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Introduction of Nature-Inspired Functional
Structural Surface

1.1 Advanced Materials Boosted by Bionics

Learning from the all-encompassing nature and drawing inspiration from natural
creatures has been always an effective way for people to invent and create new things
since ancient times. It is also a wise way for human beings to get rid of survival
predicaments and to develop sustainably. After nearly four billion years of evolution
and optimization, natural creatures have possessed many excellent properties that
are far beyond human beings. The study of typical biometric organs and structures
in the nature can not only help us understand nature better but also provide
useful references and inspiration to solve current scientific puzzles and technical
dilemmas [1–8]. As a new and comprehensive interdisciplinary subject, bionics
has maintained strong vitality since its birth in the 1960s. In fact, the ideology of
bionics has been existing in the world for thousands of years. The origin of bionics
could be derived that nature has been the source of all kinds of technological ideas,
engineering principles and major inventions since ancient times. In other words,
bionics acts a bridge to link biology in the nature with technologies developed by
human beings. As known to all, a wide variety of natural creatures can adapt to
harsh environments through a long period of evolutionary processes, so that they
can get survival and development. Surprisingly, some typical natural creatures
possess outstanding properties that even precede humanmade delicate products
in the fields of optics, mechanics, dynamics, and so on. Thus, taking inspiration
from biology in the nature to develop new materials and technologies is a wise
choice for scientists and engineers. It has flourished to this day and has gradually
integrated into biology, materials science, mechanics, optics, and many other disci-
plines including electronics and electromagnetism. In recent years, with the rapid
development of micro-/nanomanufacturing technologies, related instruments and
equipment, scientists and engineers have turned to high-performance organisms in
nature. They have been trying to reproduce the organisms by artificially copying the
complex micro-/nanostructures with excellent performance. With the performance
of traditional materials gradually entering the plateau stage, a breakthrough is
needed for the flourishing research of new functional materials. The introduction
of bionics ideas will provide a new pathway to break the deadlock of functional
materials research.
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In fact, research on bioinspired structural surfaces is in full swing at home and
abroad. The relevant achievements have sprung up. Bioinspired functional surfaces
are becoming new research hotspots in bionic engineering and are showing fire-new
developments. At present, from the imitation of biological prototypes, the imitation
objects range from biomolecules [9–11] (DNA molecules, RNA molecules, etc.),
microorganisms [12–16] (viruses, bacteria, fungi, and algae) to plants [17, 18]
(wood, leaves, etc.), animals [19–44] (beetles, butterfly wings, moth eyes, bird
feathers, shells, teeth, marine life, gecko feet, mosquito, leeches, polar bear fur,
etc.), and even the entire biological system [45–48], as shown in Table 1.1. Most
of the imitation objects are concentrated on the creature’s body surface, and the
corresponding artificial replicas are the bioinspired structural surfaces. From the
material point of view, the material types of bioinspired structural surfaces have
gradually evolved from simple organic materials and inorganic materials to broad

Table 1.1 Typical examples of structure–function correspondence in biological systems.

Biology Feature structures Functions

Biomolecules DNA Nanostructures Miniaturization
Microorganisms Virus, bacteria, fungi, yeast Various nanostructures Self-assembly,

miniaturization
Algae (diatom,
coccolithophore)

Periodic porous
structures/hierarchical
microstructures

Chemical energy
conversion, particular
optical functions

Plants Wood Periodic porous
structures

High mechanical strength

Leaves Hierarchical structures Chemical energy
conversion,
superhydrophobicity,
self-cleaning

Animals Insects (beetles, butterfly
wings, etc.)

Periodic porous
structures/hierarchical
structures

Structural color,
superhydrophobicity

Compound eyes Periodic structures Antireflection
Feathers Periodic structures Structural color,

superhydrophobicity
Seashells, teeth Periodic structures Structural color, high

mechanical strength
Marine animals (sea
urchin exoskeleton)

Periodic structures Particular optical
functions

Gecko feet Hierarchical structures Strong adhesive force
Mosquito’s legs Hierarchical structures Water-supporting ability
Fur and skin of polar bear Hollow structures Thermal insulation

Biological
systems

Self-repair, self-heating,
sensory-aid devices

Source: Reproduced with permission from Ref. [45]. Copyright © 2011 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.
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material systems such as hybrid materials and composite materials. Nature-inspired
functional structural surfaces (NIFSS) are present in a variety of different material
states and structural forms. As expected, they also show remarkable functional
characteristics.

