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1.1 Memristive Devices

A memristive device is a resistive device with an inherent memory; its theory was
creatively conceived by Prof. Chua in 1971 [1] and was connected to the physical
devices in 2008 by HP [2]. Since then, memristive devices have been extensively
studied over the past decade due to their prominent advantages, such as simple
structure, high operation speed, and low power consumption in applications of data
storage, logic operation, and neuromorphic computation [3]. In this section, we will
introduce traditional two-terminal memristive devices, mainly focusing on device
structure and memristive materials.

1.1.1 Menmristive Device Structure and Materials

1.1.1.1 Menristive Device Structure

Typically, a memristive device has a metal/insulator/metal (MIM) structure,
composed of a switching layer sandwiched between two metal electrodes (possibly
different), as shown in Figure 1.1a. Because of its simple structure, highly scal-
able cross-point and multilevel stacking memory structures have been proposed
(Figure 1.1b), which is promising for the construction of huge neural networks and
neuromorphic computing systems [3]. It is well known that electrodes play a crucial
role in the resistive switching behavior of memristive devices. To date, in addition
to metals (such as Ag [5], Cu [6], Pt [7], Au [8], Al [9], and W [10]), a variety of
conductive materials have been explored as electrodes for memristors, including
nitrides such as TiN [11], carbon materials such as graphene [12] and carbon
nanotubes [13], conductive oxides such as ITO [14] and SrRuO, (SRO) [15], p- and
n-type Si [16], and so on. Among these metals, Ag and Cu are the most popular ones
due to their ability to dissolve in thin film electrolyte at low electric field and their
high ionic mobility [17]. In addition to the electrodes, the switching layer where the
resistive switching takes place is the key layer in memristive devices and has a great
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Figure 1.1 (a) Diagram of a memristive device with a capacitor-like structure in which a
switching layer is sandwiched between two metal electrodes. (b) Diagram of a cross-point
memory structure. Word and bit lines are used for selecting a memristive device and
writing/reading data, respectively. Source: Sawa [4].

impact on the device performance. Typically, the switching layer is an insulator or
a semiconductor. Also, it is normally in the form of thin film, which is compatible
to large-scale integration in the semiconductor industry. Recently, other forms
of the switching layer are also intensively investigated, including nanoparticles
[18], nanowires [19], two-dimensional (2D) materials [20], three-dimensional
nanoarrays, etc. Note that we mainly discuss memristors in the form of thin film in
all below sections.

1.1.1.2 Menmristive Materials
As mentioned above, the materials involved in memristors include switching mate-
rials and electrode materials. Here, we mainly focus on switching materials, which
is also termed as memristive materials. Up to now, a great number of memristive
materials have been explored for memristive devices used in neuromorphic com-
puting. In this chapter, the memristive materials are subdivided into inorganic and
organic materials. Generally speaking, inorganic materials have significant advan-
tages over organic ones in switching stability and manufacturing technology, while
organic ones stand out in terms of high-mechanical flexibility and low cost.
Inorganic materials for memristors can be loosely divided into binary oxides
(e.g. TiO, [21], TaO, [22], HfO, [23], WO, [24], and ZnO [14]), perovskite oxides
(e.g. SITiO, [25] and BiFeO, [26]), and 2D materials (e.g. graphene [27], hexagonal
boron nitride (h-BN) [28], and molybdenum disulfide (MoS,) [20]). Among these
inorganic materials, binary oxides have been intensively studied since they are the
most abundant and show superior switching characteristics including ultrahigh
ON/OFF ratio, sub-ns operation speed, and extreme endurance. In addition, their
simple composition enables them to be easily fabricated by various film deposition
technologies, mainly including magnetron sputtering [14, 24], atomic layer depo-
sition (ALD) [29], thermal oxidation [30], and plasma oxidation [11]. Magnetron
sputtering is a high-rate, high-efficient film deposition technology and is becoming
increasingly popular owing its high-yield and low-cost production of uniform
films over large areas. Recently, ALD has also attracted increasing attention for
the deposition of binary oxides due to its ability to accurately control the thickness
and uniformity of the films. Furthermore, binary oxides have good compatibility
with conventional complementary metal oxide semiconductor (CMOS) process and
good thermal stability. Thus, binary oxides have been the focus of both academic
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and industrial communities over the past decade. In particular, research interest
in HfO, and TaO, has been extremely high in the past few years since they exhibit
both sub-ns operation speed and extreme endurance of >10'° cycles and may be the
most promising memristive materials for practical applications in the near future.

In addition to binary oxide, perovskite oxides such as SrTiO;, SmNiO;, BiFeO;,
and SrRuO,; have also been researched for memristors over the past few years.
Among these perovskite oxides, SrTiO; receives the most attention for the imple-
mentation of memristive synapses because of its superior memristive properties and
rich switching dynamics [25, 31, 32]. It has been found that perovskite oxides have
advantages of excellent localized accumulation of oxygen ions and can be easily
converted into a defective structure. However, it should be mentioned that they are
generally obtained through pulsed laser deposition (PLD) under high temperature.
Although this is an advanced deposition method that can obtain high-quality thin
films with accurate stoichiometry, it is not widely used in the semiconductor indus-
try due to its high-cost and the small uniform area of the deposited film, greatly
hindering the development and application of perovskite oxides in memristors.

In recent years, 2D materials have become a new focus in memristors for the real-
ization of artificial synapses and neurons due to their superior physical, chemical,
and mechanical properties, including graphene, MoS,, and h-BN. Graphene is one
of the highly desirable materials for memristive bioinspired devices owing to its
excellent properties of low cost, tunability, nontoxicity, flexibility, and biocompati-
bility [33, 34]. However, graphene is inherently a semimetallic material and needs
to be oxidized or doped when it is used as a switching layer. In contrast to graphene,
transition metal chalcogenides (TMDs), such as MoS, and tungsten selenide
(WSe,), are semiconductors with proper bandgaps from 1 to 2eV [35]. Therefore,
TMDs are considered as ideal substitutes for graphene. MoS,, the common member
of the TMDs family, has been intensively investigated and shows superior perfor-
mance including ultrahigh ON/OFF ratio [36], ultralow operating voltage [37], and
excellent thermal stability [38]. Reliable production of 2D materials with uniform
properties is essential for translating their new electronic and optical properties into
applications. Until now, various fabrication methods including mechanical exfoli-
ation [39], liquid-phase exfoliation [40], and chemical vapor deposition (CVD)[41]
have been employed to obtain atomically thin flakes of 2D materials. First discov-
ered by Novoselov et al. in 2004, ultrathin 2D materials are peeled from their parent
bulk crystals by mechanical exfoliation using adhesive tape. This method produces
single-crystal flakes of high purity and cleanliness that are suitable for fundamental
characterization. Liquid-phase exfoliation method is also a feasible way to prepare
atomically thin 2D material. It can produce gram quantities of submicrometer-sized
monolayers, but the resulting exfoliated material differs structurally and electron-
ically from the bulk material [42]. To obtain large-area and uniform layers, CVD
method is very promising. Such methods give reasonably good-quality material
with typical flake sizes of hundreds of nanometers to a few centimeters, although
the flake thickness is not conclusively shown to be monolayers.

Compared with inorganic materials, organic materials have the advantages
of low cost, ease of fabrication, and, especially, high-mechanical flexibility. In
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addition, it is easy to modulate the electrical performance of organic materials by
a designed molecular synthesis [43]. Accordingly, organic materials are attracting
more and more attention that enable them to be promising for future flexible
electronics, although most switching characteristics of organic materials are still
not comparable with those of inorganic materials. It is well known that organic
materials consist of large molecules with long chains of repeating monomer units.
Hence, solution processes, for example, spin coating, are normally adopted to
prepare organic films [44, 45]. Note that organic materials still suffer from some
problems like poor thermal stability and bad compatibility with CMOS process [46].

1.1.2 Resistive Switching Behavior

The intrinsic physical phenomenon behind memristive devices is resistive switch-
ing (RS), which means the resistance can be reversely changed between low resistive
state (LRS) and high resistive state (HRS) under external electric stimuli, resulting in
a pinched hysteresis current-voltage (I-V) loop. If the resistance state of the mem-
ristive device changes from HRS to LRS, it is called an SET operation and is also
considered as a “write” process. In contrast, if the resistance state is converted from
LRS to HRS, it is called RESET operation and means an “erase” process (Figure 1.2).

Actually, the switching behavior can be classified into different types on the
basis of I-V characteristics according to different criteria. Based on the polarity
of the external electric field, the switching behaviors can be classified into two
types: unipolar and bipolar resistive switching. The unipolar switching operates
independently of the voltage polarity, which is also named nonpolar switching
sometimes. Meanwhile, the bipolar switching shows a directional resistive switch-
ing, depending on the polarity of the applied voltage. On the basis of the switching
dynamics, the switching behavior can be classified into digital and analog types.
Generally, the digital resistive switching shows abrupt current jumping in the I-V
curves, while the analog switching has continuous current curve during voltage
sweeping. Digital resistive switching is preferable in the information storage because
of its high ON/OFF ratio and fast switching speed [48, 49]. In contrast, the analog
resistive switching is particularly concerned for artificial synaptic devices, since
the gradual change of the resistance well resembles the potentiation/inhabitation
of the synaptic weight in the adaptive learning process of a synapse [50]. The
switching behaviors in Figure 1.2b,d are generally nonvolatile and widely used in
the application of data storage. Notably, the analog switching shown in Figure 1.2c
is usually nonvolatile but sometimes is volatile with current decay effect. The
volatile analog switching with versatile time constants is desirable for simulating
short-term and long-term synaptic plasticity. The unipolar digital switching shown
in Figure 1.2a is volatile and is usually named as threshold switching, in which the
device switches to LRS upon the application of a certain threshold voltage and then
spontaneously decays back to HRS after the removal of the external voltage. This
threshold switching is promising for implementing the threshold firing process
of the neuron. Below, we mainly focus on the volatile and nonvolatile resistive
switching.
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Figure 1.2 Typical /-V characteristics for different switching behaviors in memristive
devices. (a) Unipolar threshold switching. (b) Unipolar digital switching with nonvolatility.
(c) Bipolar analog switching with tunable volatility. (d) Bipolar digital switching with
nonvolatility. Source: Yang et al. [47].

1.1.2.1 Volatile Resistive Switching

The current of the memristive device showing spontaneously decay after the
removal of the external electric field is termed as volatile resistive switching,
including volatile analog switching and threshold switching. Both of them can be
utilized in the construction of artificial synapses and neurons.

