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Crystal Structure and Phase Transitions in Layered Crystals
of Ternary Phosphorous Chalcogenides

1.1 Ferrielectric, Antiferroelectric, and Modulated
Orderings in MM′P2X6 (M – Cu, Ag; M′ – In, Bi; X – S, Se)

Two-dimensional crystals having strong in-plane covalent bonds and weak van
der Waals (vdW) interlayer interactions have attracted increasing attention of
science community after the discovery of graphene and its interesting properties.
Recent years have seen the emergence of relatively new ferroelectric materials
belonging to the chalcogenophosphate family [1]. These compounds contain
(P2X6)4− anions (X = S or Se), which are linked together by cations. Because
the ethane-like groups are able to withstand variations in P—P and P—X bond
lengths, a large number of chalcogenophosphates have been prepared [2]. More-
over, the coordination preferences of different cations have led to two types of
morphologies, i.e. either a three-dimensional or lamellar structure. The nature
of dipole ordering derives from bonding, Coulomb, and elastic effects peculiar
to a given lattice and may thus be expected to be different in each class. There
are six structures representing various cation sublattices possible in this broad
class of materials. These include A2

2+[P2X6]4−, A4+[P2X6]4−, A4/3
3+Υ2/3[P2X6]4−

(where Υ represents a vacant site), A2
1+B2+[P2X6]4−, and A1+B3+[P2X6]4− (here A

and B are metals). The widest variety of symmetries is found within the sulfides.
Almost every A2

2+[P2X6]4−-type compound crystallizes into a C2/m monoclinic
crystal structure. Fe2P2S6 is one of the representative examples for this class of
materials. Mixed-cation A1+B3+[P2X6]4−compounds have more variability in their
structure. AgInP2S6 has a trigonal (13Pc) structure and is centrosymmetric at
room temperature [3]. Most of mixed-cation compounds are monoclinic. The 2D
category is best represented by CuMP2S6 (M = Cr or In) in which copper is formally
monovalent and M is trivalent [4–6]. These compounds consist of lamellae defined
by a sulfur framework, which provides octahedral voids for metal cations and P–P
pairs. Within a layer, Cu, M, and P–P form triangular patterns. Dipole ordering in
these materials requires antiparallel displacements of the d10 cations, whereas the
copper sublattice is antipolar in CuCrP2S6 at T < 150 K [6]. It is polar in CuInP2S6
below Tc = 315 K and coexists with the In3+ sublattice of unequal and opposite
polarity. Cation off-centering is attributable to the second-order Jahn–Teller (SOJT)
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instability associated with the d10 electronic configuration; the lamellar matrix
absorbs structural deformations via flexible (P2X)4− groups [4, 5]. Interestingly
enough, Sn4+ is a d10 cation so that off-centering in Sn2P2S6 might also be ascribed
to a pseudo Jahn–Teller effect.

CuInP2S6 crystals are an uncommon example of the uncompensated anticollinear
two-sublattice ferroelectric system [5]. They exhibit the first-order phase transi-
tion of an order–disorder type from the paraelectric to the ferrielectric phase
(Tc = 315 K). The symmetry reduction at the phase transition (C2/c to Cc) occurs
due to the ordering in the copper sublattice and the displacement of cations from the
centrosymmetric positions in the indium sublattice. CuInP2S6 consists of lamellae
defined by a sulfur framework in which the Cu and In cations and P–P pairs
fill the octahedral voids and form triangular patterns within a layer (Figure 1.1)
[7]. A spontaneous polarization arising at the phase transition to the ferrielectric
phase is perpendicular to the layer planes. X-ray investigations have showed that
a Cu ion can occupy three types of positions: (i) Cu1 – quasitrigonal, off-centered
positions; (ii) Cu2 – octahedral, located in the octahedron centers; (iii) Cu3 – almost
tetrahedral, penetrating into the interlayer space [4, 5]. The degree of occupation
strongly depends on the temperature [5]. Moreover, two types of positions for Cu1

are distinguished: Cu1u is displaced upwards from the middle of the layer (centers of
octahedrons) and Cu1d is displaced downwards. The ordering of Cu ions (hopping
between Cu1u and Cu1d positions) in the double minimum potential is the reason
for phase-transition dynamics in CuInP2S6. At the temperature below Tc (315 K),
the intersite copper mobility is limited, trapping the Cu1+ sublattice in its displaced
state (Cu1, up) with a compensating shift in the opposite polarity In3+ sublattice,
resulting in a noncentrosymmetric (Cc) ferrielectric phase.

Selenophosphate is other class of materials exhibiting ferroelectric properties.
P2Se6 bonds have a higher degree of covalence than the P2S6 backbone, which is
the main difference in this scenario. At low temperature, Cu+ ion displacement for
CuInP2Se6 is only 1.17 Å [8] compared to 1.58 Å for CuInP2S6 [5]. This is considered
the main cause of the lower phase transitions of the CuInP2Se6 compound, which
include the second-order phase transition at Ti = 248 K and the first-order phase
transition at Tc = 236 K [9]. The occurrence of incommensurate, quasi-polar
phases, in which Cu+ cation displacement is modulated with a period different
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Figure 1.1 (a) Three positions of
copper in the cadge. (b) An in-plane
view of the layers in the ferrielectric
state, Cu shifted up while In shifted
down. Source: Maisonneuve et al.
[5] / American Physical Society.
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from the primary period of the crystal lattice, is attributed to the second-order
phase transition in this compound. Other family members show antiferroelectric
(AFE) properties. CuBiP2Se6 and AgBiP2Se6 are two materials in the selenide
family that demonstrate AFE ordering when Bi3+ is a trivalent cation [2]. Partially
AFE ordering is exhibited in CuBiP2Se6 below 173 K, with 85% of Cu+ ions located
in the well-defined off-center positions below 97 K. The higher displacement of
Bi3+ compared to that of In3+ could indicate the presence of stereoactive lone pair
electrons in Bi3+ but not In3+. At room temperature, AgBiP2Se6 exhibits a similar
pattern [2].

Metal and chalcogen substitutions and alloying allow one to efficiently modify and
introduce additional functions to the ferrielectric compound CuInP2S6. As a result,
this vital subject has recently received a lot of attention. The typical strategy is to
either change one of the two cation sublattices or to modify the P2S6 backbone by
partial replacement of Se.

1.2 Relaxor and Dipole Glassy States on the Phase
Diagram of CuInP2(SexS1−x)6 Mixed Crystals

Strongly disordered ferroelectrics such as ferroelectric solid solutions and ceramics
can exhibit rather unusual “relaxor” properties among which the most known is
a very slow relaxation of polarization. This feature had led to form the “ferroelec-
tric relaxor” notion. Yet, the most important feature of this class of ferroelectric
materials is that disorder destroys the ferroelectric transition in them. Thus, in
the zero electric field in all temperature range down to T = 0, no spontaneous
polarization or ferroelectric domains appear in relaxors as well as there are no
changes in their (average) crystalline structure. So quite naturally the relaxors have
just a broad maximum in the temperature dependence of dielectric susceptibility
instead of a sharp peak, and the position of this maximum shifts to lower T at lower
frequencies.

Despite the apparent absence of ferroelectric transitions in relaxors, ferroelectric
polarization can be generated in them at low T by applying a suitably strong
external field for a limited period. Otherwise, one can cool the sample in a strong
enough field to a low T and then switch off the field to find that it acquires some
polarization that is stable on laboratory time scales. Subsequent heating of the
relaxor in the zero field demonstrates that such remanent polarization continues
up to the threshold T. For the classical theory of phase transitions, the presence
of stable remanent polarization in the material with no ferroelectric transition
is a great contradiction and unexplained enigma. Initially, an attempt was made
to overcome this dilemma using the concept of “diffuse phase transition,” in
which distinct areas of a sample transform gradually into the ferroelectric phase
across a temperature interval. This hypothesis appears to contradict X-ray diffrac-
tion experiments that show no macroscopic polar areas in relaxors at any T in
the zero field [10].
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Dielectric materials are electrical insulators that can be polarized by applying an
electric field, as opposed to conductors, which carry charges through the materials.
When an external electric field is supplied to a dielectric material, the opposite
direction field is induced inside the material. The total polarization of the material
is the sum of all polarizations relevant to a specific system at the target frequency.
It is commonly generated by electronic, ionic, dipolar, and interfacial processes.
Orientational glasses are crystalline materials that undergo a transformation from
a high-temperature crystalline phase to a low-temperature glassy state. Analogous
to the spin glasses (for a review see Ref. [11]), randomly substituted impurity ions
that carry a moment are located on a topologically ordered lattice. These moments
have orientational degrees of freedom and they interact with one another. The
dominant exchange interaction can be of an electrostatic dipolar, quadrupolar, or
octupolar, or of an elastic quadrupolar nature. Here the interaction is mediated
by lattice strains. The orientational disorder is cooperatively frozen-in as a result
of site disorder and anisotropic interactions. The term “glass-state” implies some
resemblance to canonical glasses. Indeed, the relaxation dynamics of orientational
glasses are similar to those of canonical glasses.

CuInP2S6 crystals represent an unusual example of the collinear two-sublattice
ferrielectric system [5, 12]. Cooperative dipole effects play the main role in
these lamellar chalcogenophosphates. The first-order phase transition of an
“order–disorder” type from the paraelectric to the ferrielectric phase is observed at
Tc = 315 K. The phase transition reduces the symmetry C2/c→Cc, which occurs
due to ordering in the copper sublattice and the displacement of cations from the
centrosymmetric positions in the indium sublattice. These results were supported
by the Raman investigation of CuInP2S6 [13]. The spontaneous polarization is
perpendicular to the layer planes. These thiophosphates consist of lamellae defined
by a sulfur framework in which metal cations and P–P pairs fill the octahedral
voids; within a layer, Cu, In, and P–P form triangular patterns [14]. The lamellar
structure absorbs structural deformations via flexible P2S6 groups while forbidding
the cations to antiparallel displacements that minimize the energy costs of dipole
ordering. Cu ions can occupy several different positions in the lattice as is shown in
Figure 1.2. Cu, In, and P–P form triangular patterns within the layer. Relaxational
behavior is indicated by the temperature dependence of spectral characteristics, in
agreement with X-ray investigations. It was suggested that a coupling between P2S6
deformation modes and CuI vibrations enables copper ion hopping motions that
lead to the loss of polarity and the onset of ionic conductivity in this material at
higher temperatures [13].