Here are some typical examples. A series of multidimensional biomimetic
silicon-based nanocomposites were prepared by DNA origami [49]. Bioinspired
photo-controlled nanochannels based on DNA molecules can be used for drug sus-
tained release, optical information storage, and logic networks [50]. The shell-like
ordered layered structure material exhibits ultra-high mechanical properties [51].
By mimicking the unique topology of plant viruses, nano-optical antennas can be
prepared for molecular fingerprinting [52]. The membrane of bacteria Bacillus sub-
tilis exhibits durability against liquid wetting and gas permeation and is expected to
provide an example for the study of antibacterial and biomimetic drainage surfaces
[53]. The natural photonic crystals with opal-like structures of algae Cystoseira
tamariscifolia cells can produce vivid structural colors by reversibly changing the
stacking state of the internal structure in response to external environmental condi-
tions, thereby exhibiting light manipulation ability in addition to visual signals [54].
By using the natural structure of wood anisotropy and the cellulose component
therein, material scientists design and manufacture low-cost, lightweight, and
high-performance structured “super wood,” all-wood supercapacitors, “transparent
timber” with mechanical and transparent properties [55–57]. A series of hydropho-
bic, oleophobic, and amphiphobic “lotus effect” inspired self-cleaning surfaces
[58–61] and so on. It can be seen that the surface structures of organisms and
their excellent performance interdependent to form an integration of structure
and function. It should be noted that structures lay the foundation for superior
performance. Performance also reflects the extension of the structures. Therefore,
excellent functional properties of biological surfaces are revealed. On this basis, the
design and manufacture of the NIFSS that meet the requirements have become a
hotspot and a challenge in bionic engineering.

Many unique functional properties of biology in nature are inextricably linked to
ultrafine 3D micro-/nanostructures. Taking the most common species of plants and
animals as examples, studies have shown that the self-cleaning effect of the lotus
leaf, also known as the “leaf effect,” benefits from the convex-packed structures
densely distributed on leaf surfaces [62]. The magical phenomenon of continuous
directed transport of liquid film on the surface of the Nepenthes alata rim is related
to the multistage groove structures of the lip and the blind-hole structures with a
one-way wedge angle in some grooves [63]. The gecko can freely climb on the verti-
cal wall, which mainly relies on the rich microvilli structures of the sole to provide
strong adhesion [64, 65]. Another similar case is the adhesion phenomenon of the
sacral bristles of the ladybug Coccinella septempunctata to the rough surfaces [66].
The antireflective effect of the moth eye is closely related to the conical array of the
outer surface of the eyes [64]. The directional water-collecting effect of the spider silk
is realized by its unique periodic spindle knots [63]. The single scale of the chafer
Cyphochilus wings can be dazzling white, and the optical performance is closely
related to the filamentous network microstructure of the wing scale surface [67, 68].



4 1 Introduction of Nature-Inspired Functional Structural Surface

1.2 Definition and Classification of NIFSS

Bioinspired structured surfaces are referred to as NIFSS in this book. Due to the
excellent functional properties of biological surfaces in many respects, materials
scientists and engineers have long focused on biomimetic structures of biological
surfaces and artificial reproduction of their excellent functions. The so-called NIFSS
is a general term for all kinds of artificial structural surfaces with various materials
at different scale levels inspired by biological surfaces.

In this book, according to the different sources of the original micro-/
nanostructures of the biological surfaces, the NIFSS can be divided into two
categories. One is biology-based structure surfaces with similar or enhanced func-
tional properties, which are designed and developed using the biological surface
itself as a raw material or by chemical modification and physical evaporation. The
other one is biology-inspired structural surfaces with similar or enhanced func-
tional properties, which are designed and developed in combination with existing
micro-/nanomanufacturing processes. The two types of NIFSS are explained one by
one in the following text.

