3.2 Nonlinearity Reduction 237
- 7.3.3 Chirp Suppression 238
- 7.4 Photonic Microwave Generation 238
- 7.4.1 Tunable Single-Tone Microwave Signal Generation 240
- 7.4.1.1 Free-Running State 240
- 7.4.1.2 Mode-Beating Self-Pulsations (MB-SPs) 242
- 7.4.1.3 Period-One (P1) Oscillation 244
- 7.4.1.4 Sideband Injection Locking 245
- 7.4.2 Frequency-Modulated Microwave Signal Generation 248
- 7.4.3 High-Performance Microwave Signal Generation Optimizing Technique 250
- 7.5 Microwave Photonic Filter (MPF) 254
- 7.6 Laser Arrays 256
- 7.7 Conclusion 259 Funding Information 261 Disclosures 261 References 261

Index 271