1.2.1 XRD Investigations of CuInP2Se6

The selenium analog CuInP2Se6 is quite a new addition to this class of
chalcogenophosphate materials. Single-crystal XRD investigations were used
to clarify the structure of CuInP2Se6 at various temperatures. CuInP2Se6 has a
lamellar structure like Fe2P2Se6 and Mn2P2Se6 [15, 16]. Each layer is formed out of
one [P2Se6]4− unit, and the structures contain well-defined vdW gaps (Figure 1.2).
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Figure 1.2 Layered structures of CuInP2Se6 inferred from X-ray diffraction. Structures at
(a) 100 K and (b) 293 K. Blue atoms are Cu, pink atoms are In, yellow atoms are Se, and gray
atoms are P. (c) View ([001] direction) of a single CuInP2Se6 layer showing the arrangement
of Cu (blue), In (pink), P (gray), and Se (yellow). The atomic displacement of individual atoms
of CuInP2Se6 at (d) 100 K, (e) 180 K, and (f) 250 K.

Full data sets were collected in the temperature range from 100 to 300 K, and the
structures were refined using the SHELX-97 software [17]. The refined structural
parameters are listed in Table 1.1. The indexing of the diffractograms showed that
the phase of CuInP2Se6 belongs to the noncentrosymmetric space group P31C
(No. 159) at 100 and 180 K (Table 1.1a). Therefore, it has a centrosymmetric space
group P-31C (No. 163) at 250 K (Table 1.1c). These results largely agree with those
of the previous work [8].

Cu+ and In3+ ions in CuInP2Se6 are octahedrally surrounded by Se atoms, where
Cu+ can occupy a central (more probable) or a near-edge position in the cage
(Figure 1.2). The temperature change induces the ordering of Cu+ in the sublattice
of this material. At room temperature, 43% of Cu+ ions occupy the central position
and other 57% are found near the edges of the cage. This indicates copper hoping in
the three-well potential at T>Tc and an order–disorder type ferroelectric ordering
in CuInP2Se6. At lower temperature, a probability to find copper located in the
middle of the octahedral site decreases. At 100 K, about 93% of the Cu+ ions are in a
well-defined off-center position, displaced by 1.38 Å along the c axis (Figure 1.2d).
The remaining 7% of Cu+ ions are still disordered within the layer as before. In3+

shifts in the opposite direction when the temperature is lowered below Tc, by about
0.14 Å at 100 K (Figure 1.2d). Therefore, the material exhibits ferrielectric ordering,
similar to that of CuInP2S6.

It has to be noted that selenides have a higher covalence degree of their bonds
compared with that of the sulfide analog. Evidently, for this reason, the copper ion
sites in the low-temperature phase of CuInP2Se6 are displaced only by 1.38 Å from
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Table 1.1 (a) Structural parameters of the single-crystal CuInP2Se6 in the P31C (No. 159)
phase at 100 K. A total of 145 603 reflections are collected. (b) Structural parameters of the
single-crystal CuInP2Se6 in the P31C (No. 159) phase at 180 K. A total of 14 831 reflections
are collected. (c) Structural parameters of the single-crystal CuInP2Se6 in the P-31C
(No. 163) phase at 250 K. A total of 11 996 reflections were collected.

(a)
T = 100 K

a= 6.402(2) Å, c= 13.319(6) Å, and V= 472.8(5) Å3. The agreement factor
R1 = 2.66% was achieved by using 708 unique reflections with I >4𝝈 and the
resolution of dmin = 0.65 Å. Anisotropic atomic displacement parameters were
used for all elements

Site x y z Occupancy Ueq (Å2)

Cu 2b 2/3 1/3 0.1474(2) 1 0.0173(4)
In 2a 0 0 0.2591(1) 1 0.0087(2)
P1 2b 1/3 2/3 0.3256(3) 1 0.0057(4)
P2 2b 1/3 2/3 0.1579(2) 1 0.0057(4)
Se1 6c 0.3013(1) 0.3228(1) 0.1096(1) 1 0.0069(1)
Se2 6c 0.3552(1) 0.0054(1) 0.3706(1) 1 0.0077(2)

(b)
T = 180 K

a= 6.410(8) Å, c= 13.337(20) Å, and V= 474.6(1.3) Å3. The agreement factor
R1 = 4.58% was achieved by using 706 unique reflections with I >4𝝈 and the
resolution of dmin = 0.65 Å. Anisotropic atomic displacement parameters were
used for all elements

Site x y z Occupancy Ueq (Å2)

Cu 2b 2/3 1/3 0.1526(4) 1 0.045(1)
In 2a 0 0 0.2571(2) 1 0.0136(3)
P1 2b 1/3 2/3 0.3248(4) 1 0.0082(9)
P2 2b 1/3 2/3 0.1587(4) 1 0.0085(9)
Se1 6c 0.3059(2) 0.3248(2) 0.1097(1) 1 0.0119(3)
Se2 6c 0.3531(2) 0.0046(2) 0.3706(1) 1 0.0128(3)

(c)
T = 250 K

a = 6.397(1) Å, c = 13.340(5) Å, and V = 472.8(3) Å3. The agreement factor
R1 = 3.80% was achieved by using 538 unique reflections with I >4𝝈 and the
resolution of dmin = 0.65 Å. Anisotropic atomic displacement parameters were
used for all elements

Site x y z Occupancy Ueq (Å2)

Cu1 2d 2/3 1/3 1/4 0.354(6) 0.063(3)
Cu2 4f 2/3 1/3 0.333 4(6) 2× 0.323(6) 0.063(3)
In 2a 0 0 1/4 1 0.0217(3)
P 4f 1/3 2/3 0.1662(1) 1 0.0133(3)
Se 12i 0.33217(8) 0.33730(7) 0.12006(4) 1 0.0211(2)
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the middle of the structure layers in comparison with the corresponding displace-
ment 1.58 Å for CuInP2S6 [5, 14]. Therefore, one can assume the potential relief for
copper ions in CuInP2Se6 to be shallower than for its sulfide analog. Presumably,
for this reason, the structural phase transition in the selenide compound is observed
at lower temperature than for CuInP2S6.

The phase transitions in CuInP2(S,Se)6 crystals are caused by the cooperative
freezing of intersite copper motions. This cooperative dipolar behavior is supposed
[18] to arise from the presence of an off-centering displacement caused by electronic
instability in a form of the SOJT effect related to the d10 electronic configuration of
cations Cu+. A SOJT coupling, involving the localized d10 states forming the top of
the valence band (VB) and the s–p states of the bottom of the conduction band (CB),
is predicted to yield such instability. Photoelectron spectroscopy measurements
gave the evidence for a strong redistribution of the density of states at the top of the
valence band [18]. By combining these data with band-structure calculations, it was
shown [18] that these changes are mainly ascribable to the redistribution of the Cu
partial density of electron states, related to the off-centered position of d10 cations
in the ferrielectric phase.

1.2.2 Relaxor Phase in Mixed CuInP2(SxSe1−x)6 Crystals

Two very similar CuInP2(SxSe1−x)6 compounds of x = 0.2 and x = 0.25 are analyzed
as they exhibit a peculiar dielectric behavior. Both compositions show just one
peak of the real and imaginary part of dielectric permittivity in the temperature
range 110–145 K at 10 kHz frequency [19]. A typical dielectric characteristic
of relaxor ferroelectrics for both crystals is observed: diffused phase transition
without the well-defined Curie temperature. The dielectric permittivity of the
CuInP2(Se0.75S0.25)6 crystal is shown in Figure 1.3. A broad peak of 𝜀 ′ (T) is
observed. Tm (peak value of 𝜀′) increases with decreasing the frequency of the
applied field. A strong dielectric dispersion is detected in the radio frequency region
around and below Tm at 1 kHz. The value of Tm (T of the maximum of 𝜀′′) is much
lower than that of Tm at the same frequency. The position of the peak of 𝜀 ′ (T)
is strongly frequency dependent and no certain static dielectric permittivity is
obtained below and around the dielectric permittivity Tm at 1 kHz.

Such behavior can be described by the Vogel–Fulcher relationship

v = v0 exp
−Ef

k(Tm − T0)

where k is the Boltzmann constant and Ef, 𝜈0, and T0 are the parameters the values
of which are presented in Table 1.2:

The dielectric dispersion of CuInP2(S0.25Se0.75)6 crystals shows a strong temper-
ature dependence. At higher temperatures, the dielectric dispersion is only in the
107–1010 Hz region, and on cooling, it becomes broader and more asymmetric.
A very broad and asymmetric dielectric dispersion is observed below Tm at 1 kHz.
Therefore, the well-known predefined dielectric dispersion formulas, such as
Cole–Cole, Havriliak–Negami, or Cole–Davidson, cannot adequately describe the
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Figure 1.3 Temperature dependence of the complex dielectric permittivity of the
CuInP2(S0.25Se0.75)6 crystals measured at several frequencies. Source: Macutkevic et al. [20] /
American Physical Society.

dielectric dispersion of the presented crystals. The Cole–Cole formula describes
such dielectric dispersion only at higher temperatures due to the predefined
symmetric shape of the distribution of relaxation times.

A more general approach must be used for the determination of a broad contin-
uous distribution function of relaxation times f (𝜏) by solving the Fredholm integral
equations,

𝜀′(𝜔) = 𝜀∞ + Δ𝜀∫
∞

−∞

f (𝜏)d(ln 𝜏)
1 + 𝜔2𝜏2 (1.1a)

𝜀′′(𝜔) = Δ𝜀∫
∞

−∞

𝜔𝜏f(𝜏)d(ln 𝜏)
1 + 𝜔2𝜏2 (1.1b)
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Table 1.2 Parameters of the Vogel–Fulcher fit of the Tm dependence of
frequency for the CuInP2(SxSe1−x)6 crystals with x = 0.2 and 0.25.