The NIFSS can be further subdivided into two subclasses: (i) the biological surface
itself is an original structural material to get the desired functional surface with the
natural functional characteristics. Various types of biological surfaces with excellent
functional characteristics, previously reported, can be regarded as natural structural
surfaces. Since the biological surfaces have been separated from the biological
body, the excised biological surfaces themselves can be considered a special kind of
NIFSS; (ii) denatured biomimetic structural surfaces based on biological surfaces
are obtained by chemical modification. Since the main component of the biological
surfaces itself is organic, it is still difficult to meet the stringent requirements
for practical applications. Therefore, it has become a kind of modification and
enhancement treatment of the natural structure surfaces.

NIFSS mainly refer to artificial biomimetic materials or devices that mimic the
excellent functional properties of the biological surface or the internal mechanism,
and the final realized functions can be similar to or different from original biological
surfaces. The biology itself is only used as a source of inspiration and imitation, and
it is not used as the original material to participate in the design and manufacture of
the NIFSS.

1.3 Typical Prototypes with Structural Surfaces

1.3.1 Butterfly Wings

Among these outstanding research examples, butterfly is undoubtedly one of the
most diverse and well-known biological prototypes. A variety of butterflies is bio-
logically and geographically diverse (Figure 1.1). The collection channel of butterfly
samples is convenient, providing a stable sample source and a huge database of bio-
logical structures for in-depth study of typical butterfly wings.
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Figure 1.1 Different butterflies with colorful wings in the nature.

In recent decades, there have been numerous research cases based on the butterfly
wings or inspired by the micro-/nanostructures of the wing scales, and the research
content is rich enough. For example, in a study related to the structures of butterfly
wings, the main research content includes the microscopic characterization of the
micro-/nanostructures on the butterfly wing surface and the intrinsic formation
mechanism of the brilliant structural colors [26, 69–82]. A quantitative study on the
contribution of single wing scales to interference and diffraction in the structures
of butterfly wings was also carried out [83]. A bioengineering method of butterfly
wing structural colors is also an emerging hotspot [84–90]. In terms of wettability
research, related studies have shown that the micro-/nanostructures of the butterfly
wing scales endow the wing surface with higher roughness. They can regulate
surface wettability and control the bounce behavior of droplets on the surface
[91, 92]. Based on this, directional wet super-slip fibers [93] and structured water-
proof surfaces [94] are developed. In the study of responsive materials, the scales
of the Morpho sulkowskyi make it selectively optically react to different vapors. This
optical response is derived from the polarity gradient of the micro-/nanostructure
material itself and is superior to the performance of existing nanophotonic sensors
[24, 95]. The micro-/nanostructures of the Greta oto butterfly wing surface have
piezoelectric response characteristics, which are expected to provide a reference
for the development of new optoelectronic devices. It can be applied to the field of
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electro-stealth [96]. Photonic crystal-type micro-/nanostructures and pigment-type
micro-/nanostructures on the butterfly Polyommatus icarus can exhibit differential
response characteristics to cold stress [97]. Photonic crystal structures of Papilio
ulysses wing scales can follow the change in the external refractive index to produce
a reversible thermochromic reaction [98]. Morpho wing scales can be slightly
deformed by external thermal radiation. Inspired by this, researchers have proposed
a new thermal imaging technology [99]. In catalytic research, the main research
work includes photocatalysis induced by structural colors of butterfly wings [90]
and chemical catalysis using butterfly or its imitation as support materials [100]. In
addition, in the oil/water separation research, researchers have used butterfly wings
as the osmosis membrane to imitate the artificial filter membrane for oil/water
separation [101].

Butterfly wings have shown great research value and the application potential in
various research fields, such as micro-/nano-optics, water transportation, sensing
detection, optical catalysis, and even oil/water separation. They have very broad and
potential application prospects.

1.3.2 Cicada Wings

Similarly, cicada is another typical biological prototype for bionic research. Espe-
cially, its wing has attracted intensive research interest in the field of antireflective
materials. Cicada wings have typical periodic micro-/nanostructure arrays. Huang
et al. [102] characterized the micro-/nanostructures of cicada wings by scanning
electron microscope (SEM) and measured total reflectance of cicada wings in the
wavelength range of 400–800 nm, which is as low as 1%. A three-dimensional (3D)
array model based on the micro-/nanostructures of its wing surface was established.
The simulation results were in good agreement with the experimental results
(Figure 1.2). It has been confirmed that cicada wings have ultra-low reflectivity and
exhibit excellent antireflective properties.