To date, volatile analog switching has been observed in a variety of materials, such
as WO, [24], Pr,,Ca,;MnO,; (PCMO) [51], and Nb-SrTiO; [11]. Moreover, it has
been found that this switching is generally based on interface-type resistive switch-
ing, which will be discussed later. Note that the decay characteristics are essential in
the emulation of both short- and long-term plasticity of biological synapses. Thus,
we next give a brief introduction to the dynamic process of volatile analog switch-
ing using the Pd/WO,/W memristor as an example [30]. After the stimulation of
write pulses, current decay process of the device is carefully monitored by small read
pulses, as shown in Figure 1.3a. The stimulation drives the current higher; however
after the stimulation is removed, the current decreases with time. One can see that
the decay appears to occur at two different time scales: right after stimulation, the
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current shows a very fast decay, and the decay becomes much slower after several
seconds. Then, the decay can be well fitted by the sum of two stretched exponential
functions with two time constants: a short-term effect with time constant ~52.5 ms
and a long-term time constant ~92.5 seconds:
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where 7, (1,), I, (Io;), and f, (B,) are the characteristic relaxation time, prefactor,
and stretch index for the short-term (long-term term) process, respectively. Bor-
rowing terms used in neuroscience, the first stage with time constant ~52.5ms
is considered short-term, and the second stage with time constant ~92.5 seconds
is considered long-term. These two time constants differ by more than 3 orders
of magnitude, which enable the memristor to emulate important rate- and
timing-dependent behaviors at both short term and long term.

In addition to volatile analog switching, threshold switching is also volatile, and
the current will decay over time once the applied voltage or pulse is removed.
Recently, threshold switching was demonstrated by Wang et al. in two-terminal
diffusive memristors based on Ag-doped SiO,N,, [52]. Also, the decay process was
attributed to the spontaneous rupture of the Ag filament driven by minimization
of the interfacial energy between Ag and the dielectric after removing the external
electric field. Figure 1.3b displays decay characteristics of the SiO, N :Ag diffusive
memristor showing variation of current (open circle) with applied voltage pulses
(solid line). Under an applied pulse, the device exhibits threshold switching to an
LRS after an incubation period (delay time). This delay time is related to the growth
and clustering of silver nanoparticles to eventually form conduction channels.
Following channel formation, the current jumps abruptly by several orders of
magnitude and then slowly increases further under bias as the channel thickens.
Once the voltage pulse is removed, the device relaxes back to its original HRS over
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Figure 1.3 Decay characteristics of volatile analog switching and threshold switching
devices. (a) Current decay of the Pd/WO, /W device after the removal of the applied voltage
pulses. The experimental data (black squares) can be fitted by the sum of two stretched
exponential functions with distinct relaxation time constants. Source: Du et al. [30]. (b)
Decay characteristics of the SiO, N, :Ag diffusive device showing variation of current (open
circles) with applied voltage pulses. Source: Wang et al. [52].
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a characteristic time (relaxation time). More importantly, the relaxation time is
on the same order as the response of bio-synapses, that is, tens of milliseconds.
Furthermore, it has been demonstrated that the relaxation time is related to the
temperature, the voltage pulse parameters, operation history, Ag concentration,
host lattice, device geometry, and humidity, which alone or in combination can be
used to tune the desired dynamics for neuromorphic systems.

1.1.2.2 Nonvolatile Resistive Switching

Unlike volatile resistive switching, nonvolatile resistive switching, including bipolar
digital switching and nonvolatile analog switching, means that the conductance is
maintained after the removal of the external electric field. For bipolar digital switch-
ing, the device abruptly changes to LRS upon the application of a positive (negative)
threshold voltage and then returns to HRS upon the application of a negative (pos-
itive) threshold voltage. Such switching is preferable in data storage due to its high
ON/OFF ratio, fast switching speed, and long retention. Recently, thanks to high
scalability and large dynamic range, this switching has also been used in memris-
tors for the construction of artificial synapses [53, 54]. However, one disadvantage
of this switching is the limited number of conductance states and low conductance
update linearity, highly hindering its application and development in neuromorphic
computing.

In contrast, nonvolatile analog switching, with multilevel conductance states
and high conductance update linearity, has recently attracted increasing attention
in the construction of neural network accelerators and neuromorphic systems.
On the basis of the nonvolatile analog switching, vector-matrix multiplication
(VMM) or weighted summation operation can be physically implemented in a
cross-bar array of memristive devices based on Ohm and Kirchhoff laws [55, 56].
In this case, the VMM operation can be accelerated in a parallel, in-memory, and
analog manner in the memristor crossbar, which could largely benefit data-centric
and VMM-intensive algorithms, including a large majority of artificial neural
network (ANN) algorithms and many other arithmetic calculations. This part will
be introduced in detail in Section 1.5.

1.2 Resistive Switching Mechanisms

In the past few years, the switching mechanisms of memristors have been vigorously
investigated to predict and manipulate the switching profiles to achieve superior
switching performance [49, 57]. Especially for artificial synapses and neurons, the
required characteristics are broadened to work sensitively to the input stimulus
and generate controllable conductance change [58]. To closely mimic biological
synapses and neurons, regulating the conductance change of the memristive device
under electric stimuli becomes extremely important. Therefore, it is necessary
for us to have a deep understanding of the switching mechanisms of memristors.
Here, the common switching mechanisms are classified into two types including
filamentary-type resistive switching and interface-type resistive switching according
to the position where the resistive switching occurs.
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1.2.1 Filamentary-Type Resistive Switching

In a memristive device base on the filamentary-type resistive switching, a forming
process is usually required to obtain stable resistive switching behavior, during
which conductive filaments (CFs) form and the memristive device reaches a LRS.
Subsequently, local rupture and re-formation of the CFs occur during the reset
and set processes, respectively, resulting in the alternation between HRS and LRS.
Accordingly, the resistance value of LRS exhibits no or weak dependence on the
device size in filamentary-type memristive devices [49]. Generally, the growth and
rupture of CFs results from ion migration. Based on the polarities of the charges,
there are two types of ions: cations and anions in nature, and they migrate in
opposite directions under an external electric field. Thus, the filamentary-type
resistive switching can be subdivided into cation migration-related filaments and
anion migration-related filaments, and growth and rupture processes of the CFs
based on each of these are discussed separately as follows.

1.2.1.1 Cation Migration-Related Filaments

The cation migration-based memristive devices typically have an electrochemically
active electrode (AE), such as Ag or Cu; an electrochemically inert counter electrode
(CE), such as Pt, Au, or W; and a thin film of a solid electrolyte, such as Ag* or Cu*
ion conductor, sandwiched between both electrodes [59]. The CFs are formed via
electrochemical dissolution and then redeposition of the active metal atoms. There-
fore, such memristive devices are often called electrochemical metallization cells
(ECM) and are also referred to programmable metallization cells (PMCs) or atomic
switches in some literatures [60-62]. The first observation of a metal filament in
ECM was achieved by Hirose in 1976. [63]. They demonstrated nonvolatile resistive
switching behavior in the Ag/Ag-As,S;/Mo sandwich device. To clarify the switch-
ing mechanism, a planar Ag/Ag-As,S;/Au device was fabricated at the same time,
and the growth of Ag filaments from the CE (Au electrode) to the AE (Ag electrode)
was confirmed by optical microscopy.

The resistive switching process of an ECM device with Cu as the AE and Pt as the
CE is schematically shown in Figure 1.4. The overall switching process consists of
the following steps: (a) Upon applying a high enough positive voltage to Cu, metallic
Cu is oxidized to Cu* ions in accordance with the reaction, Cu — Cut +e~. (b) Cu*
ions migrate along fast diffusion channels toward the CE driven by external elec-
tric field, and Cu™" ions are reduced back to metallic Cu according to the reaction,
Cu' + e~ — Cu. (c) The Cu filament continues to grow, and two electrodes become
connected. As a result, the ECM device switches from HRS to LRS. (d) Under neg-
ative voltage, the Cu filaments can be electrochemically dissolved with the help of
Joule heating, thereby resetting the ECM device back to the HRS.

Although there is no doubt about the presence of metal filaments in cation
migration-based memristors, the direct observation of metal filaments, espe-
cially their dynamic growth and rupture processes, has attracted great interest
in academia. Originally, only ex situ observations of metal filaments in planar
microscale ECM cells were reported. In recent years, thanks to advances in fabri-
cation and characterization of nanomaterials, both ex situ and in situ observations



1.2 Resistive Switching Mechanisms | 9

Figure 1.4 Schematic
presentation of the resistive
switching processes of an ECM
device with Cu as the AE and Pt
as the CE. (a) forming process,
(b) SET process, (c) ON state,

(d) RESET process. Source: Zidan
et al. [64].

of metal filaments in vertical nanoscale ECM cells have been extensively explored.
In 2012, Yang et al. reported the formation/rupture of nanoscale Ag filaments in
Ag/SiO,/Pt device by transmission electron microscopy (TEM) technique [65].
After application of a positive voltage bias to the Ag electrode, the as-fabricated
device was switched to the LRS with an abrupt increase in current, as shown in
Figure 1.5c. The electrical resistance change was found to accompany changes
in the electrode and the switching material (Figure 1.5a), where Ag was injected
into the insulating SiO, layer and the two electrodes were connected by the Ag
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Figure 1.5 (a) TEM image of the Ag/SiO,/Pt device after the forming process. Scale bar:
200 nm. (b) TEM image of the same device after erasing. Scale bar: 200 nm.

(c) Corresponding /-t curve during the forming process that led to the image in (a). The
applied voltage was 8 V. (d) Corresponding /-t curve during the erasing process that led to
the image in (b). The applied voltage was —10V. (e) Real-time structural evolutions of an
Ag/a-Si/W-based device obtained through in situ TEM observation, showing the dynamic
filament growth process that initiates from the reactive electrode. Source: Yang et al. [65].
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filaments. Upon voltage bias of opposite polarity, the device switched back to the
HRS (Figure 1.5d), corresponding to the rupture of the Ag filaments (Figure 1.5b).
These observations unambiguously reveal the physical nature of the resistive
switching process, where the physically displaced Ag atoms lead to the dramatic
changes to the device’s electrical properties. Besides direct observation of the metal
filaments during resistive switching by ex situ TEM, in situ TEM technique provides
important information concerning the microscopic dynamic ionic processes during
filament growth. In Yang’s work, the filament growth was further demonstrated
in vertical Ag/a-Si/W ECM device via in situ TEM observation, as shown in
Figure 1.5e. One can identify the real-time structural evolution of the ECM device
since the filament growth is directly related to the electric measurements. The
systematic in situ TEM analyses offers a complete picture of the different dynamic
processes that occur in the ECM device, e.g. filament growth direction, position,
and morphology [66].

