Contents

Preface xiii

- Synthesis of Hairy Nanoparticles 1 Zongyu Wang, Jiajun Yan, Michael R. Bockstaller, and Krzysztof Matyjaszewski
 Introduction to Grafting Chemistry 1
 Surface Functionalization of Nanoparticles 2
- 1.2.1 Surface Modification by Chemical Treatment 2
- 1.2.2Surface Modification by Plasma Treatment8
- 1.2.3 Synthesis of Functionalized Nanoparticles Through Initiator-Containing Precursors 8

۱v

- 1.3 Synthesis of Hairy Nanoparticles 9
- 1.3.1 Surface-Initiated Polymerization/The "Grafting-from" Approach 9
- 1.3.1.1 SI-Free Radical Polymerization 10
- 1.3.1.2 SI-ATRP 10
- 1.3.1.3 SI-RAFT 17
- 1.3.1.4 Other Polymerization Techniques 19
- 1.3.2 The "Grafting-onto" Approach 21
- 1.3.2.1 Conventional "Grafting-onto" Approach 21
- 1.3.2.2 Ligand Exchange 23
- 1.3.3Template Synthesis24
- 1.3.3.1 Block Copolymer and Its Derivative Templates 24
- 1.3.3.2 Star/Bottlebrush Polymer Templates 25
- 1.4 The Role of "Architecture" in Hairy Nanoparticles 25
- 1.4.1 Conformation of Hairy Nanoparticles 26
- 1.4.2 Bimodal Hairy Nanoparticles 31
- 1.5 Conclusion 32 Acknowledgment 34
 - References 34

vi Contents

2	Hairy Nanoparticles via Self-assembled Linear Block	
	Copolymers 49	
	Zhen Zhang, Yi Shi, and Yongming Chen	
2.1	Introduction 49	
2.2	Hairy NPs via Bulk Microphase Separation of Block Copolymers	50
2.2.1	Bulk Microphase Separation of Diblock Copolymers 50	
2.2.1.1	Theoretical Research 51	
2.2.1.2	Experimental Study 52	
2.2.1.3	Effect Factors 53	
2.2.2	Bulk Microphase Separation of Triblock Copolymers 54	
2.2.3	Preparation of Hairy NPs with Different Shapes 55	
2.2.3.1	Diblock Copolymers with PTEPM or PGMA Components 56	
2.2.3.2	Diblock Copolymers Containing PS 56	
2.2.3.3	Triblock Copolymer System with PS Components 59	
2.3		61
2.3.1	Morphology of Block Copolymers Assembly 62	
2.3.1.1	Spherical Micelles 62	
2.3.1.2	Rod-Like Micelles 63	
2.3.1.3	Bilayer Structure 63	
2.3.1.4	New Morphologies 64	
2.3.2	Preparation of Hairy Copolymer NPs 65	
2.3.3	Major Factors Influencing the Morphology of Hairy NPs 65	
2.3.3.1	Block Copolymer Composition 65	
2.3.3.2	Block Copolymer Concentration 66	
2.3.3.3	The Nature of the Solvent 66	
2.3.3.4	Additives 67	
2.3.3.5	Other Factors 68	
2.4	Summary 69	
	References 69	
3	Hairy Nanoparticles via Unimolecular Block Copolymer	
	Nanoreactors 73	
	Wenjie Zhang and Xinchang Pang	
3.1	Background 73	
3.2	Synthesis and Properties of Block Copolymer Unimolecular	
	Micelles 75	
3.2.1	Properties of Unimolecular Block Copolymer Micelles 75	
3.2.2	Synthesis and Features of Star-Liked Block Copolymers 77	
3.2.2.1	Synthesis of Star-Liked Block Copolymers via Core-First Method	77
3.2.2.2	Synthesis of Star-Liked Block Copolymers via Arm-First Method	83
3.2.3	Synthesis of Bottle Brush-Liked Block Copolymer 84	
3.3	Synthesis of Monodispersed Nanoparticles via Block Copolymer	
	Unimolecular Micelles Nanoreactors 88	
3.3.1	Star-Like Block Copolymers as Unimolecular Nanoreactors 88	

- 3.3.1.1 Plain Nanoparticles 88
- 3.3.1.2 Core@Shell Nanoparticles 94
- 3.3.1.3 Hollow Nanoparticles 97
- 3.3.1.4 Nanoring 99
- 3.3.1.5 Colloidal Nanoparticles Assemblies 102
- 3.3.2 Cylindrical Polymer Brushes as Unimolecular Nanoreactors 104
- 3.4 Application of Polymer-Capped Nanoparticles 111
- 3.4.1 Solar Energy Conversion 112
- 3.4.2 Light-Emitting Diodes 113
- 3.4.3 Lithium-Ion Batteries 114
- 3.4.4 Catalysis 115
- 3.5 Conclusions and Perspectives 117
- 3.5.1 Conclusion 117
- 3.5.2 Perspectives 117 References 119