1.3.3 Moth Eyes

In the insect world, compound eyes present an attractive physiological optical
performance in terms of optical sensitivity and antireflection [103–105]. Compound
eyes usually contain thousands of small eyes (ommatidia) [106], as shown in
Figure 1.3. The eyes are usually neatly distributed along a spherical or hemi-
spherical surface in a hexagonal pattern. The surface of these small eyes is not
smooth. It is tightly covered by hemispherical nanoscale bumps, forming a grating
that enhances the ability of small eyes to absorb light [107]. Taking nocturnal
moths as an example, the cornea of the subwavelength structures has an optical
antireflective function, which can provide stealth help for its nighttime activities
[108, 109]. It has been confirmed that the antireflective function of the moth eye
is caused by the micro-/nanostructures, which makes a gradient change in the
refractive index between the air and the cornea, achieving the inhibition of light
reflection [64].
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Figure 1.2 Transparent cicada wings with antireflective nanostructure arrays. (a) A cicada
specimen was placed partially on a polished silicon wafer and a piece of Si nanotips.
(b) Photographic image of a singing cicada wing. (c) SEM image of the cicada wing surface.
(d) Comparison of measured and simulated total reflectance (total R%) spectrum as a
function of wavelength for the cicada wing. (e) Schematics of reflectance reduction of
biomimetic nanostructures with feature parameters compared to planar surfaces.
Abbreviations: 𝜆, incident wavelength; 𝜃, angle of incidence; d, diameter; S, spacing;
L, length; n, bulk refractive index; Si, silicon; Ge, germanium. Source: Reproduced with
permission from Liimatainen et al. [102]. Copyright © 2015 American Chemical Society.

(a) (b)

(c) (d)

Figure 1.3 SEM images of the Attacus atlas moth eye showing the compound eye
structures. Scale bar: (a) 100 μm, (b) 5 μm, (c) and (d) 500 nm. Source: Reproduced with
permission from Wang et al. [106]. Copyright © 2011 The Royal Society.
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Figure 1.4 SEM images of compound eyes. (a) The compound eyes are ellipsoidal,
composed of hundreds of ommatidia. (b) Ommatidia are uniform and tightly arranged.
(c) The upper part of ommatidia is spherical, and the lower is cylindrical, with a
diameter of 20 μm or so. (d) There is no more tiny structure on the ommatidia surface.
Source: Reproduced with permission from Han et al. [110]. Copyright © 2014 Science China
Press and Springer-Verlag Berlin Heidelberg.

1.3.4 Mayfly Eyes

Mayfly Ephemera pictiventris is a kind of insect that lives in the near water envi-
ronment. Its compound eyes can still maintain a clear view in the environment
where water vapor is concentrated [110]. The main component of the cornea of
the compound eyes is chitin, whose intrinsic contact angle is about 100∘. The eyes
exhibit excellent superhydrophobic properties. The top of the small eye and the
diameter of the base is not equal. The small eye can be seen as the upper and lower
parts. The upper part is approximately spherical. The lower part is a truncated
cone shape, which is closely arranged in a hexagonal shape. The overall height of
the small eye is about 11 μm; the diameter of the base is about 22 μm. The upper
spherical surface is straight. The compound eye size is consistent and closely
arranged. Further enlargement results show that the surface of the small eye is
relatively smooth and has no tiny nanoscale structures (Figure 1.4).

1.3.5 Mosquito Eyes

Other insects like mosquitoes Culex pipiens also exhibit excellent superhydropho-
bic properties [111], which keep mosquitoes live in extremely humid environments
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(a) (b)

(c) (d)