Notably, the filament growth/dissolution dynamics can be affected by the ionic
mobility and the redox reaction rate. Therefore, the filament dynamics can be clas-
sified into four categories (Figure 1.6). (i) In the case of high ion mobility and high
redox rate, the ions can reach the inert electrode without agglomerating, thus avoid-
ing nucleation within the insulating film so filament growth initiates from the inert
electrode, and the large amount of ion supply due to high redox rate leads to the
formation of cone-shaped filaments with its base at the inert electrode interface as
shown in Figure 1.6a. Such case can be found in ECM devices with traditional solid
electrolytes such as GeTe [67] that are known to be good ionic conductors. (ii) In the

High u, high I Low , low I’

Figure 1.6 (a) Both ion mobility and redox rate are high, resulting in the filament growth
from the inert electrode and an inverted cone shape. (b) Both ion mobility and redox rate
are low, resulting in the filament growth from the active electrode with discrete
nanoclusters and a forward cone shape. (c) lon mobility is low, but redox rate is high,
resulting in the filament nucleation inside the dielectric and reconnection with the source.
(d) lon mobility is high, but redox rate is low, resulting in the filament growth from the inert
electrode and a branched structure. Source: Yang et al. [66].
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case of low ion mobility and low redox rate (Figure 1.6b), the ions can pile and reach
the critical nucleation conditions inside the dielectric, and further filament growth
is fulfilled by cluster displacement via the repeated splitting-merging processes. An
experimental example is the filament growth in amorphous Si, where the filament
isinitiated from the active electrode and grows toward the inert electrode as discrete
nanoclusters [68]. (iii) In the case of low ion mobility and high redox rate, nucleation
can occur inside the dielectric while large amounts of atoms can be deposited onto
the cathode sides of the nuclei, leading to the gap filling shown in Figure 1.6¢. (iv) In
the case of high ion mobility and low redox rate (Figure 1.6d), nucleation only occurs
at the inert electrode, but the limited ion supply means that the reduction predom-
inately occurs at the edges with high field strengths, thus leading to the branched
filament growth toward the active electrode.

Ion mobility and redox rate can be tuned by the careful selection of the electrode
material and the switching materials, as well as the operating conditions since both
can be strongly affected by the applied electric field and temperature. Hence, it is pos-
sible to adjust the filament dynamics by selecting proper electrode material, switch-
ing materials, and operating conditions. The behavior and characteristics of filament
are important for artificial synapses and neurons because the filament dynamics is
closely related to the synaptic plasticity.

1.2.1.2 Anion Migration-Related Filaments

Besides metal ions, the redox and migration processes of anions, mostly oxygen
ions, are involved in the memristive devices based on transition metal oxides
without electrochemical active electrodes. The migration of oxygen ions usually
induces a redox reaction expressed by a valence change of the cation sublattice and
leads to a stoichiometry change of the oxides. Therefore, anion migration-related
filament mechanism is typically named as valence change mechanism (VCM). In a
VCM device, resistive switching generally relies on the creation and annihilation
of oxygen-deficient (or oxygen vacancies, V;) CFs based on oxygen migration. In
contrast to ECM devices, VCM devices generally consist of inert electrodes and the
switching materials. The switching layer is normally a transition metal oxide such
as binary metal oxides and ternary perovskite oxide.

The switching process of a VCM device with inert electrodes and a transition
metal oxide is schematically shown in Figure 1.7. V;; are randomly distributed at
the initial state (Figure 1.7a). When the top electrode (TE) is positively biased, V;;
migrate toward the bottom electrode (BE) and accumulate in the oxide/BE interface
(Figure 1.7b). Afterward, V;; continue to accumulate under the positive voltage
bias. Once the Vi CFs form and connect the TE and BE, the device switches into
the LRS (Figure 1.7c). With the growth mode from the BE to the TE, the thinnest
part of the formed CF should be located near the TE. When the TE is negatively
biased, Joule heat is mainly concentrated on the thinnest part of the CF, and Vs
in this region migrate toward the TE and then is replaced by the oxygen ions. As a
result, the concentration of V, in the thinnest part of the CF will be significantly
decreased, leading to the rupture of the CF at that location (Figure 1.7d).
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Figure 1.7 Schematic presentation of the switching process of a VCM device with inert
electrodes and a transition metal oxide. (a) The initial state with randomly distributed V;.
(b) The nucleation and subsequent growth from cathode to anode of V;; filament during
forming process. (c) The LRS with a complete filament whose thinnest region is near the
anode. (d) The HRS with a partially ruptured filament at its thinnest region. Source: Pan
et al. [48].

(a)

Figure 1.8 (a) High-resolution TEM image of a V, nanofilament in Pt/TiO,/Pt device after
the set operation. (b) High-resolution TEM image of an incomplete filament in the same
device after the reset operation. Source: Kwon et al. [68].

Similar to ECM devices, a host of material characterization techniques such
as TEM and spectroscopic analysis have recently been employed to reveal the
microscopic origin of resistive switching behaviors in VCM devices. Figure 1.8
shows high-resolution TEM (HRTEM) image of the same location in a Pt/TiO,/Pt
device after applying negative (set) and positive (reset) voltages, respectively [68].
Clear contrast differences in the HRTEM images can be observed, indicating
changes in the composition of the film at different resistance states. In the set
sample (Figure 1.8a), a connected V, filament in the conical shape (marked by
a gray line) was found between top electrode and bottom electrode. After the
reset operation (Figure 1.8b), the connected filament ruptured and an incomplete
filament was present near the top electrode, verifying the role of V, migration
during the resistive switching process of VCM devices.
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It is generally more challenging to directly observe the V', migration process and
filament evolution in VCM devices since the filaments consist of native defects, i.e.
V;, rather than foreign metallic species. Careful spectroscopic analysis is typically
required to confirm the composition changes. Various state-of-the-art techniques
such as X-ray absorption spectroscopy (XAS) [69, 70] and photoemission electron
microscopy (PEEM) [71, 72] have recently been employed to comprehensively
characterize the changes in film microstructure, composition, and chemical states
accompanying the resistive switching process in VCM devices.

XAS Analysis Spatially resolved XAS using scanning transmission X-ray microscope
(STXM) was performed to nondestructively investigate the chemical and structural
changes during resistive switching. Figure 1.9a,b shows the presence of three distinct
states of the TiO, within the junction area taken at an X-ray energy of 460.0eV in
the Ti L;-edge in a Pt/TiO,/Pt device after electroforming and set/reset cycling [69].
Region is outside of the junction area and is most similar to the as-deposited TiO,,
which is known from X-ray diffraction (XRD) to be an amorphous phase. Within the
junction (region ii), the spectrum strongly matches the known XAS for anatase, one
of the crystalline polymorphs of TiO,. The altered absorption spectrum in region iii
matches that of reduced titanium oxide, in which the valence state of the Ti ions
is reduced from +4 to +3. Furthermore, electron diffraction measurement revealed
that the region iii is composed of the Ti,O, phase with metallic conductivity, which
proves the formation of localized conductive filament due to the migration of V.
Thermally driven radial migration of V; was also demonstrated by in operando X-ray
absorption spectromicroscopy in a Ta,Os-based device (Figure 1.9¢,d) [70]. After 10°
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Figure 1.9 (a) Scanning transmission X-ray microscopy (STXM) image of a TiO,-based
device after electrical cycling, showing structural changes and the formation of a localized
channel. (b) Corresponding Ti L-edge X-ray absorption spectra from the three regions in
panel (a). Source: (a, b) Strachan et al. [69]. (c) O K-edge transmission intensity map of a
Ta,0;-based device cycled to 120000 cycles imaged at an energy of 531.2 eV. (d) 3D color
intensity plot of the ring seen in (c), displaying the profile of the ring. Source: (c, d) Kumar
etal. [70].
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cycles, a ring-like feature with a bright inner core and a dark perimeter was observed
as shown in Figure 1.9¢. In addition to field driven drift of V;; in the vertical direction,
temperature gradients due to Joule heating near the localized conduction channels
produce thermophoretic forces that cause lateral migration of V;. As a result, lateral
segregation of oxygen-deficient and oxygen-rich regions occurs, corresponding to
the bright and dark regions in Figure 1.9c.

X-ray PEEM analysis In operando X-ray PEEM (XPEEM) analysis is a desirable
technique to nondestructively reveal the changes in film microstructure, com-
position, and chemical states during the resistive switching process with high
spatial resolution and interface or surface sensitivity. Recently, quantitative redox
reactions were demonstrated via in operando XPEEM analysis in a SrTiO,-based
device with a graphene top electrode that offers excellent electrical conductivity and
photoelectron transparency to allow electrical programming and spectromicroscopy
measurements [71]. Noticeable changes were observed in the normalized intensity
of O K-edge when the device alternated between the HRS and LRS, indicating the
formation and dissolution of the V;; filament (Figure 1.10). Furthermore, quan-
titative information on the charge-carrier density differences between different
resistance states is available since XPEEM is a highly surface-sensitive technique.

1.2.2 Interface-Type Resistive Switching

In contrast to the filamentary-type resistive switching, interface-type resistive
switching generally originates from the variation of the Schottky barrier caused
by migration of V; [73]. In this case, the resistance in the LRS is inversely pro-
portional to the electrode area, suggesting the entire electrode area is involved in
the switching behavior. Furthermore, the interface-type switching normally does

O K-edge LRS |

Figure 1.10 (a, c) XPEEM images of an SrTiO;-based device in (a) LRS and (c) HRS,
showing a localized filament with changes of the O concentration. Scale bars: 1 um. (b, d) O
K-edge spectra obtained from the filament region [light curve for LRS in panel (b) and dark
gray for HRS in panel (d)] and the surrounding region (black curves). Source: Modified from
Baeumer et al. [71].
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not require a forming process and can easily obtain a multilevel storage because it
changes the resistance value by a uniform interface effect. Overcoming the forming
randomness of memristors, devices could achieve excellent reproducibility and
cell-to-cell uniformity [74].

The interface-type resistive switching mechanism was first reported by Sawa in
2008 [4]. According to the article, the I-V curves of the Ti/PCMO, Au/Nb:STO, and
SRO/Nb:STO interfaces show rectifying I-V behavior, thus revealing the presence
of Schottky contacts. In addition to the rectification, I-V curves for these interfaces
exhibit hysteretic behavior indicative of resistive switching. Furthermore, they found
the migration of V; at the interface plays a key role in the resistive switching. Up to
now, different devices with interface-type switching have been explored, including
Pt/WO,_,/Pt [75], Pt/ZnO nanorod/FTO [76], Pt/Nb:STO/Al [77], ZrO,:Y/PCMO
[78], InGaZnO (IGZ0)/a-IGZ0[79], and so on.

The resistive switching process in the interface-type switching is schematically
illustrated in Figure 1.11, using n-type semiconductor as an example [74, 80]. n-Type
semiconductor forms a Schottky barrier when in contact with a metal with a large
work function (such as Pt or SRO) and forms an Ohmic contact when associated
with a low work function metal (such as Ti). In the conventional Schottky model,
the capacitance is given by C = 6‘5/—55, where W is the width of the depletion layer,
€, is the relative dielectric constar;t of a vacuum, ¢ is the semiconductor relative
dielectric constant, and Sis the cell area. This equation indicates that LRS is achieved
by tunneling through the Schottky barrier with a narrow W, while HRS is created
by inhibited tunneling at the Schottky barrier with a wide W . With the application
of a negative bias (Figure 1.11a), positively charged oxygen vacancies are attracted
to the electrode narrowing the barrier, and the device switches to the LRS. A positive
bias will result in the repulsion of the oxygen vacancies and in the restoration of the
barrier width, and the device switches back to HRS (Figure 1.11b).

The current lack of full understanding of the underlying switching mech-
anisms remains a major challenge for interface-type memristive devices and
a significant obstacle to their widespread applications. For this reason, in the
past few years, a variety of materials characterization techniques have been
employed to clarify the switching mechanisms in interface-type memristive devices,
including the combination of TEM and electron energy-loss spectra (EELS) [81],
spectromicroscopy studies [82], and so on.