Composition v0 (GHz) T0 (K) Ef/k, (K)

CuInP2(S0.25Se0.75)6 38.34 96.8 370
CuInP2(S0.2Se0.8)6 10.96 134.5 150

Figure 1.4 Relaxation-time distribution
for the CuInP2(S0.25Se0.75)6 crystals at
various temperatures. Source: Macutkevic
et al. [20] / American Physical Society.

10–11
0.0

0.1

0.2

T (K)
110
115
120
125
131
1400.3

0.4

0.5

10–9 10–7 10–5 10–3 10–1

τ (s)

f (
τ)

the normalization condition:

∫
∞

−∞
f (𝜏)d(ln 𝜏) = 1 (1.2)

The Tikhonov regularization [21] method is applied to solve this equation. The
calculated distribution of the relaxation times of CuInP2(S0.25Se0.75)6 crystals is
presented in Figure 1.4.

A high-temperature region (T ≫Tm) is characterized by a symmetric and narrow
f (𝜏), while on cooling the f (𝜏) becomes broader and more asymmetric so that below
Tm (at 1 kHz) the second maximum appears. Such behavior of the distribution
of relaxation times has been already observed in the very well-known relaxors:
PMN, PMT, and SBN [21–23]. The most probable relaxation time 𝜏mp, the longest
relaxation time 𝜏max, and the shortest relaxation time 𝜏min (0.1 level was chosen as
sufficiently accurate) have been obtained. The shortest relaxation time 𝜏min is about
0.1 ns for CuInP2(S0.25Se0.75)6 and about 0.01 ns for CuInP2(S0.2Se0.8)6; it increases



10 1 Crystal Structure and Phase Transitions in Layered Crystals of Ternary Phosphorous Chalcogenides

slowly with the increase in temperature. The longest relaxation time 𝜏max diverges
according to the Vogel–Fulcher law. However, the most probable relaxation time
𝜏mp diverges with a good accuracy according to the Arrhenius law. The temperature
dependence of the static dielectric permittivity 𝜀(0) was fitted using the spherical
random-bond–random-field (SRBRF) model

𝜀(0) =
Cp(1 − qEA)

kT − J(1 − qEA)
+ 𝜀∞ (1.3)

where J is the coupling constant and qEA is the Edwards–Anderson order param-
eter; if qEA = 0, then this equation appears to be the Curie–Weiss law. The
Edwards–Anderson order parameter qEA for the relaxor can be determined by the
equation [24]

qEA =
(ΔJ

kT

)2 (
qEA +

Δf
(ΔJ)2

)
(1 − qEA)2 (1.4)

where ΔJ is the variance of coupling and Δf is the variance of random fields. It
should be admitted that the equations of the SRBRF model quite well describe
the static dielectric properties of the investigated crystals. At sulfur concentrations
between x = 0.25 and x = 0.2, the morphotropic phase boundary between the
paraelectric phases C2/c (characteristic of CuInP2S6) and P-31c (characteristic of
CuInP2Se6), or, respectively, the ferrielectric phases Cc and P31c were suggested
[19]. Reference [25] using X-ray and Raman investigations confirmed these results
later. Notably, the disorder is very high in these compounds, so it can be the reason
of the relaxor nature.

1.2.3 Dipolar Glass Phase in Mixed CuInP2(SxSe1−x)6 Crystals

CuInP2(SxSe1−x)6 crystals with x = 0.4–0.9 show no anomaly in static dielectric per-
mittivity, showing that the polar phase transition can be identified even at low tem-
peratures. The dielectric spectra of these crystals are very similar. For example, the
real and imaginary parts of the complex dielectric permittivity of CuInP2(S0.8Se0.2)6
crystals are shown in Figure 1.5 as a function of temperature at several frequencies.

Starting at 260 K and extending to the lowest temperatures, there is a broad
dispersion of the complex dielectric permittivity. With an increase in frequency, the
maximum of the real part of dielectric permittivity shifts to higher temperatures,
as does the maximum of the imaginary part. Such behavior is typical for dipolar
glasses. This dispersion is quite well described by the Cole–Cole formula. The
temperature dependence of Cole–Cole parameters confirms a typical behavior for
dipolar glasses. The mean Cole–Cole relaxation time diverges according to the
Vogel–Fulcher law, the Cole–Cole distribution parameter strongly increases on
cooling and reaches the value 0.5 below 100 K, and the static dielectric permittivity
temperature dependence has no expressed maxima [20]. Usually such behavior
is analyzed in terms of the three-dimensional (3D) RBRF Ising model of Pirc
[26]. According to this model, the temperature dependence of static dielectric
permittivity can be described with Eq. (1.3). The order parameter is defined by the
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Figure 1.5 Temperature dependence of the complex dielectric permittivity of
CuInP2(S0.8Se0.2)6 crystals measured at several frequencies. Source: Macutkevic et al. [20] /
American Physical Society.

two coupled self-consistent equations

P = ∫
∞

−∞

dz
(2π)0.5 tanh

(
𝜂

kT

)
exp

(
−z2

2

)
(1.5)

qEA = ∫
∞

−∞

dz
(2π)0.5 tanh2

(
𝜂

kT

)
exp

(
−z2

2

)
(1.6)

where P is the polarization and

𝜂 = (ΔJ2qEA + Δf )2z + JP (1.7)

Equation (1.3) describes good enough static dielectric properties of the presented
dipolar glasses, and the obtained parameters are in a good agreement with the
parameters obtained from the Vogel–Fulcher fits, according to the formula [27].
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1.2.4 Influence of a Small Amount of Selenium to Phase-Transition
Dynamics in CuInP2S6 Crystals

The dielectric properties of CuInP2S6 are significantly changed by a small admix-
ture of selenium. The temperature of the main dielectric anomaly shifts from
about 315 to 289 K (Figure 1.6). Therefore, the maximum value of the dielectric
permittivity 𝜀′ significantly decreases from about 180 to 40 (at 1 MHz). Despite
that, the peak of dielectric permittivity becomes frequency dependent at higher
frequencies (from about 10 MHz) in CuInP2(S0.98Se0.02)6 crystals, and a critical
slowing down disappears [28]. An additional dielectric dispersion appears at
low frequencies and at low temperatures. The compound with x = 0.95 shows
qualitatively similar dielectric properties, where the dielectric anomaly with Tc and
𝜀′max shifts to lower values. The dielectric dispersion of the presented crystals is
symmetric so that it can be correctly described by the Cole–Cole formula. Again
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Figure 1.6 Temperature dependence of the complex dielectric permittivity of the
CuInP2(S0.98Se0.02)6 crystals measured at several frequencies. Source: Macutkevic et al. [20] /
American Physical Society.
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Table 1.3 Parameters of the phase-transition dynamics of the CuInP2S6
crystals with a small admixture of selenium.

Crystal Cp (K) Cp/C f TCp
(K) TCf

(K)

CuInP2(S0.02Se0.98)6 8587.7 2.99 137.2 368.7
CuInP2(S0.05Se0.95)6 1906.5 7.01 236.9 282.6

Table 1.4 Parameters of the Vogel–Fulcher fit of the temperature
dependences of the mean relaxation times 𝜏CC in x = 0.98 and 0.95
inhomogeneous ferroelectrics.

Crystal 𝝉0 (s) T0 (K) E/k (K)

CuInP2(S0.02Se0.98)6 8.5× 10−12 1150 31
CuInP2(S0.05Se0.95)6 3.77× 10−11 1215 28

the distribution of relaxation 𝛼CC strongly increases on cooling and reaches 0.43
at low temperatures. The temperature dependence of the dielectric strength Δ𝜀
was fitted with the Curie–Weiss law. The obtained parameters are summarized
in Table 1.3.

The first-order and order–disorder type of phase transition is determined from the
difference TCp

− TCf
and the ratio Cp/Cf. The mean relaxation time 𝜏CC decreases

only in a narrow temperature region in the ferroelectric phase and only for x = 0.98.
Further on cooling, a significant increasing of time 𝜏CC is observed. This increasing
is well explained by the Vogel–Fulcher law. These parameters are summarized in
Table 1.4.

One can note that all parameters (Table 1.4) for both compounds are close to each
other. Such a behavior is very similar to betaine phosphite with a small amount
of betaine phosphate [29] and in RADA crystals [30], where a proposition that a
coexistence of the ferroelectric order and dipolar glass disorder appears at low tem-
peratures was proposed. Therefore, one can conclude that mixed CuInP2(SxSe1−x)6
compounds with x ≥ 0.95 also exhibit the coexistence of ferroelectric order and dipo-
lar glass disorder at low temperatures.

1.2.5 Phase Diagram

For the analysis of phase diagram random bond and random field terms are used.
It is assumed that the mean coupling constant J/k is equal to TC because the
Curie–Weiss fit is accurate for these compounds and in this case Eq. (1.3) becomes
the Curie–Weiss law. Also for crystals with x ≤ 0.1, for the same reason it was
assumed that ΔJ and Δf are 0. For ferroelectrics with x ≥ 0.95, ΔJ was obtained
from T0 (Eq. (1.8)), and it was assumed that Δf = 0. The obtained phase diagram
for mixed CuInP2(SxSe1−x)6 compounds is presented in Figure 1.7.
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Figure 1.7 Phase diagram of the mixed CuInP2(SxSe1−x)6 crystals (FE, ferroelectric phase;
NR, nonergodic relaxor phase; DG, dipolar glass phase; FE+DG, ferroelectric and dipolar
glass coexistence). Source: Macutkevic et al. [20] / American Physical Society.