4 Environmentally Responsive Hairy Inorganic Particles 123

- Caleb A. Bohannon, Ning Wang, and Bin Zhao
- 4.1 Introduction 123
- 4.2 Environmentally Responsive Well-defined Binary Mixed Homopolymer Brush-grafted Silica Particles *126*
- 4.2.1 Introduction to Mixed Polymer Brushes 126
- 4.2.2 Mixed Polymer Brushes Grafted on Particles 129
- 4.2.3 Synthesis of Well-defined Binary Mixed Homopolymer Brushes on Silica Particles 130
- 4.2.4 Responsive Properties of Binary Mixed Homopolymer Brush-grafted Silica Particles 134
- 4.3 Thermoresponsive Polymer Brush-grafted Silica Particles 141
- 4.3.1 Synthesis and Thermally Induced LCST Transition of Thermoresponsive Polymer Brushes Grafted on Silica Particles 141
- 4.3.2 Thermally Induced Phase Transfer of Thermoresponsive Hairy Particles Between Two Immiscible Liquid Phases 144
- 4.3.2.1 Thermally Induced Phase Transfer of Thermoresponsive Hairy Particles Between Water and Immiscible Organic Solvents 144
- 4.3.2.2 Thermally induced Phase Transfer of Thermoresponsive Hairy Particles Between Water and a Hydrophobic Ionic Liquid 146
- 4.3.3 Thermoreversible Gelation of Thermoresponsive Diblock Copolymer Brush-grafted Silica Nanoparticles in Water 150
- 4.3.4 Thermoresponsive Polymer Brush-grafted Nanoparticles for Enhancing Gelation of Thermoresponsive Linear ABC Triblock Copolymers in Water 156
- 4.4 Summary and Outlook 160 Acknowledgements 161 References 161

viii Contents

5	Self-Assembly of Hairy Nanoparticles with Polymeric
	Grafts 167
	Xiaoxue Shen, Huibin He, and Zhihong Nie
5.1	Introduction 167
5.2	Self-Assembly of PGNPs into Colloidal Molecules 168
5.2.1	Precisely Defined Assembly of Patchy NPs 168
5.2.1.1	Isotropic NPs 169
5.2.1.2	Anisotropic NPs 171
5.2.2	Polymer-Guided Assembly of NPs 172
5.3	Self-Assembly of PGNPs Into One-Dimensional (1-D) Structures 175
5.3.1	Self-Assembly of PGNPs in Solution Guided by Various Molecular
	Interactions 176
5.3.1.1	Self-Assembly Driven by Neutralization Reaction 176
5.3.1.2	Self-Assembly Driven by Hydrophobic Interaction 178
5.3.1.3	Self-Assembly Driven by Dipolar Interaction 180
5.3.2	Templated Self-Assembly of PGNPs into 1-D Structures 182
5.3.2.1	Hard Template-Assisted Assembly of PGNPs 182
5.3.2.2	Self-Assembly of PGNPs Assisted by Soft Templates 184
5.3.3	The Self-Assembly of 1-D Structures in Polymer Films 187
5.4	Self-Assembly of PGNPs into 2-D Structures 190
5.4.1	Templated Self-Assembly of PGNPs into 2-D Structures 190
5.4.1.1	Self-Assembly Using BCPs as Templates 190
5.4.1.2	Hard Template-Assisted Self-Assembly 193
5.4.2	Interfacial Assembly 193
5.4.3	2-D Assemblies Within Thin Film 197
5.4.3.1	PGNPs/Homopolymer System 197
5.4.3.2	Self-Assembly of Single-Component Neat PGNPs 199
5.4.3.3	Self-Assembly of Binary PGNPs Blends 201
5.5	Self-Assembly of PGNPs into 3-D Structures 202
5.5.1	Self-Assembly of PGNPs into Clusters 202
5.5.2	Self-Assembly of PGNPs into Vesicles 206
5.5.2.1	Self-Assembly of Hydrophilic Homopolymer-Grafted NPs 206
5.5.2.2	Self-Assembly of Mixed Homopolymer-Grafted NPs (M-PGNPs) 206
5.5.2.3	Self-Assembly of BCP-Grafted NPs (B-PGNPs) 209
5.5.2.4	Co-Assembly of Binary B-PGNPs or B-PGNPs/BCPs 210
5.5.3	Self-Assembly of PGNPs into 3-D Superlattices and Crystals 212
5.5.3.1	Superlattices and Crystals Assembled in Solution 212
5.5.3.2	Binary Superlattice Assembled at Interfaces 214
5.6	Representative Applications of Assembled PGNPs 215
5.6.1	Biological Applications: Imaging, Therapy, and Drug Delivery 215
5.6.1.1	Assemblies of Plasmonic PGNPs 216
5.6.1.2	Assemblies of Magnetic PGNPs 216
5.6.1.3	Assemblies of Plasmonic-Magnetic PGNPs 217
5.6.2	Dielectric Materials 218
5.7	Summary and Outlook 219
	References 220