I\
Ee

Metal

Ey

w
(@) (b) B
Figure 1.11 The interface-type resistive switching mechanism for a representative n-type

semiconductor. (a) In the LRS, V;; accumulate at the interface, reducing the depletion width.

(b) In the HRS, there are less V; at the interface, increasing the depletion width.
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Figure 1.12 (a) Cross-sectional TEM image of Ti/PCMO junction. (b) Electron energy-loss
spectra of Mn L-edge at several positions in Ti/PCMO junction indicated in (a). Source:
(b) Asanuma et al. [81]. Copyright 2009, American Physical Society.

Combination of TEM and EELS As an example, the migration of V; in the Ti/PCMO
interface was demonstrated by the combination of cross-sectional TEM and the
EELS spectra, as shown in Figure 1.12. An amorphous TiO, layer between the Ti
electrode and the PCMO layer was clearly observed in the cross-sectional TEM
(Figure 1.12a). Furthermore, the EELS of the Mn L-edge obtained at different
positions in the PCMO layer was carried out to confirm the diffusion of oxygen
ions at the interface. As seen in Figure 1.12b, the peak intensity ratio of Mn-L, and
Mn-L,, I(L;)/I(L,), decreased with increasing distance from the boundary between
the TiO, and the PCMO layers, indicating the valence of the Mn ion in the vicinity of
the interface was smaller than that far from the interface. The above results suggest
that the number of oxygen vacancies in the vicinity of the interface was increased
due to the migration of oxygen ions from the PCMO layer to the Ti electrode.

Spectromicroscopy Studies Figure 1.13 shows spectromicroscopy results using
the absorption current and photoemission electrons of the Au/Al/PCMO/CMO/
PCMO/Pt device in the LRS and HRS, respectively. There are three different
regions in Figure 1.13a, b: Au/Al/PCMO, Au/PCMO, and PCMO. Au/PCMO and
PCMO, respectively, are the most (light) and least (dark gray) conductive in both
resistive states. A significant change in current occurred in the Au/Al/PCMO
region, with high (light gray) and low (dark gray) current intensity in the LRS and
HRS, respectively, indicating the Al top electrode plays a key role in the resistive
switching. Furthermore, from Al 2p photoelectron peaks and spectromicroscopy
spectra (Figure 1.13d-f), one can clearly observe the oxidized state of Al in the
Au/Al/PCMO region changes a lot when the device switches from HRS to LRS.
This indicates that interfacial oxidation of the Al electrode in AI/PCMO acts as a
reservoir of oxygen during the resistive switching.
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Figure 1.13 Spectromicroscopy results using the absorption current and photoemission
electrons. Contrast images of absorbed electron intensity from the electrode areas of (a)
LRS and (b) HRS. (c) The schematic diagram of the Au/Al/PCMO/CMO/PCMO/Pt (substrate)
device. (d) Typical AL 2p photoelectron peaks of metallic (dark gray) and oxidized (light gray)
states of aluminum as a function of binding energy. The x-axis energy intervals correspond
to the window of integration for the corresponding lower panel of (e) and (f). (e) and (f) The
panels show a color plot of the spatial distribution of the intensity of photoelectrons with
energies within the respective energy interval [as indicated by the energy scale of (d)]. The
six panels in (e) correspond to the images of an electrode in the LRS, and the panels in (f) to
the respective images of an electrode in the HRS. The upper and lower panels 1-3 indicate
the increasing (gray) intensity of the AL metal electrode. Panels 4-6 indicate the intensity of
the Al oxide signal. Clearly, the signal is very weak in the upper panels corresponding to the
LRS. In contrast, the lower panels clearly indicate oxidation of Al in the HRS. In particular,
panel 5 of (f) shows a strong and thin signal coming from the rim of the Al electrode.
Source: Lee et al. [82].

1.3 Menristive Bioinspired Devices

The human brain is far superior to the digital computer in cognitive and classifica-
tion tasks, especially in solving probabilistic and unstructured problems requiring
low power dissipation. This is because the architecture of the human brain is com-
pletely different from that of the digital computer [83, 84]. In a standard digital
computer, the data memory and processor are physically separated by a channel,
and constant data movement is required while working. In the human brain, huge
and complex neural networks composed of gigantic amounts of neurons massively
interconnected by an even larger number of synapses are responsible for computing
and memory. Unlike a digital computer, information storage and processing happen
at the same time in the brain [85].

Taking inspiration from the architecture and principle of the human brain, neu-
romorphic computing that aims to construct energy efficient and fault tolerant com-
puting systems may have great potential in the future artificial intelligence (AI), big

17



18

1 Two-Terminal Neuromorphic Memristors

data, Internet of things (I0T), etc. [86]. In particular, devices that can reproduce the
functionalities of biological synapses and neurons are building blocks in the con-
struction of such neuromorphic systems. Fortunately, the emergence of memristive
devices, with inherent dynamics resembling biological synapses and neurons, pro-
vides a feasible way to construct neuromorphic computing systems [87, 88]. For
instance, one compact memristive device is enough to reproduce some functions of
a biological synapse. Moreover, the vector-matrix multiplication, which is believed
to be the most data-intensive work in neural networks, can be naturally performed
in a cross-bar array of memristive devices on the physical level based on Ohm and
Kirchhoff laws. These features endow memristive devices ideally suitable for imple-
menting highly efficient neuromorphic computing systems.

1.3.1 Memristive Synapses

It has been found that the human brain is composed of ~10'! neurons and ~10%
synapses. All human perception, emotion, learning, forgetting, and memory are
performed by this complex neural network with building blocks of neurons and
synapses. A neuron works to generate and transmit action potentials in the neural
networks. A synapse is a specialized junction where two neurons contact and com-
municate with each other, as shown in Figure 1.14a, and plays a crucial role in the
process and storage of information. The presynaptic side of the synapse is an axon
terminal of the presynaptic neuron, while the postsynaptic side is the dendrites.
An action potential, or nerve impulse, arrives at the axon terminal and triggers the
presynaptic neuron to release neurotransmitters; these neurotransmitters bind to
the receptors on the postsynaptic membrane and causes a transient postsynaptic
membrane depolarization and then generate the excitatory or inhibitory postsy-
naptic potential (EPSP or IPSP), depending on the transmitting efficiency of the
synapse. This transmitting efficiency of a synapse is not fixed but can vary as a
result of the activities of pre- and postsynaptic neurons, which is termed as synaptic
plasticity. In other words, the synaptic weight, that is, contact strength, is flexible
and can be modified according to the activities of the relative neurons [90].

In biological system, synaptic plasticity performs different time courses ranging
from milliseconds to hours, days, and even the whole lifetime. Therefore, with regard
to the time course of the plasticity, synaptic plasticity can be roughly divided into
short-term plasticity (STP) and long-term plasticity (LTP), as shown in Figure 1.14b
[91]. It is found that STP allows the synapses to perform critical functions, such as
fast response and information filtering. Furthermore, the synaptic plasticity exhibits
the activity-dependent characteristic; weak tetanic induces only STP, whereas strong
trains of stimulus induce LTP. Different from STP, LTP is thought to be crucial during
synaptic development and for regulating neural circuits in the adult brain.

Given that one nanoscale memristive device can replicate diverse synaptic
functions, it shares a similar structure and working principle to the biological
synapse. These enable the memristive device to be a promising candidate as
synaptic element to build neuromorphic computing systems. To date, encouraging
progress has been achieved in the implementation of both STP and LTP using
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memristive devices. Therefore, below we discuss short-term memristive synapses
and long-term memristive synapses reported recently.

1.3.1.1 Short-Term Memristive Synapses

Numerous forms of synaptic plasticity lasting on the order of milliseconds to several
minutes have been termed as STP, including synaptic facilitation/depression,
augmentation, and post-tetanic potentiation (PTP), as shown in Figure 1.14b [91].
Synaptic facilitation (or depression) occurs when a brief train of stimuli is applied
to a presynaptic nerve, in which the amplitude of EPSP progressively increases
(decreases). In contrast, PTP happens when a relatively long high-frequency train
of stimuli is applied to the presynaptic neuron and an intermediate phase between
synaptic facilitation and PTP is an augmentation, which is introduced by stimulus
trains with moderate duration. Although facilitation, PTP, and augmentation are all
referred to as STP, they spin different temporal domains. Facilitation decays about a
few hundred milliseconds, whereas the decay of augmentation and depression lasts
over a period of several seconds. PTP can persist for tens of minutes. It is found
that these STP play important roles in short-term adaptations to sensory inputs and
short-term memory and are helpful in filtering out some unnecessary information.

In biological systems, paired-pulse facilitation (PPF) and paired-pulse depression
(PPD) are the most important learning rules of STP and play a key role in decod-
ing the temporal information for auditory or visual signals. In PPF, synaptic current
evoked by the second spike is increased when the second spike closely follows a
previous spike, as shown in Figure 1.15a [92, 94]. Furthermore, the magnitude of
the enhancement is determined by the time interval between the two spikes, and
a smaller interval gives rise to a larger synaptic current enhancement. In contrast,
PPD describes the opposite phenomena, where the synaptic current evoked by the
second spike is decreased when the second spike closely follows a previous spike
[93], and the magnitude of the decrease is determined by the interval between the
two spikes, which is similar to PPF (Figure 1.15b). It is found that PPF (PPD) is
highly related to an increased (decreased) residue in presynaptic Ca?* concentra-
tion left over from the first stimulus, which results in an increase (decrease) in the
number of neurotransmitters released at the synapse when the second stimulus is
applied [95].

As the most important STP, PPF has been implemented in many memristive
devices with volatile resistive switching behavior [96-99]. Zhu et al. demonstrated
PPF in the three-terminal in-plane lateral memristive devices [96], as shown
in Figure 1.16. The indium-zinc-oxide (IZO) channel was self-assembled on
phosphorus (P)-doped nanogranular SiO, proton conductive films at room tem-
perature. The channel conductance can be modulated in a volatile way due to the
proton-related electrical double-layer effect. In this device, the presynaptic spikes
are applied on the in-plane gate, and the conductance of the channel is regarded
as the postsynaptic response, that is, excitatory postsynaptic current (EPSC) or
inhibited postsynaptic current (IPSC) (see Figure 1.16b). Figure 1.16c shows the
EPSC evolution over time by applying two consecutive presynaptic spikes on the
in-plane gate. It is clearly observed that the peak value (A2) of the EPSC triggered
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Figure 1.15 Short-term synaptic plasticity. (a) Paired-pulse facilitation (PPF). Source:
Debanne et al. [92]. (b) Paired-pulse depression (PPD). Source: Waldeck et al. [93].
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Figure 1.16 PPF implementation in the three terminal in-plane lateral memristive device.
(@) Schematic diagram of the device structure. (b) Schematic image of the implementation
approaches. (c) A pair of presynaptic spikes applied and the experimental response of the
device. A1 and A2 represent the amplitudes of the first and second EPSCs, respectively.