For the compounds with x ≥ 0.95 and x ≤ 0.1, the mean coupling constant
J > (Δf +ΔJ2)0.5, therefore, they undergo ferroelectric phase transition at J/k.
However, it is a significant difference between the phase-transition dynamics of
the mixed crystals with x ≥ 0.95 and x ≤ 0.1. In the mixed crystals with x ≤ 0.1, no
any coexistence of the ferroelectric order and dipolar glass disorder is observed
down to the lowest temperature (80 K). At temperatures below 100 K, the dielectric
permittivity of these compounds is very low (about 3). A low-frequency dielectric
dispersion indicates that the crystal splits into domains. Only a decrease of TC
shows that a small amount of sulfur has an effect on the phase-transition dynamics
of mixed crystals. The influence of a small amount of selenium to phase-transition
dynamics is more significant. Such influence is expressed by a rapid decrease
of TC, the appearance of the ferroelectric and dipolar glass phase coexistence at
x = 0.98, and the onset of the dipolar glass disorder with x between 0.9 and 0.95.
For the crystals with x = 0.2 and 0.25, J < (Δf +ΔJ2)0.5 and J ≈ (Δf +ΔJ2)0.5; there-
fore, the nonergodic relaxor phase appears in these crystals at low temperatures.
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In the presence of the external electric field E, the coupling constant J is expected
to vary as

J(E) = J(0) + 𝛼E2 (1.8)

For electrical field E that J(E)> (Δf +ΔJ2)0.5 and in mixed crystals the relaxor
to ferroelectric phase transition should be observed. The possible existence of the
relaxor phase in mixed ferroelectric-AFE crystals is stated in Refs. [31, 32]. No any
evidence is indicated for polar nano-region existence in the mixed crystals. The main
reason for such phase diagram is that the disorder (Δf +ΔJ2)0.5 is highest at x = 0.2,
where the mean coupling constant is also high enough.

1.3 Antiferromagnetic Ordering and Anisotropy
of Magnetization in Multiferroics Cu(In1−xCrx)P2S6

Because of their potential uses in information storage, spintronics, and sensorics,
multiferroic materials with the coexistence of two or more ferroic orders have
gained a lot of attention in recent years. Systems having a long-range polar or
magnetic order are typically considered in the quest for these materials. Previously,
researchers were more focused on investigating three-dimensional (3D) materials,
but they encountered undesirable effects such as dangling bonds and quantum tun-
neling in nano-scale thin films. Two-dimensional (2D) materials have advantages
and are gaining popularity among scientists. Copper chromium thiophosphate
CuCrP2S6 is a promising 2D material with antiferromagnetic (AFM) features
caused by the collective ordering of magnetic Cr3+ ions and AFE qualities caused by
the ordering of Cu+ ions. The layered compound CuCrP2S6 consists of the lamellae
defined by a sulfur framework in which the metal cations and P–P pairs fill the
octahedral voids [33]. Within the ab planes, the Cu+, Cr3+, and P–P form triangular
patterns (Figure 1.8). The monoclinic space group C2/c at room temperature [34]

Figure 1.8 Ordered distribution of Cr,
Cu, and P2 pairs in the ab plane of
(CuCr)P2S6. Source: Colombet et al. [34] /
with permission of Elsevier.

Cr

Cu

P2
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changes to Pc at T <Tc ≈ 150 K [35]. The Cu+ positions are AFE ordered, where
each layer is separated by a vdW gap and contains rows of Cu+ ions with alternating
up and down shifts along the c axis. The mechanism of the ferroelectric transition
is of the order–disorder type and involves hopping of the copper ions among two
positions in the lattice [33].

The well-known and mostly investigated indium compound CuInP2S6 (CIPS)
belongs to the same C2/c space group as CuCrP2S6 at room temperature, but due
to a specific SOJT instability of Cu+ and In3+ pairs, it transforms into a ferrielec-
tric structure. Therefore, CuCr1−xInxP2S6 with x > 0 are of Cc symmetry below
Tc ≈ 315 K [35, 36]. These solid solutions are expected to reveal disordered dipolar
glass phases with x around 0.5 as a consequence of randomness and frustration
as confirmed by Ref. [37]. Details of the ferroelectric and dipolar glass phases for
0.4≤ x ≤ 0.5 were reported in Ref. [38]. Magnetic disorder might also be expected
for the magnetic sublattice of solid solutions CuCr1−xInxP2S6, where magnetic
Cr3+ ions (d3 spin configuration, S = 3/2) are randomly replaced by diamagnetic
In3+ ions. From the literature, it is known that CuCrP2S6 undergoes AFM phase
transition with the Néel temperature TN ≈ 32 K [33, 34]. Competing ferromagnetic
(FM) intralayer and antiferromagnetic (AFM) interlayer exchange interactions
[34] can evoke spin glass phases in the CuCr1−xInxP2S6 solutions with x > 0. Such
coexistence of spin glass with the dipolar glass phase was detected in the layered
AFM Fe1−xMgxCl2 solid solutions [39, 40].

Both material families of dilute antiferromagnets CuCrP2S6:In and FeCl2:Mg were
compared not by accident. A similar layered structure had been noticed between the
lamellar compounds FeX2 (X = Cl or Br) and transition-metal (M) thiophosphate
phases, MPS3, such as FePS3 [34]. In both materials, the crystalline slabs are sepa-
rated by vdW gaps, where the layers act as intercalation host material. The analogy
becomes clearer when operating the notations Fe2P2S6 or stressing the occurrence
of P2 pairs – [Fe2/3(P2)1/3]S2 [16] and substituting (Fe2+)2 for (Cu+Cr3+). Notwith-
standing the above statements, it should be noticed that in contrast to the FeX2
compounds, even undoped CuCrP2S6 is a dilute magnet from the beginning (i.e.
even in the absence of nonmagnetic In3+), since it always hosts two diamagnetic
cation sublattices occupied by Cu and P2 ions. Extra dilution of the compounds must
be considered for understanding the magnetic and magnetoelectric properties dis-
cussed below. In fact, the nearest-neighbor Cr3+ moments are coupled both in and
out of plane by super-superexchange via two S2− ligands [34].

The investigations of magnetic susceptibility χ vs. temperature T and the mag-
netization M vs. magnetic field 𝜇0H for In3+ contents 0≤ x ≤ 0.8 revealed dilute
antiferromagnetic phases and dynamic spin clustering, but no signs of spin glass
behavior as it was expected. Because of this fact the search for multiglass [41] at
concentrations 0.4≤ x ≤ 0.8 is eliminated.

CuCr1−xInxP2S6 single crystals were grown by the Bridgman method, and thin
samples with typical dimensions of 3× 3× 0.1 mm3 were investigated. The x and y
dimensions are defined as ab-plane and the height z as c-axis of the monoclinic crys-
tals [34]. The magnetic easy axis of the CuCrP2S6 compound lies in the ab-plane.
However, the spontaneous ferroelectric polarization of the CuInP2S6 compound is
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directed perpendicular to the surface [5]. The magnetic measurements were per-
formed using a SQUID magnetometer. For the magnetoelectric measurements, a
modified SQUID ac susceptometer [42] was used.

1.3.1 Temperature Dependence of the Magnetization

Figure 1.9a shows the temperature (T) dependence of the magnetization (M) on the
CuCr1−xInxP2S6 samples with x = 0, 0.1, 0.2, 0.4, 0.5, and 0.8 in the external mag-
netic field of𝜇0H = 0.1 T directed perpendicularly to the ab-plane in the temperature
range 5≤T ≤ 150 K. It can be seen that M increases with decreasing the tempera-
ture and shows cusp-like antiferromagnetic (AFM) anomalies for x = 0, 0.1, and 0.2
at TN ≈ 32, 29, and 23 K, respectively. The temperature dependence of M above the
cusp is well fitted to the Curie–Weiss-type behavior M ∝ (T −Θ)−1 [34]. M is found
to be almost constant at low temperatures. They remind one of the susceptibility of a
uniaxial antiferromagnet perpendicular to its easy axis 𝜒⟂ ≈ const, thus confirming
its assertion for CuCrP2S6 [34]. Bulk CuCrP2S6 is defined as AFM because the spins
are oppositely directed in neighboring layers and it does not matter if the material
is in the ferroelectric or in the AFE phase. Once the number of layers is reduced
to few-layer nanosheets, the ferromagnetism starts dominating in this material [44].
At very low temperatures, the interlayer AFM interaction is more favored; therefore,
it is weaker than the intralayer ferromagnetism.

When x ≥ 0.4 (at higher In3+ concentration), no AFM cusps and any 𝜒⟂ ≈ const
is observed, thus confirming its assertion for CuCrP2S6 [34]. A monotonic increase
of M on cooling extends to the lowest temperatures, T ≈ 5 K. Most obviously, it is
because Cr3+ concentration falls short of the percolation threshold of the exchange
interaction paths between the Cr3+ spins.

At higher In3+ concentration when x = 0.8, the magnetization gains negative val-
ues as T > 60 K (Figure 1.9a). This peculiarity most probably comes from the diamag-
netism of the In3+ sublattice where the constant negative magnetization becomes
dominant at higher temperatures. For the correct evaluation of the Cr3+-driven mag-
netism, the diamagnetic background was added to the function showed below:

M = C
T − 𝜃

+ D (1.9)

Figure 1.9 Magnetization M vs.
temperature T measured on heating on
(CuCr1−xInx)P2S6 with x = 0, 0.1, 0.2, 0.4,
0.5, and 0.8 in 𝜇0H = 0.1 T applied
parallel to the c* direction (a) before and
(b) after correction for the diamagnetic
background. Source: Kleemann et al.
[43] / American Physical Society.
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Table 1.5 Best-fit parameters of M using Eq. (1.9).

x 𝜽 (K)
C (103 A
(m K)−1) D (A m−1)

Fitting
range (K) R2

0 30.6± 2.1 17.5± 1.0 −8.9± 5.9 T ≥ 80 0.9993
0.1 30.4± 1.5 16.1± 0.3 −6.5± 1.5 T ≥ 80 0.9995
0.2 26.1± 1.0 18.4± 0.4 −4.6± 1.6 T ≥ 80 0.9994
0.4 15.4± 0.3 7.1± 0.3 −8.9± 0.8 T ≥ 40 0.9995
0.5 8.5± 0.2 7.3± 0.3 34.4± 0.6 T ≥ 25 0.9994
0.8 2.5± 0.1 3.6± 0.3 64.5± 0.5 T ≥ 10 0.9996

It corresponds to the pure Curie–Weiss law with the constant C at sufficiently high
temperature and accounts the diamagnetic background for all compositions. The
corrected magnetization curves are shown in Figure 1.9b, while Table 1.5 shows the
best-fit parameters obtained in individual temperature ranges yielding the highest
coefficients of determination, R2. R2 exceeds 0.999 for all curves that confirms the
suitability of Eq. (1.9). The increasing magnitudes of the negative background values
D≈−9, −34, and −64 A m−1 for x = 0.4, 0.5, and 0.8, respectively, clearly reflect the
increasing contribution of diamagnetic In3+ ions. Small and nearly constant negative
background contributions, D≈−6 A m−1, are noticed for the lower concentrations of
In3+, x = 0, 0.1, and 0.2. It is very likely that these regularities violate Vagerd’s law,
which accounts the additivity rule of diamagnetic susceptibilities in compounds and
solid solutions [45].