Figure 1.5 Complex hierarchical micro-/nanostructures of the compound eyes of
mosquitoes. (a) SEM image of a single mosquito eye. (b) Numerous ommatidia forming a
hexagonally close-packed micro-hemisphere. (c) Two neighboring ommatidia with
nanonipple arrays. (d) Hexagonally non-close-packed nanonipples covering an ommatidial
surface. Source: Reproduced with permission from Tadepalli et al. [111]. Copyright © 2007
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

with clear vision. For mosquitoes, the complex hierarchical micro-/nanostructures
of the compound eyes provide a structural basis for the realization of this func-
tion as shown in Figure 1.5. Similarly, this compound eye is also composed of a
large number of small eyes. On the one hand, the microlevel protrusion structure
of the compound eye is uniformly arranged in close-packed hexagons, which can
effectively prevent larger droplets from staying in the gap of the small eyes. On the
other hand, the nanosized mastoid in the small eyes plays a key role in avoiding
small-scale water vapor condensation. With the synergistic effect of these two fea-
tures, hydrophobicity and anti-fogging of the mosquito compound eye are finally
realized.

1.3.6 Water Striders’ Legs

It is well known that water striders can float on water surface and they can
be propelled rapidly with their superhydrophobic hairy legs by transporting
the momentum [112, 113] waves to propel themselves across the water surface
[112, 114–116]. Water strider Gerris remigis (Figure 1.6a) living at the water surface
in a highly humid environment. Without any external force, tiny, condensed
droplets in the range of femtoliters (fl) to microliters (μl) are removed from the
strider’s legs, owing to the presence of oriented conical setae. The leg of Gerris
is a centimeter-sized cylinder (of typical diameter 150 μm) decorated by an array
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(a) (b) (c)

β

Figure 1.6 (a) Gerris remigis lives at the water surface in a highly humid environment. (b, c)
Micro-XCT and SEM images of a water strider’s leg showing typical hierarchical structures.
Source: Reproduced with permission from Wang et al. [112]. Copyright © 2015 National
Academy of Sciences.

of inclined tapered hairs (Figure 1.6b,c) characterized by micro X-ray computed
tomography (XCT) and SEM. Individual setae have a length L = 40–50 μm, a
maximum diameter of ∼3 μm, and an apex angle of ∼5∘. They make regular arrays
with a mutual distance of 5–10 μm and are tilted by an angle 𝛽 = 25–35∘ to the base
of the leg (Figure 1.6b,c). In addition, longitudinal or quasi-helicoidal nanogrooves
are found on the setae surface, as shown in Figure 1.6c (inset).

1.3.7 Scorpion Back

For creatures surviving in deserts, the abrasion of the body surface by wind and
sand is main challenge. Abrasion is also undesirable, which can cause catastrophic
failures in most industrial applications [117]. In nature, some animals such as
desert lizards and scorpions live in a gas–solid mixed medium environment such as
sand. They perform in this environment through the synergy of special surface mor-
phology, internal microstructure, and biological flexibility. The back of the scorpion
can resist abrasion and protect it from damage (Figure 1.7). Han and Zhang et al.
[118–120] showed the erosion resistance mechanism of scorpion back, which is the
result of multiple coupling effects. The surface morphology, material, and elasticity
of the back of the desert scorpion are important biological coupling elements
to resist the erosion. According to their analysis, the scorpion can form special
protrusions and grooves on the back through adaptation to the living environment
and its evolution, thereby changing the flow state of the surface boundary layer and
reducing surface erosion. On the other hand, the elastic internodal membranes and
side membranes play the role of energy release and help reduce erosion.

1.3.8 Gecko’s Feet

Gecko is the largest animal known to support its weight by producing high (dry)
adhesion [121]. The ability of geckos (Figure 1.8a) to climb on vertical walls has
been noticed in ancient times. However, it was not until the invention of the electron
microscope in the 1950s that it was possible to observe the skin on the gecko’s feet
(Figure 1.8b) and toes (Figure 1.8c). The observed skin has a complex fibrous struc-
ture composed of lamellae, setae, branches, and spatula (Figure 1.8d) [64, 122–129].
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Figure 1.8 Gecko setae and apparatus for force measurement. (a) Photo of the Tokay gecko
(Gekko gecko). (b) SEM image of arrays of setae from a toe. (c) A single seta. (d) The finest
terminal spatula of a seta. (e) Single seta attached to a microelectromechanical system
(MEMS) cantilever capable of measuring force production during attachment parallel and
perpendicular to the surface. (f) Single seta attached to an aluminum bonding wire capable
of measuring force production during detachment perpendicular to the surface.
Source: Reproduced from Autumn et al. [64] with permission from Nature Publishing Group.