(d) PPF index, defined as the ratio of A2/A1, plotted as a function of interspike interval Atpre.
Source: Zhu et al. [96].

by the second presynaptic spike is larger than that by the first presynaptic spike
(Al). The PPF index, defined as the ratio of A2/Al, gradually decreases with the
increase of the interspike interval, as shown in Figure 1.16d. That is because the
transient accumulation of protons after the first spike will gradually fade as the
interspike interval increases. The dependences of the PPF index on the interval
follow a double exponential function in biological synapses and some memristive
emulators.
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Figure 1.17 Biorealistic memristive synapses realized in diffusive memristive devices.

(a) Schematic illustration of the analogy between Ca?* and Ag dynamics in the diffusive
SiO,N, :Ag memristive device. (b) Experimental demonstration of short-term synaptic PPF
and PPD behavior by applying multiple subsequent voltage pulses (3V, 1 ms) with different
time intervals between 1 and 160 ms. (c) Experimental demonstration of PPD following PPF
in the diffusive SiO,N :Ag memristive device. The inflection effect from PPF to PPD under
stimuli with the same frequency (5000 Hz) is a result of the gradual depletion of silver at
one electrode and accumulation at the other. Source: Wang et al. [52].

Recently, Wang et al. first realized both PPF and PPD in two-terminal diffusive
memristive devices with threshold switching behavior based on Ag-doped SiO,N,
[52], as displayed in Figure 1.17. In their device, threshold switching is related to the
formation of Ag filament through Ag cluster migration driven by electric field, and
then the filament spontaneously ruptures driven by minimization of the interfacial
energy between Ag and the dielectric after removing the external electric field. It is
proposed that this kind of diffusive memristive devices performs significant similar-
ities to the biological synapse in terms of ion diffusive dynamics, dynamic balance,
and regulating roles, as schematically shown in Figure 1.17a. The experimental
demonstration of PPF and PPD is shown in Figure 1.17b,c. High-frequency pulses
(short t,.,,,) trigger facilitation (PPF), while low-frequency pulses trigger depression
(PPD). More interestingly, the inflection from facilitation to depression in biological
synapses, an effect solely induced by an increased number of stimulation pulses
at the same frequency, that is, PPD following PPF induced by a series stimuli with
same frequency, can also been biologically mimicked (see the current evolution
under stimuli with 5000 Hz shown in Figure 1.17c). This inflection effect from PPF
to PPD under stimuli with the same frequency is attributed to the gradual depletion
of silver at one electrode and accumulation at the other. Similar PPD following PPF
phenomena have been recently demonstrated in a biomolecular memristive device
by Najem and his coworkers [100].
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As mentioned before, there are several forms of STP with different time courses,
including facilitation (tens of milliseconds), synaptic augmentation (seconds), and
PTP (tens of seconds to minutes). It means that STP in biological synapses spans
broad timescales from milliseconds to minutes. However, the most reported STP
behaviors in memristive devices only exhibit certain specific timescales limited
by their intrinsic micro-physicochemical processes during resistive switching.
Recently, Zhang et al. emulated dynamic synaptic plasticity over broad timescales
from milliseconds to days in the Ag/MgO/Pt ECM device [101]. Their Ag/MgO/Pt
device exhibits volatile switching behavior, and its data retention of LRS can be
tuned from millisecond to several 10seconds through controlling the amplitude
of applied external pulses. Therefore, many forms of STP have been mimicked
including facilitation, augmentation, and PTP. It is proposed that the switching
dynamics is attributed to the formation and spontaneous rupture of silver nanofil-
aments. By adjusting the thickness of filaments via applying the stimulus with
different amplitudes, different timescales of STP can be realized. In addition to
tuning external programming stimulus, mediating STP can also be achieved by
controlling the orientation of silica mesopores in the device of Ag/Ag,S/silica
mesopore/ITO. [98]. The dielectric silica layer with vertical mesopores can facilitate
the rupture of a conductive pathway, which results in short relaxation time for LRS
(0.5 seconds) compared with parallel mesopores (3 seconds) and dense amorphous
silica (>10seconds). Thus, the time constants of PPF emulated in these devices
present different timescales.

1.3.1.2 Long-Term Memristive Synapses

Unlike STP, LTP including long-term potentiation (LTPot) and long-term depression
(LTD) refers to synaptic plasticity that lasts for hours or even days. LTPot was first
observed in the hippocampus, where high-frequency repetitive activation of excita-
tory synapses caused a potentiation of synaptic connection that could last for hours
or even days. Note that LTPot lasts longer than STP, but it still decays over time, as
shown in Figure 1.18a. Moreover, the decay rate of LTPot depends on the duration
and intensity of the stimulus [102, 104]. Figure 1.18a shows the LTPot response of
the CA1 pyramidal neurons to three different stimulus conditions. The LTPot trig-
gered by a single 100 Hz stimulus train decays back to zero over the next two hours;
the potentiation decays less rapidly after four stimulus trains and becomes much
slower after eight stimuli trains — with 80% of the potentiation persisting after two
hours. Similar to LTPot, LTD also performs different time course of decay depending
on the stimulus conditions. Both LTPot and LTD involve an increase in postsynaptic
calcium concentration. A relatively large increase results in LTPot; a smaller increase
leads to LTD [105]. Recently, LTP has garnered many interests because it provides
an important key to understanding some of the cellular and molecular mechanisms
of memory formation.

For LTP, the synaptic plasticity is dependent on the activities of pre- and postsynap-
tic neurons according to STDP [103] or Bienenstock—Cooper-Munro (BCM) learning
rule [90, 106, 107]. The classical pair-STDP rule is a temporally specific extension of
the Hebbian associative plasticity, which describes the synaptic weight depending on
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Figure 1.18 LTP in biology. (a) Long-term potentiation (LTPot) response of the CA1l
pyramidal neurons to three different stimulus conditions. Source: Raymond and Redman
[102]. (b) Spiking time-dependent plasticity (STDP). Source: Froemke and Dan [103].

(c) Bienenstock-Cooper-Munro (BCM) learning rule. Source: Kirkwood et al. [90].

the interval between pre- and postsynaptic spikes, as shown in Figure 1.18b. Specif-
ically, if a presynaptic spike precedes a postsynaptic spike with a short interval, the
synaptic weight enhances, whereas the synaptic weight decreases if the postsynaptic
spike precedes a presynaptic spike. Moreover, there is no change of synaptic weight
if the time interval between pre- and post-spike is too large. Actually, the abovemen-
tioned pair-STDP is Hebbian STDP. There are other three types of STDP, including
the anti-Hebbian STDP, the symmetrical STDP, and the visual STDP learning rule
observed in different types of synapses [108, 109].

In addition to STDP, BCM learning rule is another fundamental activity-dependent
learning rules. According to BCM learning rule[107], the synaptic weight mod-
ulation performs frequency-dependent and sliding threshold characteristics, as
schematically shown in Figure 1.18c [90]. In particular, high-frequency stimu-
lation leads to potentiation, and low-frequency stimulation leads to depression.
Furthermore, there exists a threshold frequency at which the synaptic weight can
be maintained. More importantly, this threshold frequency is not fixed, and it
will shift according to the priming neuron activity. For example, after a period of
excited synaptic activity, the threshold will slide to a higher frequency, which can
effectively prevent serious excitotoxicity stimulation. Similarly, the threshold will
slide to lower frequency after a period of decreased activity, which is helpful for
improving the synaptic modulation efficiency.
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In this part, we will focus on the implementation of STDP and BCM learning rules
in the memristive devices. It is well known that STDP is one of the most important
LTP and the prevalent weight updating rules used in the spiking neuron networks
[110]. There are two approaches to realize STDP. One is phenomenological imple-
mentation through overlapping the manually and carefully designed programming
pulses to encode the spike timing information in the amplitude or duration of the
effective applied pulses on the devices. The other one is biorealistic implementa-
tion through non-overlapping programming pulses using second-order memristive
devices or combining a volatile memristive device with a nonvolatile memristive
device. In addition, BCM learning rule describes the frequency-dependent synaptic
plasticity with sliding threshold characteristics. However, previously demonstrated
BCM rules in memristive devices mostly perform frequency-dependent characteris-
tics without a sliding threshold feature, which is actually spike-rate-dependent plas-
ticity (SRDP). Similar to STDP, biorealistic implementation of BCM rules requires
second-order memristive devices with internal short-term dynamics.

Recently, phenomenological implementation of STDP learning rules has been
intensively demonstrated using memristive devices in different material systems
[79, 111-115]. However, this kind of STDP implementation is not biorealistic
since the presynaptic and postsynaptic spikes pose the same profile and STDP is
achieved via simple overlapping spikes. In fact, synaptic plasticity in biology is in
turn modulated by other secondary state variables such as the postsynaptic calcium
ion (Ca") concentration, rather than directly by the spikes. It is found that the
postsynaptic Cat concentration rises right after the excitation stimulus and then
spontaneously decays over time after stimuli, which provides an internal timing
mechanism to encode the relative timing information of the spikes [116]. Lu and his
coworkers developed second-order memristive devices to biorealistically implement
STDP learning rules through non-overlapping approach [30, 117]. In the so-called
second-order memristive devices, there are two state variables. The one with
long-term dynamics directly determines the device conductance, while the second
one with short-term dynamics has an impact on the conductance by affecting the
first state variable. This second state variable plays a role similar to postsynaptic
Ca* concentration in regulating synaptic plasticity; therefore, biorealistic imple-
mentation of STDP without the need of pre/postsynaptic pulses overlapping can be
achieved in second-order memristive devices. The local temperature [117] or the
mobility of oxygen vacancies [30] can be treated as the second state variables, since
they perform short-term dynamics in memristive devices.