This peculiarity is attributed to an In3+-induced origin of exchange-coupled pairs
of Cr3+ ions mediated by Cr–S–Cu–S–Cr bridges (Figure 1.8), very similarly as was
shown in CuCrS2 [46]. The infinite exchange-coupled cluster maintains the total
(positive) additional magnetic moment induced in the connected Cr3+ pairs above
the bond percolation threshold pc = 1xp = 0.347 of the triangular lattice of Cr3+ ions
[47]. As a result, D is kept constant. However, when p< pc (or x> xp), both the cluster
connectivity and the extra moment decay rapidly, resulting in a significant decrease
of D, as observed.

This is confirmed by a quite weak initial decrease of the FM (i.e. positive)
Curie–Weiss temperatures 31 K>𝜃, 26 K for 0≤ x ≤ 0.2, where TN drops much more
drastically (Table 1.5, Figure 1.9). This indicates that the 2D FM interaction within
the ab planes remains intact, while the interplanar AFM coupling becomes strongly
weakened such that TN decreases considerably. In fact, the interplanar exchange
constant, J inter/kB = −1 K, whose magnitude is not small compared to the FM one,
J intra/kB = 2.6 K [34], is expected to drive the crossover from 2D FM to 3D AFM
critical behavior above the potential FM ordering temperature, as confirmed by the
higher TN value compared to 𝜃TN (32.0 K)>𝜃 (30.6 K).

Interplanar AFM bonds become weaker when the diamagnetic dilution is
increased (when x > 0). Therefore, the Curie–Weiss temperatures achieve positive
values, 𝜃 > 0, also for high concentrations, 0.4≤ x ≤ 0.8, the Néel temperatures fall
down to zero (Figure 1.10). Obviously, the prevailing exchange interaction remains
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Figure 1.10 Néel (TN) and Curie (𝜃)
temperatures vs. In3+ concentration x. Fitted by
parabolic and logistic decay curves (solid lines),
respectively. Source: Kleemann et al. [43] /
American Physical Society.
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FM as in the undiluted AFM, x = 0 [34]. However, deviations from the linear
behavior at low temperatures (T < 30 K) indicate that competing AFM interactions
favor a disordered structure rather than a pure paramagnetic behavior. Glassy
freezing with a nonergodic behavior [46] is not apparent for the x = 0.5 compound,
as shown in Figure 1.5, because the magnetization data in zero-field cooling/field
heating (ZFC-FH) and subsequent field cooling (FC) runs are practically indistin-
guishable. The In3+ concentration x dependences on the characteristic temperatures,
TN and 𝜃, in Figure 1.10 confirm that the compound Cu(Cr1−xInx)P2S6 stops being
globally AFM at low T for dilutions x > 0.3 but continues to show dominating FM
interactions even as x → 1. The tentative percolation limit for the occurrence of
AFM long-range order as extrapolated in Figure 1.10 is reached at xp ≈ 0.3. This
is much lower than the corresponding value of Fe1−xMgxCl2, xp ≈ 0.5 [48] Also,
differently from the classic dilute antiferromagnet, it was found stronger than the
linear decrease of TN with x. This is probably the result of the dilute magnetic occu-
pancy of the cation sites in the (CuCr)P2S6 lattice (Figure 1.9, [34]), which breaks
the intraplanar percolation at lower x than in the densely packed Fe2+ sublattice
of FeCl2 [48]. A logistic function describes the decay of the Curie temperature
in Figure 1.10,

𝜃 =
𝜃0

1 +
(

x
x0

)p (1.10)

with the best-fit parameters 𝜃0 = 30.4, x0 = 0.385, and p = 3.14. It characterizes
the decay of the magnetic 3D long-range order into 2D FM islands, which rapidly
accelerates for x> x0 ≈ xp but sustains the basically FM coupling up to x → 1.

1.3.2 Field Dependence of the Magnetization and Anisotropy
of Magnetization and Susceptibility

In the highly dilute regime, 0.4≤ x ≤ 0.8, the magnetization curves (taken at T = 5 K
in fields 5 T≤𝜇0H ≤ 5 T) show saturation tendencies. The most pronounced com-
pound is with x = 0.5, where spin-glass freezing might be expected as reported, e.g.
for Fe1−xMgxCl2 [48]. However, no indication of hysteresis is detected. Noteworthy,
it excellently fits the Langevin-type functions

M(H) = M0[coth(y) − 1∕y] (1.11)

where y = (m𝜇0H)/(kBT) with the paramagnetic moment m as solid lines, while
Table 1.6 summarizes the best-fit results. Since CuCr1−xInxP2S6 can also be
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Table 1.6 Best-fit parameters of M(H) according to Eq. (1.11).

x M0 (kA m−1) m N = M0/m (nm−3)

0.4 65.7 5.6× 10−23 A m2 = 6.1𝜇B 1.2
0.5 59.6 8.5× 10−23 A m2 = 6.1𝜇B 0.7—

0.8 24.7 5.6× 10−23 A m2 = 6.1𝜇B 0.4

regarded as a quasi-2D FM for Cr3+ concentrations below the bond percolation,
p< pc = 1− xp = 0.347 [47] this interpretation is probably suitable for x = 0.4 and
0.5, but should not work for x = 0.8. While the saturation of magnetization M0 and
the moment density N scale reasonably well with the Cr3+ concentration, 1− x, the
paramagnetic moments exceed the atomic one, m (Cr3+) = 4.08𝜇B [34] by factors
up to 2.5. This is the result of the FM interactions between the nearest-neighbor
moments. They become evident at low T and are related to the observed deviations
from the Curie–Weiss behavior.

The magnetization analysis of Cu(Cr1−xInx)P2S6 compounds revealed an inter-
esting discovery of strong anisotropy, while it is very low in the concentrated
compound, (CuCr)PS3 [34]. The isotropic susceptibility behavior was found for
MnPS3, which strongly contrasts with the anisotropic susceptibilities observed
on FePS3 and NiPS3 [49]. Magnetic isotropy comes from the orbital singlet states
involved 6A1 (S = 5/2) for Mn2+ in MnPS3 and 4A2 (S = 3/2) for Cr3+ in CuCrP2S6. In
both cases, the lacking orbital moment makes the spin–orbit interaction marginal
and causes virtual insensitivity to the trigonal distortion of the S6 octahedra
to the lowest order. In the case of Cu(Cr0.5In0.5)P2S6, both the isothermal field
dependences M vs. 𝜇0H (≤5 T) at T = 5 K (Figure 1.11a) and the temperature
dependences M vs. T (≤30 K) for 𝜇0H = 0.1 T (Figure 1.11b) split up under different
sample orientations. The enhancements by up to 40% were found when rotating
the field from parallel (H∥) to perpendicular (H⟂) to the c* axis. At T = 5 K, it was
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Figure 1.11 Magnetization M of (CuCr0.5In0.5)P2S6 measured parallel (circles) and
perpendicularly (squares) to the c* axis (a) vs. 𝜇0H at T = 5 K (best fitted by Langevin-type
solid lines) and (b) vs. T on cooling at 𝜇0H = 0.1 T (interpolated by solid lines).
Source: Kleemann et al. [43] / American Physical Society.
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observed that M⟂ ≈ 70 and 2.5 kA m−1 vs. M∥ ≈ 50 and 1.8 kA m−1 at 𝜇0H = 5 and
0.1 T, respectively (Figure 1.11a,b).

This anisotropy effect might just be due to different internal fields, Hint =H −NM,
where N is the geometrical demagnetization coefficient. Indeed, from the thin
sample geometry, 3× 4× 0.03 mm3, with N || ≈ 1 and N⟂ ≪ 1, one anticipates
H∥

int <H⟂
int, hence M∥ <M⟂. However, the demagnetizing fields, N⟂M⟂ ≈ 0

and N∥M∥ ≈ 50 and 1.8 kA m−1, are no larger than 2% of the applied fields,
H = 4 MA m−1 and 80 kA m−1, respectively. These corrections are more than one
order of magnitude too small as to explain the observed splitting.

The inherent anisotropy of the paramagnetic centers is examined in the lay-
ered (CuCr)PS3 structure as anisotropy emerges in the paramagnetic phase
(Figure 1.11b). Consider the anisotropy of the total moments of uncoupled Cr3+

ions that undergo orbital momentum transfer to the spin-only ground state. Indeed,
the zero-field splitting of the 4A2(d3) ground state of Cr3+ is expected in the axial
crystal field, which admixes the 4T2g excited state via the second-order spin–orbit
interaction. The magnetic moment then fluctuates under different field directions
as the gyrotropic tensor components, g⟂ and g∥, while the susceptibilities follow g⟂2

and g∥2, respectively. However, since g⟂ = 1.991 and g∥ = 1.988 [34], the single-ion
anisotropies of both M are just 2% effects, unable to explain the experimentally
observed anisotropies.