- 6 Interfacial Property of Hairy Nanoparticles 227
 - Yilan Ye and Zhenzhong Yang
- 6.1 Introduction 227
- 6.2 Hairy NPs as Interfacial Building Blocks 228
- 6.2.1 Conformation of Grafted Polymers in Good Solvents 228
- 6.2.2 Patchy and Janus Geometry in Selective Solvents 230
- 6.2.3 Interfacial Activity as Colloids 233
- 6.3 Hairy NPs Assembly at Various Interfaces 235
- 6.3.1 Dispersion in Polymer Nanocomposites 235
- 6.3.2 Anisotropic Assembly 237
- 6.3.3 Liquid–Liquid Interfaces 240
- 6.3.4 Air–Solid Surfaces 243
- 6.3.5 Air–Liquid Surfaces 244
- 6.4 Interfacial Entropy 246
- 6.5 Interfacial Jamming 248
- 6.5.1 Electrostatic Assembly 248
- 6.5.2 Host-Guest Molecular Recognition 251
- 6.6 Single-Chain NPs at Interfaces 251
- 6.6.1 Efficient Synthesis 251
- 6.6.1.1 Electrostatic-Mediated Intramolecular Crosslinking Toward Large-Scale Synthesis of SCNPs 252
- 6.6.1.2 Grafting Single-Chain at NPs 255
- 6.6.2 Interfacial Applications 256 References 258

7 Hairy Hollow Nanoparticles 261

- Huiqi Zhang
- 7.1 Introduction 261
- 7.2 Overview of the Progress in the Design and Synthesis of Hairy Hollow NPs 262
- 7.2.1 Synthetic Strategies for Hairy Hollow Polymer NPs 262
- 7.2.1.1 Sacrificial Template Method 263
- 7.2.1.2 Self-Assembly (of Block Copolymers) Method 282
- 7.2.1.3 Single-Molecule Templating (of Core–Shell Bottlebrush Polymers) Method 288
- 7.2.2 Synthetic Strategies for Hairy Hollow Inorganic NPs 293
- 7.2.2.1 Direct Grafting of Polymer Brushes onto Hollow Inorganic NPs 293
- 7.2.2.2 Sacrificial Template Strategy Combined with Sol–Gel Chemistry and Polymer Brush-Grafting Methods 296
- 7.2.3 Synthetic Strategies for Hairy Hollow Organic/Inorganic Hybrid NPs *302*
- 7.2.3.1 Direct Deposition of Polymer Layers onto Hollow Inorganic NPs by SI-Polymerizations 302
- 7.2.3.2 Self-Assembly Method 302
- 7.2.3.3 Single-Molecule Templating Method 304

x	Contents	
---	----------	--

7.2.3.4	Sacrificial Template Method Combined with Polymer Brush Nanoreactors <i>305</i>
7.3	Conclusions and Perspectives 306 Acknowledgment 308 References 308
8	Self-Assembly of Binary Mixed Homopolymer Brush-Grafted Silica Nanoparticles 313
	Bin Zhao, Ping Tang, Phoebe L. Stewart, Rong-Ming Ho, Christopher Y. Li, and Lei Zhu
8.1	Introduction 313
8.2	Computer Simulations of the Self-Assembled Morphology of MBNPs 315
8.3	Self-Assembled Morphologies of Well-Defined Binary Mixed Homopolymer Brushes Grafted on Silica NPs <i>318</i>
8.3.1	Synthesis of Well-Defined Binary Mixed Homopolymer Brush-Grafted Silica NPs 318
8.3.2	Lateral Microphase Separation of Nearly Symmetric PtBA/PS MBNPs <i>319</i>
8.3.3	Effect of Chain Length Disparity on the Self-Assembled Morphology of PtBA/PS MBNPs 320
8.3.4	Effect of Overall Grafting Density on Morphology of PtBA/PS MBNPs 324
8.3.5	Effect of Molecular Weight on Morphology of Symmetric MBNPs 327
8.3.6	Effect of Core Particle Size on Morphology of PtBA/PS MBNPs 332
8.3.7	3D Morphologies of PtBA/PS MBNPs by Cryo-TEM and Electron Tomography <i>335</i>
8.4	Self-Assembled Morphology in Solvents and Homopolymer Matrices <i>339</i>
8.4.1	Self-Assembly of MBNPs in Good and Selective Solvents 339
8.4.2	Self-Assembly of MBNPs in Homopolymer Matrices with Different Molecular Weights 341
8.5	Conclusions and Future Work 346 Acknowledgment 346 References 347
9	Hairy Plasmonic Nanoparticles 351
	Christian Rossner, Tobias A.F. König, and Andreas Fery
9.1	Introduction 351
9.2	Plasmonic Properties of Isolated NPs and Energy Transfer to Adjacent Hairy Environment <i>354</i>
9.2.1	Plasmonic Principles of Hairy NPs 354
9.2.2	Energy Transfer to Adjacent Hairy Environment 358
9.2.2.1	Hairy NPs for Photothermal Heating 358
9.2.2.2	Hairy NPs Conjugated with Photoactive Entities 360