Furthermore, STDP rule is implemented in the second-order memristive device
of Pd/Ta,05_,/TaO,/Pd [117]. In this device, the size of the conduction filaments is
the first state variable with long-term dynamics, while the local temperature of the
device is the second-state variable with short-term dynamics. There are two parts in
the pre- and postsynaptic spikes: a programming element with high-voltage short
duration and a heating element with low-voltage long duration. The device local
temperature elevates, but conductance does not change upon applying the heating
element alone. Then, the local temperature spontaneously decays after removing
the pulses, but this elevated local temperature facilitates the filament growth during
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the programming element. When the presynaptic spike arrives earlier than the post-
synaptic spike (i.e. in the case of At > 0), the postsynaptic spike will be affected by
the temporal heating effect from the heating element in the presynaptic spike. The
smaller At induces the much higher local temperature; as a result, much bigger size
of filament is obtained in the device. The sign of conductance change is dominated
by the final spike applied on the device, whereas the size of the conductance change
relies on the pre/postsynaptic spike interval. In the opposite case (At <0), the con-
ductance decrease can be obtained by similar arguments. This local temperature
plays a role similar to postsynaptic Ca* concentration in encoding the timing infor-
mation of pre/postsynaptic spikes. It should be noted that the obtained conductance
change in STDP rules stems from the modulation of the first state variable (i.e. the
size of conduction filaments) and thus is long term, even though the timing informa-
tion is encoded in the local temperature with short-term dynamics. The nonvolatile
memristive devices without short-term dynamics can also be adopted in biorealistic
STDP implementation by combining with a volatile element in series [52].
Biorealistic implementation of BCM learning rules with sliding threshold fre-
quency also requires second-order memristive devices, since the sliding threshold
frequency calls for variables with short-term dynamics. Lu and his coworkers
demonstrated BCM rules in the Pd/WO, /W second-order memristive devices [30].
The current of LRS state spontaneously decays after the removal of the external
electric field, as shown in Figure 1.19a—-c. The current decay process is also known
as forgetting effect, retention loss, or memory loss characteristics. Taking advantage
of this forgetting effect, one can realize biorealistical implementation of BCM
learning rule with a sliding threshold frequency. The conductance of the device
at any given instant depends not only on the stimulus but also on the state of the
device, which is related to the forgetting process. As given in Figure 1.19b, the same
stimulus (10 Hz) can trigger either current decrease (in step 2, following 200 Hz
stimulus) or current increase (in step 4, following 1 Hz stimulus) depending on
the previous activity. Thus, the modulation efficiency of a stimulus with a given
frequency is highly related to the previous stimulus frequency, which is in line with
the sliding threshold frequency in biological BCM rules. The realized BCM rules are
given in Figure 1.19c. The detailed measurement approach is given as follows: First,
one of three previous activities (ten pulses at either 10, 20, or 50 Hz) are applied
on the device with the same state. Second, a stimulus with different frequency (the
abscissa) is applied on the device, and the resultant net current change (the ordi-
nate) is recorded. It is clearly shown that high-frequency stimulation leads to the
potentiation and low-frequency stimulation leads to the depression. Furthermore,
the threshold frequency slides as a function of the previous stimulus. This result is in
good agreement with the biological BCM rules. This biorealistic BCM learning rule
has also been demonstrated in cone-shaped ZnO memristive device with forgetting
effect [119]. Very recently, Xiong et al. [118] realized the tunable forgetting rate by
engineering the electrode/oxide interface by controlling the electrode composition
in STO memristive devices, as shown in Figure 1.19d,e. The BCM rules with tunable
sliding frequency thresholds are biorealistically demonstrated (see Figure 1.19f).
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Figure 1.19 Biorealistic BCM learning rules obtained in second-order memristive devices.
(a) Memristive device forgetting effect observed in the device of Pd/WO,/W. (b) The
memristive device response to consecutive programming pulse trains (1V, 1 ms) at different
frequencies. The same stimulus (10 Hz) can trigger either current decrease (in step 2,
following 200 Hz stimulus) or current increase (in step 4, following 1 Hz stimulus)
depending on the previous activity. (c) The experimental BCM rules obtained by controlling
the priming stimuli frequency. Source: (a-c) Du et al. [30]. (d) Tunable forgetting effect
observed in SrTiO; (STO) memristive device with different electrodes (Pt, Pt-5% AL, Pt-17%
Al Pt-33% AL, Al). () The current change of the Pt-33% Al/STO/Nb-STO device by applying
nine pulses (1V, 10 ps) with different frequencies. (f) Frequency threshold of the BCM rules
can be tunable through modulating the Al content in the electrodes (0%, 33%, 100%) or
controlling the device states (400 pA, 1 nA, 10 nA). The frequency threshold shifts to low
frequencies when the Al content in the electrodes is higher and the conductance level is
lower. Source: (d-f) Xiong et al. [118].

1.3.2 Memristive Neurons

Besides synapses, another fundamental element in biological neural networks is
neuron. A biological neuron consists of several parts: the soma, the dendrites, the
axon, and the neuronal membrane [120], as schematically shown in Figure 1.20a.
The information encoding function of neurons is mainly realized by the change
in their membrane potential. The resting equilibrium membrane potential is
determined by the concentration gradients of ions across the membrane. The
ion channels on the membrane are much more permeable to K* than to Na*, so
the equilibrium potential of K* is about —70 mV when the neuron is at rest. The
action potential is generated by the flow of ions through voltage-gated channels,
as shown in Figure 1.20b,c. That is, the depolarization of the membrane caused by
external stimulations will change the configuration of the Na*t channels, resulting
in the higher permeability to Na*. As a result, there will be Na* influx through
voltage-gated Na* channels, which forms the rising edge of the action potential and
reverses the polarity of the plasma membrane. The voltage-gated Na* channels will
then be closed, and the K* channels are activated, hence leading to an outward flux



28

1 Two-Terminal Neuromorphic Memristors

L4 oo b (4 © ° ®
s Na*channel @ K*channel @ 3“33‘.”’
oma .
Axon hillock
O
7L\/JL
/ Nodes of
Dendrites Ranvier
(a)
Vi, .
; : Inside
40 Action potential I

— e e e e, e g
S . f 1
E Na*in 1 1
() ! Ga Gy G
(=] K* out c 1 Channel \
8 Alm conductance P
° Threshold 7Bt it el i el bty el
>-55 o0 LGP 4 | Nernst J- E

=70 P s i Na potential EK L

Stimulus Hyperpotential T o | ) |
- Outside
Time —

(d)

Figure 1.20 Biological neurons. (@) Schematic of a biological neuron, including soma,
dendrites, axon, and nucleus. (b) Schematic of neuronal membrane. Source: (3, b) Yi et al.
[120]. (c) Action potential in a biological neuron. (d) Hodgkin-Huxley neuron model.
Source: (c, d) Yang et al. [47].

of K* ions. This forms the dropping edge of the action potential and returns the
membrane potential to the resting state.

The above neuronal dynamics can be described by the integrate-and-fire (IF)
model, leaky-integrate-and-fire (LIF) model, and Hodgkin-Huxley (HH) model
[121]. IF and LIF models are mainly based on the insight that pulsatile spike is a
threshold process. In the IF neuron model, the spikes of the presynaptic neuron,
scaled by the strength of the corresponding synapses connecting with the dendrites,
are applied to the neuron and then cause EPSCs or IPSCs due to the membrane
depolarization. These EPSCs will be temporally and spatially integrated and induce
the neuron membrane boost that is known as the local graded potential (LGP). An
action potential is triggered when LGP reaches the threshold. If the LGP is below
the threshold, IF neuron will retain that voltage boost continuously until it fires
again. This characteristic is not in line with observed neuronal behavior. In fact,
LGP shows short-term dynamics and results in a sub-threshold membrane boost
that soon leaks out in a short time in biological neurons. Thus, a leaky term is
added to the membrane potential to form an LIF neuron model. In an LIF neuron,
the sub-threshold membrane boost will leak out in a period of time, which endows
the neuron to implement time-dependent memory. The IF and LIF models give
a bioplausible description of neural behavior but provide only a weak link to the
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underlying biophysical causes of electrical activity, and these two models are rather
limited in predicting the precise time course of voltage during and after a spike.

In contrast, the HH model is the detailed biophysical neuron model that describes
the dynamics of ion channels on the neuron cell when it is spiking and widely
accepted in computational neuroscience. A typical HH neuron model based on the
parallel thought of a simple circuit is shown in Figure 1.20d. The HH model treats
each component of a neuron as an electrical element. The neuron membrane is
represented as a capacitance (C,,); the conductance of ion channels is presented
by resistors with programmable resistance. The leak channels are presented by a
linear resistor (G; ). Nernst potential generated by the difference in ion concen-
tration is represented by a battery (E,,,,). Compared with IF and LIF neurons,
HH neuron is very complex because it is a nonlinear system and cannot be solved
analytically, which limits its application in artificial neuron networks. However,
the development of memristive devices opens a new avenue for hardware artificial
neurons.

In biological systems, scalable neurons are indispensable building blocks, in
addition to compact synapses, for constructing large-scale neuromorphic comput-
ing systems. Thus, the development of scalable artificial neurons is an active area
of research in the past few years, and some stirring progress have been made with
the emergence of memristive devices [122-124]. Note that the design of memristive
neurons is much different from that of artificial synapses, since they play quite dif-
ferent roles in neural networks. Rich synaptic functions can be generally emulated
in a single memristive device via its conductance changes representing synaptic
weight modulation. In contrast, one memristive alone normally is not sufficient
as a substitute of a neuron; a hybrid circuit consisting of CMOS transistors and
memristive devices is mostly needed to emulate a neuron [125]. Here, the goal is
to mention that the introduction of memristive devices significantly simplifies the
neuron circuits compared with those based on CMOS transistors only.

As mentioned above, there are many neuron models including IF neuron, LIF
neuron, HH neurons, and some extended and simplified versions of these models
[121, 126, 127]. Actually, these neuron modes can be divided into two classes: bio-
plausible neurons consisting of IF and LIF neurons and biophysical neurons mainly
referring to HH neurons [121]. IF and LIF neurons are focused on the threshold
process generating a spike, while HH neurons are based on the biophysical dynamic
details of ion channels in the neuron membrane. Bioplausible neurons are simple
but prevalent in neuromorphic computing, while biophysical neurons describe some
salient features of biological neurons that bioplausible ones fail to capture, such as
hyperpolarization. It is found the hyperpolarization can prevent the spiking rate
from going extremely high value, which is critical in the neuromorphic comput-
ing systems coding based on spike frequency and timing [128]. Some representative
reports about bioplausible and biophysical neurons based on memristive devices are
given in Table 1.1.
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1.3.2.1 Bioplausible Memristive Neurons

In 2016, Tuma et al. [124] successfully developed an IF neuron in a hybrid circuit
consisting of a phase-change (Ge,Sb,Tes, GST for short) device and an auxiliary cir-
cuit including comparators. The phase-change device is used to represent the mem-
brane potential and realize the integration function with innate stochastic dynamics
that arise directly from the physics of melt-quench-induced reconfiguration of the
amorphous phases in GST. The fire function is realized by triggering a spike gen-
erator when LGP reaches the threshold values set by the comparator. Owing to the
nonvolatile nature of resistive switching in GST, the leaky function is missed in this
stochastic neuron. In 2018, Yang et al. [25] designed an LIF neuron in which an ide-
ally volatile memristive device (Memristor 2) was adopted to represent membrane
potential with short-term dynamics and thus realize leaky function. The circuit of
this LIF neuron is shown in Figure 1.21. Memristor 1 presents nonvolatile resistive
switching behavior with or without forgetting effect, which is used to represent the
synapse receiving input spikes. These input signals scaled by the relative synaptic
strengths then temporally and spatially integrate as V4 via the adder OP,, which
is the integration function of the neuron. Then, V4, is applied on Memristor 2 and
evokes the resistance decrease of Memristor 2, which results in a boost of the divided
voltage of RC (V). Vo Plays a role like LGP does in biological neurons. A spike is

Memristor 1

Temporal

;
summationg

'