This hierarchical structure allows the gecko to attach to or detach from the surfaces
at will. One explanation for the gecko’s ability to control adhesion is that it can adapt
to surface roughness and achieve a very large actual contact area between its feet and
the surface [64, 125–130]. Also, compliance and adaptability of the setae contribute
to high adhesion. This could inspire the innovative design of high-sensitive sensors
for force measurement (Figure 1.8e and f).

1.3.9 Underwater Animals

Underwater animals, such as carp and shark, can swim freely owing to their
special surface structures. For carp, the fan-shaped scales are covered by oriented
nanostructured micropapillae (Figure 1.9), which not only has a drag reduction
function but also has super lipophilicity in air and super oleophobicity in water
[131, 132]. The surface of super-oleophobic fish originates from the micro–nano
hierarchical structure of the water phase. Sharkskin is a natural low-resistance
surface model. It is covered by very small individual tooth-like scales called dermal
denticles (little skin teeth), with prismatic longitudinal grooves (parallel to the
direction of local water flow). These grooved scales reduce the formation of vortices
present on a smooth surface, resulting in water moving efficiently over their
surface [133, 134].
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Figure 1.9 Scale structure on a shark. Source: Bechert et al. [133].

(a) (b)

Barb

Distal barbule

Proximal barbule

(c)

Figure 1.10 The wing feather of the eagle owl. (a) The rachis of the feather. (b) The
barbules grow in different directions. (c) The eagle owl flight noise measurement.
Source: Adapted from Chen et al. [135] with permission from Springer Nature.

1.3.10 Eagle Owl

Many species of owls can fly quietly. Acoustic measurements and microscopic obser-
vations on owls (Bubo bubo) [135] show that owls produce lower sound intensity and
low-frequency flight noise, and owls’ wing feathers have greater sound absorption
characteristics. The microscopic structures of three special characteristics of feath-
ers help to improve the pressure fluctuation of turbulence boundary and suppress
the generation of vortex noise (Figure 1.10).

1.3.11 Desert Stenocara Beetle

In areas with limited water resources, such as the Namib Desert, nature has devel-
oped elegant solutions to collect water from the atmosphere. The superhydrophobic
pattern on the back of the Stenocara beetle in the Namib Desert is a good example of
micro-condensation of water [136]. The Stenocara beetle in the Namib Desert uses
the hydrophilic/superhydrophobic patterned surface on its wings (Figure 1.11) to
collect drinking water from the fog-filled wind.

The back of this beetle is composed of hydrophilic hills and super-hydrophobic
channels. The former can collect water from the fog in the desert atmosphere,
and the latter can help the collected water droplets flow into the beetle’s mouth.
After these small droplets converge into larger droplets, they roll into the beetle’s
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(a) (b)

Figure 1.11 The water-capturing surface of the fused-over wings (elytra) of the desert
beetle Stenocara sp. (a) Adult female, dorsal view, peaks and valleys are evident on the
surface of the elytra. (b) SEM image of the textured surface of the depressed areas. Scale
bars: (a) 10 mm and (b) 10 μm. Source: Adapted from Parker and Lawrence [136] with
permission from Nature Publishing Group.

mouth and provide a fresh breakfast drink for the beetle [136, 137]. Research has
shown that the formation of these large droplets is due to the uneven surface
of the insect, which is composed of alternating hydrophobic, wax-coated and
hydrophilic, non-wax areas. This fog-collecting structure design can be cheaply
replicated on a commercial scale and can be applied to water-collecting tents and
building coverings [136]. Inspired by this wonderful natural design, Rubner and
coworkers produced a superhydrophobic/hydrophilic patterned surface to mimic
the structure of the beetle’s back [137]. The water sprayed on the superhydrophobic
pattern only forms small spherical water droplets, which are mainly concentrated
on the hydrophilic pattern. Later, Garrod et al. also demonstrated the preparation of
superhydrophobic/hydrophilic patterned surfaces to collect water [138]. The water
collection capacity of different superhydrophobic/hydrophilic ratios on the surface
has been studied in detail. Through the above examples, the application prospect of
superhydrophobic/hydrophilic pattern coatings in actual water collection devices
can be predicted.
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