The way out appears to be concealed in the collective nature of the dynamic Cr3+

clusters, as single-ion and dipolar-cluster features are unable to solve the anisotropy
enigma. It was proposed that they produce molecular magnets with a high spin
ground state and substantial magnetic anisotropy [50], similar to the AFM molecular
ring molecule Cr8 [51] because of their intrinsic exchange coupling. In addition to
simple 2D FM correlations, the considerably enhanced magnetic moments derived
from the Langevin-type fits (Table 1.6) appear to show marginal antiferromagnetic
interlayer correlations. Their magnetic moments seem to be partially compensated
under this hypothesis.

The dilute antiferromagnets (CuCr1−xInx)P2S6 reflect the lamellar structure of the
parent compositions in many respects. First, the distribution of magnetic Cr3+ ions
is dilute from the beginning because of their site sharing with Cu and (P2) ions in the
basal ab planes. This explains relatively low Néel temperatures (<32 K) and the rapid
loss of magnetic percolation when diluting with In3+ ions. Second, at x > 0.3, quasi-
critical fluctuations involving 2D FM exchange-coupled Cr3+ ions mirror the layered
structure. They give rise to deviations of the magnetization from the Curie–Weiss
behavior at low T and to a strong axial anisotropy reminding of quasimolecular mag-
netic properties. Similarly, a dynamic polar clustering occurs at x > 0 and superposes
structural glassiness to the ferrielectric long-range Cu+ order at low temperatures.

1.4 Magnetic Ordering in Mn2P2S6 Crystal

Layered thiophosphates MPS3 (M = Mn, Fe, Co, Ni, and Cd) crystallize in the
monoclinic lattice with a space group C2/m, as it was determined by Ouvrard and
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coworkers [15]. MnPS3 is a vdW crystal with rich physicochemical properties. In
particular, its layered structure gives a clear pathway to obtain the 2D material by
the exfoliation method [52]. Also, it is worth noting that at 78 K, the MnPS3 crystal
undergoes a transition toward a collinear antiferromagnetic phase [53] in which
a linear magnetoelectric coupling is allowed. The Mn compounds of the MnPS3
structure are known to exhibit the antiferromagnetic Néel order in a bulk form of
the mentioned crystal [54, 55]. Another interesting thing about the MnPS3 crystal
is that both magnetic and crystallographic lattices are two dimensional. The MnPS3
layers are separated not by nonmagnetic ones but by a vdW’s gap. Exhibiting a
high structural anisotropy, the mentioned material can be intercalated by alkali
metal ions without any significant distortion of the lattice parameters, making it a
promising candidate for the creation of low-cost cathodes for high-energy-density
batteries [56]. Recently, the magnetoelectric MnPS3 crystal is also considered as a
new candidate for ferrotoroidicity [56]. The hexagonal shape of the 2D sublattice
of Mn atoms makes the MnPS3 layered crystal a promising material for the creation
of heterostructures built upon this semiconductor and such insulators as graphene
or MoS2 [57]. Du et al. showed that the calculated cleavage energies of MnPS3 are
smaller than those of graphite [52]. In Ref. [58], the value of the magnetic moment
(𝜇) of the MnPS3 crystal equal to 5.98 was obtained.

The energy band spectrum of the MnPS3 crystal was for the first time calculated
by Kurita within the local-density-functional formalism. In this paper, the authors
figured out discrepancies in the calculated and experimental values of the energy gap
in the considered crystal. The theoretical calculations of the energy band spectrum
[59] do not give a full description of the electronic subsystem of the MnPS3 crystal.

The lattice dynamics of MnPS3 have been never investigated by the ab initio
approach. The experimental investigation of infrared and Raman spectra was
presented by Bernasconi et al. [60]. Also, in this work, the theoretical investigation
of the lattice dynamics of transition-metal phosphorous trichalcogenides was con-
sidered by the framework of an axially symmetric force-constant model generated
by short-range two-body potentials.

The MnPS3 crystallizes in the base-centered monoclinic lattice with the symmetry
of the C2/m space group (No. 16) [15]. The volume of the corresponding primitive
unit cell [61] is two times smaller than the volume of the conventional one. The
lattice parameters of the conventional unit cell of the MnPS3 crystal (a, b, and c) and
the parameters of the primitive unit cell (a1, a2, and a3) are related as follows:

a1 = (a + b)∕2, a2 = (a − b)∕2, a3 = c

Here a = 6.077 Å, b = 10.524 Å, c = 6.796 Å, 𝛼 = 𝛽 = 90∘, 𝛾 = 107.35∘, and
a1 = a2 = 6.076 Å, a3 = 6.796(1) Å, 𝛼 = 𝛾 = 98.576∘, and 𝛽 = 119.99(2)∘. The
primitive unit cell of MnPS3 contains two formular units (Z = 2) (see Figure 1.12).

A structure of the MnPS3 crystal is characterized by parallel planes of
transition-metal ions separated by two planes of the sulfur atoms. Six sulfur
atoms form a trigonally distorted octahedron surrounding each ion of the transition
metal. In the layered MnPS3 crystal, the adjacent planes of sulfur atoms are weakly
bonded by the vdW interactions. Each layer in the MnPS3 crystal consists of
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Figure 1.12 Primitive unit cell of the MnPS3 crystal (left) and the corresponding Brillouin
zone (middle) with the labels of the special points of high symmetry (V (0, 0, 1/2), Γ (0, 0, 0),
A (1/2, 0, 0), M (−1/2, 1/2, 1/2), L (−1/2, 0, 1/2), and Z (0, −1/2, 1/2)) and one layer of this material
directed along the c-axis (right).

Mn2+ cations and of hexatiohypodiphosphate anions P2S6
4− linked together by the

Mn—S bonds [62]. Also, the MnPS3 crystal can be considered as formed by two
distinct atomic groups, MnS6 and P2S6, each one with a near-octahedral coordi-
nation. The P—S bonds are considered as covalent, while the Mn—S bonds are
ionic.

The electronic properties of the MnPS3 crystal under the different orientation
of a magnetic moment of the Mn atoms were investigated [63]. The orientation
of the magnetic moment for the AFM MnPS3 crystal, as an example, is presented
in Figure 1.13. The calculations were performed for the atomic relaxed structure
during the geometry optimization procedure. The calculations at the level of geom-
etry optimization and energy calculations were performed applying the DFT/LDA
methodology. The computationally obtained results for the NM and AFM MnPS3
crystals are presented in Table 1.7. There 𝛼 denotes the spin-up electron states and 𝛽

corresponds to the spin-down electron states. The magnetic moment orientation for

a1 a2

a3

Figure 1.13 Magnetic moment arrangement of the Mn2+ atoms in the antiferromagnetic
structure of the MnPS3 crystal (AFM MnPS3) with the honeycomb lattice.
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Table 1.7 Calculated energy parameters for the ferromagnetic and antiferromagnetic
phases of the MnPS3 crystal using the DFT/LDA approach.

State Mn1 Mn2 𝝁 (Mn1) 𝝁 (Mn2) Etot (eV) Eg (eV) 𝜶, 𝜷

Nonmagnetic (NM) 5↑ 5↑ 5.12 5.12 −2754.75 2.23 𝛼 ≠ 𝛽

Antiferromagnetic (AFM) 5↑ 5↓ 5.21 −5.21 −2754.78 2.88 𝛼 = 𝛽

the MnPS3 crystal was studied experimentally by Kurosawa et al. using the neutron
diffraction method [64]. The experimental investigations proved that the MnPS3
semiconductor has a direct bandgap equal to 2.96 eV [65].

Analyzing the data presented in Table 1.7, one may see that the DFT/LDA method-
ology decreases the energy gap value calculated for both phases of the MnPS3 crys-
tal. In consequence, it was shown that the open d-shells of Mn atoms create the
energy state between the valence and the conducting band decreasing the energy
gap. The energy properties of the MnPS3 crystal were also investigated applying the
DFT/PBE and DFT/HSE06 functional as well as adding the Grimme correction, but
any of the proposed approaches does not give the value of the bandgap correlat-
ing with the experimental data. The DFT/HSE06 functional drastically decreases
the energy gap of the MnPS3 crystal giving its unsatisfactory value equal to 1.23 eV.
However, it was shown that applying a combination of the hybrid functional with
the Hubbard correction, where U = 5 eV, the calculated energy bandgap is equal
to 3.05 eV [66].

The quantum chemical calculations of the NM and AFM phases of MnPS3 were
performed to determine their magnetic stability. Analyzing the data presented
in Table 1.8, one may see that the antiferromagnetic phase is more stable than
the nonmagnetic state, but the obtained difference is insignificant. The structural
parameters concerning the discussed calculations are also presented in Table 1.8.
Comparing the interatomic distances, one may say that the data obtained for the
AFM structure are closer to the experimental values than the results reached for
the NM structure. In consequence, one may conclude that for future investigations,
it is possible to focus on an electronic structure of the AFM phase. One should
also notice that the calculations performed in the present work were carried out at
T = 0 K. The temperature dependence of the MnPS3 energy gap was investigated
by Grasso et al. [67]. They show that the bandgap of the mentioned material at low
temperature is equal to 2.96 eV. Additionally, it was proved that the DFT-D approach
better describes the cleavage energies of MPS3 (where M = Fe, Mn, Ni, Cd, and Zn)
crystals [52]. Therefore, in the present work, the dispersion correction to be also
applied for the description of the electronic properties of the AFM MnPS3 crystal
is proposed.

In this case, the geometry of the investigated crystal was optimized by a full relax-
ation procedure using the DFT/LDA methodology with different dispersion correc-
tion DFT-D methods (where D means OBS, TS, or Grimme correction). The results
of the performed calculations compared with the experimental data are presented
in Table 1.8. The structural parameters of the MnPS3 crystal were also calculated in
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the work [66], but the authors do not show the impact of different types of disper-
sion corrections on the structural parameters of the studied material. In this case, to
the best of our knowledge, the presented work is the first one reporting these calcu-
lations. The proposed type of calculation is very important for the investigation of
vibration properties of the MnPS3 crystal.

Analyzing the data collected in Table 1.8 and comparing them to the experimental
results, one may see that the best MnPS3 structure was theoretically obtained using
DFT/LDA-D(OBS) methodology. In this case, the calculated lattice parameters are
close to the experimental data. Also, the total energy of the fully optimized MnPS3
structure is the lowest one when the DFT-D(OBS) correction is used. It means that
the structure optimized by DFT/LDA-D(OBS) methodology is energetically more
favorable.