Synapses Dendrites ~ Neuron soma Axon

Figure 1.21 The LIF neuron implementation in the threshold-less memristive devices
combined with comparators. In this LIF circuit, Memristor 1 represents the synapses to
receive inputs from upstream neurons. Memristor 2 is a volatile second-order memristive
device, which is used to mimic the dynamics of the local graded potential. Source: Yang
et al. [25].
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generated if V. is larger than the reference value of comparator OP, (Vy), realizing
the fire function. If V. is lower than V, V,, will gradually leak out, owing to the
volatile feature of Memristor 2, which is the leaky function of this neuron. Note that
the resistive switching process in Memristor 2 is analog and without obvious thresh-
old value. Thus, a comparator is required to realize the threshold spiking process.
Furthermore, the spike generation is implemented with the help of a pulse generator
(P), which makes it difficult for such neurons to achieve high-density integration.
In contrast, if the memristive device performs intrinsic threshold switching
process, the LIF function of neurons can be realized using a much simpler auxiliary
circuit without comparator and external pulse generator [135]. In this case, the
threshold switching memristive device handles threshold spiking process. A capac-
itor is typically connected to the threshold switching memristive device in parallel
to implement integration effect via the charging process. Wang et al. [129] recently
developed an LIF neuron with a simple circuit composed of a diffusive memristive
device and a capacitor in parallel, as shown in Figure 1.22a. In this LIF neuron,
the capacitor acts as the membrane and realizes the leaky and integration effects of
neurons, while the diffusive memristive device functions as the ion channel and
implements the fire function. The output signal in this neuron is the current flow
across the diffusive memristive device. To obtain a voltage spike, a resistor can be
connected in series with a threshold switching device, as shown in Figure 1.22,
and the output signal is represented by the divided voltage of this series resistor.
When input pulses are applied on this LIF neuron, the capacitor charges with a
time constant of R,C and lifts up the voltage across the diffusive memristive device
(CL loop in Figure 1.22b). The memristive device turns on by forming conducting
filaments when the voltage reaches its threshold, and soon, the capacitor performs
discharging through the memristive device (DL loop in Figure 1.22b) and induces
the plunge of the voltage across the memristive device, resulting in it recovering to
high resistance. Accompanied by this capacitor charging and discharging process, a
voltage spike is generated. Zhang and his coworkers [130] developed this type of LIF
neuron using an ECM cell of Ag/SiO,/Au, and it was found that the spike frequency
could be tuned by controlling the strength of input signals. In comparison with
the abovementioned artificial neuron composed of comparators, this hybrid LIF
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Figure 1.22 The implementation of an LIF neuron in the threshold memristive devices
with parallel capacitors. (a) Schematic illustration of an artificial LIF neuron composed of a
threshold memristive device and a parallel capacitor, in which the memristive device
functions as the ion channel and the capacitor acts as the membrane. Source: Wang et al.
[129]. (b) Schematic illustration of the LIF neuron circuit with voltage output.
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neuron circuit is much simpler, since it typically comprises a threshold switching
device and a capacitor in parallel. Thus, the reported artificial LIF neurons mostly
belong to this type of LIF neurons so far. It is noteworthy that some LIF neurons
with tunable integration time have been realized using memcapacitors [136, 137] or
pseudo-memcapacitors (a diffusive memristive device with a series capacitor) [131]
to replace normal capacitors.

Note that two-terminal memristive devices share similar structure with normal
capacitors, that is, MIM sandwich structure. Thus, it is not surprising to find that
some memristive devices work as capacitors at a given time, in particular at HRS
state, and a capacitor is included in the equivalent circuits of some memristive
devices. Therefore, it is not necessary to add a capacitor to implement the integration
function of LIF neurons, at least for some memristive devices, meaning that an LIF
neuron can be realized with a single component. In 2017, Pablo and his coworkers
[132] reported a LIF neuron based on a single MIT memristive device, as shown in
Figure 1.23. The sample shown in this figure is an MIT device based on GaTa,Seq
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Figure 1.23 LIF neuron based on a single component of threshold memristive device.

(a) Experimental setup in which the current flowing through the memristive device
represents the output spike. (b) Experimental integrate-and-fire functionality realized in the
single component of GaTa,Seg MIT cell. Source: (a, b) Stoliar et al. [132]. (c) /-V
characteristics of the Pt/FeQ,/Ag threshold memristive device. Inset: The cross-section view
of the memristive device under high-resolution transmission electron microscopy (HRTEM)
inspection. (d) The demonstration of integrate-and-fire behavior under continuous voltage
pulse train based on the single Pt/Fe0,/Ag threshold memristive device. Source: (c, d)
Zhang et al. [133].
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with threshold switching behaviors. The current flowing through the MIT cell is
the output signal. The working process of this LIF neuron is similar to those based
on hybrid circuits with capacitors. Furthermore, the spiking frequency can also be
tuned by controlling the input pulse parameters (see Figure 1.23b). In 2018, Zhang
et al. [133] realized a highly compact LIF neuron with low power consumption
using a single threshold switching device of Pt/FeO,/Ag in a similar way, as shown
in Figure 1.23c,d. Detailed experimental results indicate that the formation and
automatic retrieval of silver filaments are the physical mechanism of threshold
switching behavior. From the above discussions, we can conclude that threshold
switching with volatile nature is very useful for implementing LIF neurons. Thus,
this observed in many oxides has been exploited to realize bioplausible neurons
with a compact structure [138]. In addition to memristive devices, some magnetic
devices [139-141] were also exploited to realize some bioplausible functions of
neurons, which is beyond the scope of this article.

1.3.2.2 Biophysical Memristive Neurons

Unlike bioplausible neurons that can be realized in a single memristive device, the
biophysical neuron, that is, the HH neuron, involving complex dynamics of Na*
and K* ion channels, requires much more complex circuits, and the progress on
realization of artificial HH neurons is quite limited. In 2012, Pickett and his cowork-
ers [123] developed an HH axon using two elements, each comprising an NbO, cell
and a capacitor in parallel to function as sodium and potassium ion channels in the
neuron membrane. These two elements are coupled with each other through a load
resistor (Rp,), as shown in Figure 1.24a. The adopted NbO, memristive device per-
forms threshold switching (see Figure 1.24b). The spike generated by this axon well
resembles the biological spikes with hyperpolarization, as displayed in Figure 1.24c.
The extended version with the stochastic effect of this HH axon is simulated by
Saeed in 2017, [142]. Moreover, in 2018, Yi et al. [134] experimentally demonstrated
the stochastic HH axon built with VO, MIT memristive devices in a similar circuit
and realized most of the known neuron dynamics. Note that this circuit is typi-
cally termed as HH axon rather than HH neuron due to the fact that it mainly deals
with the way of generating a spike highly resembling biological axons. Very recently,
Huang and his coworkers [10] designed an artificial quasi-HH neuron with LIF
functions based on a volatile memristive device with distinct nano-battery effect.
The memristive device adopted here performs volatile analog switching behaviors,
as shown in Figure 1.25. Unlike normal oxide memristive devices based on oxy-
gen ion migration, the analog switching obtained in this device stems from proton
migration with much higher mobility than oxygen ions. The protons come from
the poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) bottom
electrode. The high ionic conductivity of protons fosters the enhancement of the
battery effect in the device of W/WO,/PEDOT:PSS. The hybrid neuron circuit is
shown in Figure 1.25c. There are two memristive devices, M, and M,, in the dedi-
cated electrical circuit, in which M, acts as neuron membrane and realizes the LGP
dynamics while M, functions as neuron axon and realizes firing an HH neuron-like
spike. Since this memristive device has no threshold, the comparator is utilized to
implement LIF functions in the first part of this circuit. If LGP reaches the reference
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Figure 1.24 Memristive HH axon. (a) Circuit diagram of the HH axon. The channels
consisting of Mott memristive devices (M; and M,), each with a characteristic parallel
capacitance (C, and C,) and coupled through a load resistor of R ,. (b) Threshold switching
observed in the Mott NbO, memristive devices. (c) Simulated super-threshold 0.3V input
pulse and its corresponding spike output highly resembling the biological spikes. Source:
Pickett et al. [123].

value of comparator, a falling edge is generated by the comparator and then triggers
timer to generate a pulse with fixed width. This pulse carrying the timing informa-
tion of input signals is applied on a simple circuit consisting of M, and a resistor R3
in series. The output spike is the divided voltage on R3, which highly resembles the
neuron-like spike (see Figure 1.25d). In particular, the hyperpotential (part d) arises
from the battery potential of M, memristive device after removing external electric
potential. The output spike frequency is tunable through control of the input sig-
nals, as given in Figure 1.25e, and it is found that the interaction of protons and
electrons in M, resembles the coordination of K* and Na* ion channels in the neu-
ron membrane. To the best of our knowledge, this is the first physical demonstration
of artificial neurons with functions described in both biophysical and bioplausible
neuron models.

In these years, memristor has been intensively investigated for the construction of
artificial synapses and neurons because of its simple structure and rich dynamics. In
this chapter, we first briefly introduce the state-of-art memristive synapses including
short-term memristive synapses and long-term memristive synapses. Subsequently,
recently reported memristive neurons, such as bioplausible neurons and biophysical
neurons, are discussed. Here, bioplausible neurons consist of IF neurons and LIF
neurons, and biophysical neurons refer to HH neurons.
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Figure 1.25 HH neuron with LIF functions. (a) The cross-sectional TEM image of the
W/WO,/PEDOT:PSS/Pt device. (b) /-V curves of the analog switching. (c) Electrical circuit of
the proposed HH neuron with two W/WO,/PEDOT:PSS/Pt memristive devices. The first
memristive device handles the tasks of integration and leaky, while the second one is used
to realize the fire function. (d) Experimental and simulation results of the firing spike, which
is in good agreement with biological spikes. (e) Temporal integration and bioinspired fire
realized with the circuit. Source: (b-e) Huang et al. [10].

1.4 Memristive Neural Networks

1.4.1 Memristive ANN Computing

Two training approaches have been proposed to realize memristive ANN comput-
ing, offline training, and online training. In the case of offline training, the training
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process is done by software with the memristive device model. Then, the obtained
synaptic weight is mapped into the memristive device crossbar. The salient features
of quickly parallel operation in memristive device crossbar will accelerate the work-
ing process of networks. In contrast, in online training approach, the training process
is directly done on the memristive device crossbar, which enables parallel operation
in both training and working processes.

In 2017, Sheridan et al. [143] implemented sparse coding algorithms in a 32 x 32
crossbar array of WO, analog memristive devices, as shown in Figure 1.26a. This
memristive network was offline trained by software; the obtained synaptic weight
was then mapped to synaptic crossbar array via controlling the input pulse duration.
The reconstructed image composed of the individual patches based on sparse-coding
algorithm reproduces the original image well; see Figure 1.26b. Actually, this offline
training approach is compatible with almost all algorithms used in ANNS; thus
neural networks with different goals can be built in this way. In 2018, Hu and his
coworkers [144] demonstrated a 128 X 64 one-transistor-one-memristive device
(1T1M) array and achieved an 89.9% recognition accuracy for 10 000 Modified
National Institute of Standards and Technology (MNIST) handwritten digit test set
in a single-layer neural network, as shown in Figure 1.26c,d. Very recently, long
short-term memory networks have been developed based on the same 128 x 64
1T1M array, with which predicting airline passenger numbers and identifying an
individual human-based gait were successfully realized [151]. They then combined
the convolutional neural networks (CNN) with LSTM networks to demonstrate the
ConvLSTM, which classifying the MNIST-sequence videos [152].