Contents | xi

- 9.2.2.3 Hairy NPs Conjugated with Acceptors 361
- 9.3 Plasmonic Coupling Scenarios of Hairy Plasmonic NPs 362
- 9.3.1 Supercolloidal Structures in Solution *362*
- 9.3.2 Hairy NPs Linked to Surface and Self-assembly *366*
- 9.4 Summary and Outlook Discussions 368 Acknowledgments 370 References 370
- 10 Hairy Metal Nanoparticles for Catalysis: Polymer Ligand-Mediated Catalysis 375 Zichao Wei and Jie He
- 10.1 Nanocatalysis Mediated by Surface Ligands 375
- 10.1.1 Surface Ligands as an Important Component for Nanocatalysis 375
- 10.1.2 Polymers as Better Ligands for NPs 377
- 10.2 Catalysis Mediated by PGNPs with Thiol-Terminated Polymers 380
- 10.3 Catalysis Mediated by PGNPs with NHC-Terminated Polymers 387
- 10.4 Other PGNP Nanocatalysts 393
- 10.5 Conclusion and Outlook *396* References *397*
- **11** Hairy Inorganic Nanoparticles for Oil Lubrication 401
 - Michael T. Kelly and Bin Zhao
- 11.1 Introduction 401
- 11.1.1 Oil Lubrication 401
- 11.1.2 Nanoparticles as Oil Lubricant Additives for Friction and Wear Reduction 402
- 11.1.3 Polymer Brush-Grafted Nanoparticles: Definition and Synthesis 404
- 11.2 Oil-Soluble Poly(lauryl methacrylate) Brush-Grafted Metal Oxide NPs as Lubricant Additives 406
- 11.2.1 Synthesis, Dispersibility, and Stability in PAO of Poly(lauryl methacrylate) Brush-Grafted Silica and Titania NPs 406
- 11.2.2 Lubrication Properties of Poly(lauryl methacrylate) Brush-Grafted Silica and Titania NPs in PAO 410
- Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property of Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles 413
- 11.3.1 Synthesis of Poly(alkyl methacrylate) Brush-Grafted, 23-nm Silica NPs *413*
- 11.3.2 Dispersibility and Stability of 23-nm Silica NPs Grafted with Poly(alkyl methacrylate) Brushes with Various Pendant Groups in PAO-4 414
- 11.3.3 Effect of Alkyl Side Chains of Poly(alkyl methacrylate) Brushes on Lubrication Performance of 23-nm Hairy Silica NPs as Additives for PAO-4 416
- 11.4 Improved Lubrication Performance by Combining Oil-Soluble Hairy Silica Nanoparticles and an Ionic Liquid as Additives for PAO-4 420

xii Contents

- 11.4.1 Preparation of PAO-4 Lubricants with Various Amounts of PLMA Hairy Silica NPs and [P8888][DEHP] and Stability of Hairy Silica NPs in the Presence of [P8888][DEHP] 421
- 11.4.2 Lubrication Performances of PAO-4 Lubricants with the Addition of HNP, IL, and HNP + IL at Various Mass Ratios 422
- 11.4.3 SEM-EDS and XPS Analysis of Wear Scars Formed on Iron Flats from Tribological Tests 424
- 11.5 Upper Critical Solution Temperature (UCST)-Type Thermoresponsive Poly(alkyl methacrylate)s in PAO-4 426
- Synthesis of Poly(alkyl methacrylate)s with Various Alkyl Pendant Groups by RAFT Polymerization and Their Thermoresponsive Properties in PAO-4 428
- 11.5.2 UCST-Type Thermoresponsive ABA Triblock Copolymers as Gelators for PAO-4 429
- 11.6 Summary 432 Acknowledgments 433 References 433

Index 437