Although the values of the structural parameters close to the experimental
results were obtained when the calculations were carried out by DFT/GGA-D(TS)
methodology, in this case, the optimization of the structure was not properly
correct. In view of the fact that the MnPS3 crystal is characterized by the vdW
bandgap, the distance between the layers of Mn atoms was tested. The performed
calculations show that the distance between the mentioned layers of the crystal is
equal to dMn–Mn = 7.174 Å with reference to the experimental value dexp = 6.796 Å
[15]. It means that the calculated distance increases by about 40% with respect to
the experimental data, which cannot be accepted. The interlayer distance in the
MnPS3 crystal was also measured by Yagotintsev et al. using X-ray diffraction as a
function of temperature in the vicinity of the Néel point at 78 K [68]. There it was
found that temperature drop decreases the interlayer distance. At 40 K, the distance
between Mn layers is equal to dexp = 6.474 Å. It was additionally proved that the
fully optimized MnPS3 crystal structure using DFT-D(TS) correction cannot be
accepted.

As a result of the performed calculations, it was found that the DFT/LDA-D(OBS)
methodology is the best one properly describing the geometry of the considered
crystal, but any of the applied methods do not reproduce correctly the values of
the bandgap with reference to the experimental data. Therefore, the Hubbard
correction was proposed to be applied. These calculations were carried out by two
methods: first, initially the unit cell of the considered material was fully optimized
by DFT/LDA-D(OBS) methodology, and after this, the Hubbard parameters for the
d-orbitals of Mn atoms were included for the calculations of electronic properties.
The second method involves including the mentioned Hubbard correction from
the step of the geometry structure optimization. The added Hubbard correction
parameter was equal to U = 2.5 eV. Comparing the results of these calculations,
any significant differences in the energy band structure were observed. The
results of energy-band-structure calculation for the AFM MnPS3 crystal using
the first approach (DFT/LDA-D(OBS)) are presented in Figure 1.14. The calcu-
lated energy gap equal to 2.88 eV is in good agreement with the experimental
data [65].

To explain the influence of the Hubbard parameter on the electron system of
the MnPS3 crystal, the partial density of the state (pDOS) of Mn, P, and S atoms
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Figure 1.14 Energy band structure of the MnPS3 crystal calculated by DFT/LDA-D(OBS)
methodology applying the Hubbard correction at the level of energy calculations.
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Figure 1.15 Partial density of the state calculated for the AFM phase of the MnPS3 crystal
by DFT/LDA-D(OBS) (left) and DFT/LDA-D(OBS)+U (right) methodology.

using DFT/LDA-D(OBS) and DFT/LDA-D(OBS)+U approaches was calculated
(Figure 1.15).

According to the electronic configuration of the Mn, P, and S atoms, an energy
band structure of the AFM MnPS3 crystal is built of 30 dispersion curves doubly
degenerated due to inversion symmetry. The valence band ranges from −16 up
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to 0 eV and can be decomposed into eight subbands separated by energy gaps.
The lowest subband (−16÷−15 eV) is built of the 3s- and 3p-orbitals of sulfur
and the 3s-orbitals of phosphor atoms. Next subband, lying in the energy region
−15÷−13.5 eV, consists of the 3s-orbitals and 3p-orbitals of both sulfur and phos-
phor atoms. The third subband has a strong contribution of the S 3s-states mixed
with a slight contribution of the 3p-states of phosphor atoms. These first three
subbands correspond to the localized electronic states involved in the binding of
the [P2S6] anion complexes of the considered structure. The energy branches in
the −10÷−8.5 eV region, also being a mixture of S 3s, P 3s, and P 3p-orbitals, form
the antibonding P—S and bonding P—P states. A weakly dispersive fifth energy
branch located in the −8÷−7 eV range is formed by an equal contribution of S
3s and S 3p-orbitals mixed with P 3s, Mn 3d, and Mn 4p-states. This subband
represents antibonding P—P states and weak bonding states between neighboring
[P2S6] complexes through overlapping with Mn orbitals. Next two energy sub-
regions (−6.5÷−5 eV and −5÷−3.9 eV) are mainly formed by an equal minority
of the 3p-orbitals of sulfur and phosphor atoms and a strong admixture of Mn
3d-states. The states in the mentioned subbands are responsible for the chemical
bonding in the MnS6 polyhedra. The last valence subband (−4÷0 eV) is formed
by comparable contributions of the P 3p, Mn 3d, Mn 4s, and Mn 4p-states adding
the major admixture of the S 3s-orbitals. It is worth noting that the dispersion of
energy curves in the layered MnPS3 crystal is mostly caused by the peculiarity of
its structure. The dispersion of energy branches is rather weak in the direction
across the vdW gap (Γ–V) and is significant in the layer plane directions (Γ–A,
Γ–M). However, in the last valence subband, we can find energy branch (see
Figure 1.14) having an anomalous high dispersion in the Γ–V direction. The
mentioned high dispersion means a considerable overlapping between wave
functions and in this particular case should have a consequence in the bonding of
interlayers.

Comparing the pDOS (Figure 1.15) calculated using the Hubbard correction
(right) with that performed by the pure DFT/LDA-D(OBS) methodology (left) in the
energy range −4÷−8 eV, the splitting of the single peak was observed. These energy
states correspond to the bonding and antibonding states formed by the hybridized
sulfurs and phosphorous p-orbitals. An increase in the energy distance between
these states corresponds to an increase in the ionicity of the chemical bonding. The
same situation for the Sn2P2S6 crystal was observed. The opposite situation in the
5 eV energy region is observed. Here the overlap of peaks formed by d-orbitals of
the manganese atom is seen.

For a more detailed understanding of the charge interaction between the con-
sidered atoms, the total electron density distribution was calculated using the
DFT/LDA-D(OBS)+U methodology (Figure 1.16). The obtained results clearly
demonstrate that the MnPS3 crystal possesses a covalent-ionic bonding character.
However, the P–P and P–S interactions are characterized by covalent bonds. The
Mn atoms and P2S6 anion complex are connected by ionic bonds.
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Figure 1.16 Total electron density
distribution calculated by
DFT/LDA-D(OBS)+U methodology for
the MnPS3 crystal.

Table 1.9 The Mulliken charges calculated for the MnPS3 crystal by
using DFT/LDA-D(OBS)+U methodology (U = 2.5 eV for the d-orbitals of
Mn atoms).

Ions s p d Total Charge Spin

P1 1.46 2.97 0 4.43 0.57 0
S1 1.87 4.54 0 6.42 −0.42 0
S2 1.87 4.55 0 6.42 −0.42 0
Mn1 0.49 0.68 5.14 6.31 0.69 5.21

Also, the Mulliken charges for the considered crystal were calculated applying the
DFT/LDA-D(OBS)+U methodology. The results of the mentioned simulation are
presented in Table 1.9.

Analyzing these results, one may see that the initial electronic configuration
of the Mn atom (3d54s24p0) undergoes the strongest changes in the case of the
chemical compound formation. The recharging of Mn 3d and the occupation of
an initially empty Mn 3p-orbital obviously prove a strong hybridization between
the Mn states and the molecular orbitals of strongly bonded [P2S6] complexes.
A strong indirect interaction between the electronic shells of manganese atoms
by means of the [P2S6] complexes states is based on the correlation of magnetic
moments and, evidently, it is the driving force for antiferromagnetic ordering in this
system.

An implemented appropriate procedure to calculate correctly the electronic
properties of the MnPS3 crystal enables us to describe its vibrational proper-
ties. The dynamic properties of the mentioned crystal will be discussed in the
Chapter 4.
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1.5 Polar Layered Crystals of SnP2S6 Type

Phosphorus-containing chalcogenide materials of MM′P2S(Se)6 type with M and
M′ transition metals in the cation sublattice possess a layered crystal structure. For
the case of Sn and Pb cations from the main subgroup, the phosphorus-containing
chalcogenides can crystallize in a three-dimensional lattice (e.g. crystals of the
Sn(Pb)2P2S(Se)6 system) or in a layered crystal lattice (the unique case of SnP2S6).
These materials demonstrate different types of dipole ordering (ferroelectric,
ferrielectric, AFE, incommensurate modulated, relaxors, and dipole glass), various
magnetic ordering, and multiferroicity. Application of these materials opens wide
new functionalities.

Earlier, for the CuInP2S6 crystal from the vdW family with ferrielectric ordering
below Tc ≈ 315 K, the possibility of spontaneous polarization switching in the
samples with a thickness of several structural layers was discovered [69, 70]. This
discovery opened a new topic of basic and applied research in the field of nano-
electronics based on vdW multiferroics. By now, numerous examples of functional
elements including CuInP2S6 crystal monolayers or layered sandwiches have
been designed. A ferroelectric diode based on CuInP2S6 demonstrates nonvolatile
memory and indicates the possibility of integration with well-established silicon
technologies [70]. A CuInP2S6/germanene heterostructure, for which a change
in the direction of spontaneous polarization induces a semiconductor–metal
transition, can be used in the development of nonvolatile ferroelectric switches
and memory devices [71]. Ferroelectric field-effect transistors were implemented
in CuInP2S6–MoS2 heterostructures [72–74]. An ultrathin ferroelectric tunneling
junction based on a graphene/CuInP2S6 monolayer/graphene vdW heterostruc-
ture exhibits the tunneling electric resistance effect where the tunneling current
strongly depends on the direction of ferroelectric polarization [75]. Layered
CuInP2S6 crystals can also be used as nano-scale coolers based on the electrocaloric
effect [76].

The functionality of vdW heterostructures can be improved by involving polar
metals because a thin enough polar metal could be sufficiently penetrated by an
electric field to have its polarity switched [77]. For the crystals of the Sn(Pb)2P2S(Se)6
system, a semiconductor-to-metal transition can be induced by high pressure [78],
but under compression, their structure becomes centrosymmetric [8, 79]. Taking
into account the centricity of the crystal structure at normal conditions, it seems
promising to search for the polar metal state in the family of phosphorus-containing
chalcogenide compounds.