Unlike offline training, online training approach means most of the training com-
putation works are directly done on the memristive device crossbar. Moreover, the
online learning self-adaptively mitigated the impact of the hardware imperfections
[152]. In 2015, Prezioso et al. [145] developed a single-layer perceptron using 10 X 6
fragment of the TiO,_, memristive device crossbar array; see Figure 1.26e. This net-
work was online trained using the Manhattan update rule, i.e. a coarse—grain variety
of delta rule, to perform the classification of 3 x 3-pixel black/white image into three
classes (Figure 1.26f). It is found that Manhattan update rule is more feasible for
the online training in memristive device crossbars, as given in Figure 1.26g. In 2017,
Yao and his coworkers [146] experimentally demonstrated a 128 x 8 1T1M array and
realized gray-scale face classification through parallel online training based on Man-
hattan update rule; see Figure 1.26h. In addition to Manhattan update rule, Sanger’s
rule can also be used to update synaptic weight to realize principal component anal-
ysis in memristive networks with 9x 2 TaO, array [147] (see Figure 1.26i). Com-
pared with single-layer networks, multilayer networks are generally much more
powerful in defects tolerance, as shown in Figure 1.26j. That is because the hid-
den neurons are helpful for minimizing the impact of device defects. Bayat et al.
[153] experimentally demonstrated a multilayer memristive networks composed of
two 20X 20 transistor-free crossbar arrays and realized classification of letters. Li
and his coworkers [148] demonstrated a multilayer network composed of 128 x 54
array for the first layer and 108 x 10 array for the second layer. They achieved much
higher accuracy (91.7%) than the single layer networks (89.9%) [144] on the MNIST
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Figure 1.26 Memristive ANN computing. (a) Left: Schematic of a memristive device
crossbar-based computing system, showing the input neurons (the left), the memristive
device crossbar array, and the output neurons (the bottom). A memristive device is formed at
each cross-point and can be programmed to different conductance states. Right: Scanning
electron micrograph (SEM) image of a fabricated 32 x 32 WO, memristive device array.

(b) The original image and the reconstructed image based on sparse coding in the
memristive device networks. The membrane potentials of the neurons as a function of
iteration number during locally competitive algorithm (LCA) analysis. Source: (a, b) Sheridan
et al. [143]. (c) The fabricated 128 x 64 1T1M memristive device array. (d) Total recognition
accuracy for each digit for 10000 images from the MNIST database based on the128 x 64
1T1IM memristive device array. Source: (¢, d) Hu et al. [144]. (e) The fabricated 10x 6 TiO,_,
memristive device array without transistors. (f) The evolution of output signals in this

10x 6 TiO,_, memristive device array, averaged over all patterns of a specific class. Source:
(e, f) Prezioso et al. [145]. (g) The Manhattan rule and delta rule show different Aw in the
same calculated Aw. The sign is the only parameter considered in the Manhattan rule,
while the amplitude is also included in the delta rule. (h) The schematic of parallel read
operation and how a pattern is mapped to the input in the 128 x 8 1T1M array for face
classification [146]. (i) Schematic diagram and SEM image of a 2 X 9 memristive device array
for principal component analysis. Source: Choi et al. [147]. (j) The multilayer network helps
with defect tolerance. If one device is stuck, the associated hidden neuron will adjust the
connections accordingly Source: Li et al. [148]. (k) Schematic diagram of hybrid trained
method. Source: Yao et al. [149]. (1) Error-rate traces over 550 hybrid training iteration
cycles. Source: Based on Cai et al. [150].
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handwritten recognition. Wang et al. [154] realized a reinforcement learning on a
three-layer network and performed two control problems of the cart-pole and moun-
tain car simulations.

Recently, a new hybrid training method is put forward, including the offline
trained weights of the convolutional kernel and the online trained weights of
the full connected layer. Yao and his coworkers [149] firstly implemented a
memristor-based CNN with the fully hardware. They achieve a high accuracy
(>96%) for MNIST handwritten digits by utilizing hybrid training (as shown in
Figure 1.26k) to accommodate nonideal device characteristics and accelerate the
process by parallel computing. In addition, the energy efficiency is much greater
(more than 2 orders of magnitude) than that of state-of-the-art graphics processing.
Cai et al. [150] integrated a passive crossbar array with traditional CMOS circuits
(Figure 1.261), including a full set of mixed-signal interface blocks and a computing
processer based on digit computing. The integrated system provided the hardware
solutions for neural networks with high speed and efficient power consumption.

1.4.2 Memristive SNN Computing

In comparison with memristive ANN networks, the progress on memristive SNN
networks is quite limited due to the lack of mature algorithms and comparable
simple circuits for SNN. Even so, some encouraging breakthroughs have been made
in memristive SNN computing. In 2015, Nishitani and his coworkers [155] proposed
a supervised learning model with simplified error backpropagation in a memristive
SNN, in which a three-terminal ferroelectric memristive device functions as
synapses to store analog synaptic weight. In this spiking backpropagation method,
the input signal and output signal are all spiking timing. Also, the synaptic weight
update process is divided into two steps. In the first step, only the output layer
is updated, whereas in the second step, both output layer and hidden layer were
updated. When the output spikes approach the desired timing, the residual error
rapidly drops, meaning that the supervised learning process succeeded. Li and his
coworkers [156] applied the volatile device to emulate the forgetting phenomenon
of the biological brain. In the training procedure, the potentiation and forgetting of
the synaptic weights are realized based on the electric pulses and the time intervals,
respectively. Recently, Wang and his coworkers [131] developed a prototypical
integrated capacitive switching neural network and realized associative learning
and signal classification, as shown in Figure 1.27a-c. In their prototypical networks,
neurons are represented by a pseudo-memcapacitor composed of a volatile diffusive
memristive device and a series capacitor (Figure 1.27a), and the synapses share the
similar structure with neurons but using a nonvolatile memristive device to replace
the volatile diffusive memristive devices.

In addition to supervised learning, unsupervised learning has also been experi-
mentally implemented in memristive SNN. In 2016, Serb et al. [157] experimentally
realized weight-dependent STDP in the TiO,_, memristive devices; see Figure 1.27d.
Then, they demonstrated unsupervised learning in a prototype probabilistic neural
network (Figure 1.27e), in which four input synapses are implemented by hardware
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Figure 1.27 Memristive SNN computing. (a) Scanning electron micrograph of the plan
view of the integrated dynamic pseudo-memcapacitor composed of a volatile diffusive
memristive device and a series capacitor and a transmission electron micrograph of the
cross section. (b) Schematic illustration and experimental observation of the synapse
programming using the Hebbian-like mechanism. Simultaneous presynaptic signals (dark
gray and light lines in ii) were applied to both the low capacitance state (LCS) synapse and
the high capacitance state (HCS) synapse. (c) Capacitive network for associative learning
based on the Hebbian-like mechanism. Two presynaptic signals model the sight of food and
the sound of a bell, respectively. The postsynaptic neuron models the salivation of a dog.
Source: (a-c) Wang et al. [131]. (d) Weight-dependent STDP in the TiO,_, memristive
devices. (e Unsupervised learning in a winner-take-all network with a mixture of software
and memristive device synapses. Source: (d, e) Serb et al. [157]. (f) ALl memristive neural
network, consisting of an 8 x 8 1T1R memristive synapse crossbar interfacing with eight
diffusive memristive device artificial neurons. (g) Unsupervised training of an
all-memiristive neural network based on STDP learning rules. Source: (f, g) Wang et al. [129].

TiO,_, memristive devices while the other four synapses are implemented by soft-
ware. The final classification results are optimized when enough unlabeled inputs
are feed in the networks through the introduction of probabilistic in the trigger con-
ditions of neurons. Moreover, successful learning can be achieved, even if there are
corrupted inputs. Wang et al. [129] recently built a fully memristive neural network,
in which the LIF neurons composed of a diffusive memristive device and a paral-
lel capacitor were directly connected with the memristive 1T1M arrays, as shown
in Figure 1.27f. This fully memristive network is capable of performing unsuper-
vised learning using STDP learning rule for pattern classification. Software pooling
and signal conversion are used to convert the Rectified Linear Units (ReLUs) layer
output to timing signals. Then these signals acting as inputs are fed into the fully con-
nected layer using STDP rules; see Figure 1.27g. This is an important step toward
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the hardware implementation of all memristive spiking neural networks sharing
extremely similar neuron and synaptic dynamics to their biological counterparts. As
for trained methods for unsupervised SNN, Guo and his coworkers [158] utilized the
STDP as the learning rule and proposed to dilute spike events in encoding the input
data, endowing the networks with the ability of working with the large conductance
variations of the synaptic devices.

In the last, we briefly introduce the state-of-art memristive neural networks in the
final section, including offline/online training in memristive crossbar for ANN and
supervised/unsupervised learning achieved in memristive SNN.

1.5 Summary and Outlook

In this chapter, we have given an overview on two-terminal neuromorphic mem-
ristors used in brain-inspired computing. The device structure, materials, resistive
switching behaviors, and mechanisms are presented considering unique require-
ments for neuromorphic computing. Furthermore, state-of-art demonstrations of
memristive synapses, neurons, and corresponding neural networks including ANN
and SNN have been discussed in detail. Despite encouraging progresses have been
achieved in last few decades, memristor-based brain-inspired computing is still in
its infancy, and there are many challenges to be resolved at both device level and
system level.

At the device level, an ideal synaptic element combining high yield, superior
stability, and small cycle-to-cycle and device-to-device variations is still unavailable,
which is obstacle for maximizing the computing accuracy of offline training
memristive systems. This is because the switching mechanisms of most memristive
synapses are based on metal or oxygen ions migration, leading to the stochastic
formation/rupture of conductive filaments. This inevitably induces low yield and
large variations. Therefore, considerable efforts should be devoted to explore new
switching mechanisms with high controllability and reliability. Furthermore, high
linearity and symmetry of the conductance modulation are key parameters in
maximizing the accuracy in online training networks. However, most reported
memristive synapses show large nonlinearity and asymmetry. To address this issue,
further device engineering is needed, and co-optimization studies between devices,
algorithms, and circuits might also be necessary. For memristive neurons, the
exploration of some dynamic physicochemical processes in memristive devices to
faithfully reproduce the neuron dynamics is required for the implementation of all
memristive bioinspired computing.

At the system level, the sneak current, which flows through unselected cells, can
severely restricts the size of synapse array. Although the 1T1M configuration can
effectively address the sneak path problem, the additional three-terminal transistors
will remarkably increase the circuit complexity and affect the integration density of
crossbar arrays. Fortunately, memristive synapses with nonlinear or self-rectifying
switching behavior are preferable for the construction of transistor-free crossbar
arrays. In addition, the learning algorithms of memristive ANN and SNN are still
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under development. Therefore, it is necessary to develop new network topology and
learning algorithms that are prevalent for memristive ANN and SNN, in particular
those that can take advantage of the unique properties of memristors.

Last but not the least, close collaboration between materials scientists, computer
architects, and neuroscientists is crucial to demonstrate large-scale memristive
bioinspired computing systems for practical applications.
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