Ferrielectric polarization of the monoclinic layered CuInP2S6 crystal is determined
by the opposite shifts of Cu+ and In3+ cations out of structural layers that are built
by (P2S6)4− anionic structural groups and can be related to the SOJT effect destabi-
lizing the Cu+ cations in the positions in the middle of structural layers [8]. In the
case of the Sn2P2S6 crystal with a monoclinic three-dimensional lattice, the ferro-
electric ordering below Tc ≈ 337 K is also related to the SOJT effect that is based on
the specific chemical bonding for the Sn2+ cations [80, 81]. Earlier it was found [82]
that doping with Ge shifts the ferroelectric second-order phase transition in Sn2P2S6
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crystals toward higher temperatures. The germanium impurity in Sn2P2S6 improves
the stereoactivity of the doubly charged cation sublattice and shifts the ferroelectric
second-order phase transition toward higher temperatures [82]. The partial substi-
tution of lead by germanium induces polar ordering below 70 K in the quantum
paraelectric state of the Pb2P2S6 compound [83].

Tin hexathiophosphate SnP2S6 has a layered rhombohedral structure R3
(Figure 1.17) that is composed of nonstereoactive Sn+4 cations and (P2S6)4−

anions [84]. This crystal structure lacks half of the metal ions compared to the
parent Sn2P2S6 structure. The packing of structural layers determines the acentricity
of the SnP2S6 crystal lattice.

The absence of an inversion center in this crystal appears to be an illogical result: if
in Sn2P2S6 the nature of the acentrical environment of a Sn atom may be determined
by the presence of the lone pair on a Sn2+ cation [8], then in the case of SnP2S6
one should expect a highly symmetric octahedral coordination for a fully ionized
Sn4+ cation in the environment of sulfur atoms. However, such an environment has
not been found, even at high temperatures. In connection with this, investigations
[85] of the structural, dynamical, and electronic properties were performed in the
range up to 35 GPa in the framework of the density functional theory in the LDA
approximation. Also, the experimental dependence of the SnP2S6 lattice vibration
frequencies was found by Raman spectroscopy under hydrostatic pressure.

The main objective of these theoretical and experimental studies is to gain a
deeper insight into the electronic and vibrational properties of layered semiconduc-
tors, because the use of external pressure opens up new possibilities for controlling
the anisotropy of chemical bonding. The presence of a vdW gap leads to a different
behavior of inter- and intralayer interactions. Beyond a certain pressure, these dif-
ferences become less pronounced. Therefore, applying external pressure, it becomes
possible to investigate the peculiarities of the physical properties of the material in
two-dimensional (2D) and three-dimensional (3D) structure morphology.

Figure 1.17 Spatial view of the crystal structure of
SnP2S6. The primitive rhombohedral unit cell is indicated
by dotted lines. The hexagonal unit cell (indicated by
lattice parameters a, b, and c) contains three primitive
rhombohedral unit cells. Vertical dashed lines indicate the
three-layer packing in the directions of weak bonding.
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The dependence of all principal crystallographic parameters has a monotonic
behavior within the pressure range under study (Figure 1.18). The structural
parameters are a useful indicator of phase transitions: since no anomalies in the
pressure dependence of structural parameters are found for this crystal, we can sup-
pose that the SnP2S6 crystal structure does not undergo any collapses or significant
distortions, at least up to 35 GPa within the rhombohedral space group R3 symmetry
constraint. This statement indirectly agrees with the experimental studies of the
optical absorption spectra in a wide temperature range [86], which also indicate the
absence of structural changes in this crystal. Also, the stable phonon modes rule
out a displacive phase transition driven by a phonon instability under pressure.

Interesting peculiarities are observed at pressures of about 5 and 18 GPa. At the
former pressure, the Sn–S interatomic distances become equal (cf. Figure 1.18b); at
the latter pressure, the same is observed for the P–S distances (cf. Figure 1.18c). At
a pressure above 5 GPa, the Sn atom starts to be displaced in the direction of the S2
atoms, while at lower pressures, it is displaced in the direction of the S1 atoms. Such
behavior appears to be strange since the Sn displacement toward the S1 atoms at
low pressures may be explained by the Coulomb repulsion between the positively
charged Sn and P ions, belonging to different layers. At high pressures, this inter-
action ought to increase due to Sn–P distance shortening, so one could expect the
increase of the Sn-atom displacement in the direction of the S1 atoms. But in the case
considered here, the opposite behavior is observed: up to 5 GPa, the displacement
of the cation from the center of the sulfur octahedra is decreasing with increasing
the pressure. Right at the pressure of 5 GPa, the cation is located in the center of
the octahedra, and at higher pressures, it is displacing in the direction of the S2
atoms. The P1–S1 and P2–S2 distances are observed to be equal at 18 GPa pressure,
while the Sn–S2 distances become considerably different at this pressure. Moreover,
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Figure 1.18 Pressure dependence of the main crystallographic parameters. (a) Lattice
parameters in the hexagonal crystallographic setting; (b) cation interatomic distances;
(c) anion interatomic distances. Vertical arrows indicate the position of the equality of
interatomic distances. Source: Rushchanskii et al. [85] / American Physical Society.
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the local symmetry of the cation and anion complexes does not contain the inver-
sion operation, even at the mentioned hydrostatic pressures. The reason is that the
anion distorts the structure by rotations of the PS3 pyramids around the P–P axis.
This distortion is the actual reason for the displacement of Sn in the direction of the
nearest-layer P—P bond at high pressures.

To investigate the pressure dependence of structural polarization, calculations of
the polarization in the c direction have been made [85]. The ground-state polariza-
tion is computed by the Berry phase method [85]. Since the pressure dependence
of the total polarization pointed to a nonlinear behavior, we have extended the
investigations to the pressure range up to 80 GPa. The results are presented in
Figure 1.19. The ionic phase has a nonmonotonic behavior, reaching a maximum
at ∼2 GPa, and from then on its behavior is almost linear, crossing the zero point at
∼41 GPa. The almost linear dependence of the ionic phase above 2 GPa corresponds
to the above-described monotonic transformation of the asymmetry of the local
anion and cation environments. At 41 GPa, the lattice structure is significantly
deformed, and the ionic part of polarization disappears as a result of accidental
coincidence of the “center of mass” of the anion and cation sublattice.

However, the resulting total polarization at 41 GPa does not disappear due to
the presence of its nonzero electronic part. In contrast to the ionic phase, the
pressure dependence of the electronic polarization has two extrema. The first one
is a minimum, reached at ∼7 GPa, where the transition to the direct-gap situation is
observed. The vanishing of the electronic part of the Berry phase at ∼35 GPa results
from a strong interaction between iso-symmetrical electronic states, which form
the bottom of the CB and the top of the valence band (VB). At this pressure, the
electronic state of the top of VB is formed by orbitals, mainly localized on the anion
group, and the bottom of CB is formed by cation group orbitals. The cross-splitting
of two states leads to the delocalization of the corresponding wave functions in
the space between anion and cation groups and to the corresponding vanishing of
the electronic part of the polarization at ∼35 GPa. The electronic phase reaches its
maximum at ∼65 GPa, and then it decreases suddenly. As shown in Figure 1.19, the
resulting polarization is nonzero up to ∼70 GPa, but even at such a high pressure its

Figure 1.19 Total polarization (in a.u. of
charge/Bohr2) of SnP2S6 in the direction of weak
bonding as a function of pressure. The ionic and
electronic parts of the Berry phase are also
shown.
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disappearance is the result of the cancellation of two nonzero electronic and ionic
components with opposite signs [85].

The first-principles studies of the dynamical and electronic properties, and their
pressure dependence of SnP2S6 were performed [85]. The lattice vibration eigen-
vectors have been thoroughly studied. For example, a mixed character of the vibra-
tion at ∼374 cm−1, which corresponds to the experimental value of ∼380 cm−1, has
been obtained. The A-symmetry mode at 374 cm−1 is formed by the out-of-phase
displacements of the P atoms, accompanied by the liberations of the P1–S13 pyra-
mids and breathing of the P2–S23 pyramids. The A-symmetry mode at 443 cm−1

is formed by the in-phase oscillations of the P–P atom pairs moving out of phase
with all Sn atoms. Both by theory and Raman spectroscopy, the pressure influence
does not cause mode softening, at any rate within the BZ center. Also, the theo-
retical phonon dispersion curves do not indicate mode softening over the entire
range of BZ.

The values of the Born effective charges are in a good agreement with their nom-
inal quantities, indicating saturation of the chemical bonds. The electron density
distribution confirms the presence of the vdW gap between the neighboring layers
of the SnP2S6 structure. The presence of the electron density in the cation region
and the corresponding orbitals in the valence part of the spectrum indicates that the
cation static charge does not achieve the maximum value of +4. The electronic band
structure in the principal directions of BZ and its pressure dependence have been
investigated [85]. The indirect character of the optical absorption and the transition
into the direct bandgap structure of the spectrum at pressures above 10 GPa have
been determined. It has been shown that the bottom of CB is formed by the cation
localized states, participating in the low-frequency optical lattice vibrations, with
which the exponential dependence of the absorption coefficient may be connected,
even at liquid nitrogen temperatures.

The family of phosphorus-containing MM′P2S(Se)6 chalcogenide materials with
including promising layered ferrielectric CuInP2S6 and three-dimensional ferro-
electric Sn2P2S6 crystals can be extended by searching for new vdW compounds of
SnP2S6 type. New SnP2Se6, SnP2Te6, GeP2S6, GeP2Se6, and GeP2Te6 compounds
with a layered rhombohedral structure R3 are predicted by DFT calculations [85].
Variation of electron and phonon spectra is traced for the Sn→Ge substitution in
the cation sublattice and for the compounds with S, Se, or Te in the anion sublattice.
A polar metal state is expected at normal pressure in a layered GeP2Te6 crystal.
Also, the softening of the phonon spectrum and metallization were predicted [85]
for the SnP2S6 crystal at a pressure of about 80 GPa.
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