Index

а	areca sheath (AS) fiber 69
abrasive wear (AW) 10, 28, 52, 59, 90,	atomic force microscopy (AFM) 89, 197
109, 147, 225	
adhesive and 147	b
dimension 225	bamboo fibers 141, 162–163
mechanism of 59	based epoxy composites 29
acetic acid treatment (AAT) 251	banana fibers 4, 14
acoustic emission monitoring test 241	benzoyl chloride treatment 259
acrylonitrile butadiene styrene (ABS)	benzoyl peroxide treatment (BPT) 251
221, 255	betel nut fibers 7–8
additive manufacturing (AM)	biobased composites
of biocomposites 220	banana reinforcement 4
fabrication of 222	Betel nut fibers 7–8
process parameters 220	Calotropis gigantea reinforcement 5–6
specimen deterioration 227-228	coconut coir reinforcement 4
wear and frictional characteristics of	flax reinforcement 3
228	hemp reinforcement 4–5
wear and friction test 228	Kenaf reinforcement 6-7
acoustic emission monitoring test	Ramie reinforcement 5
241	tribological characteristics
pin-on-disc or tribometer 239	fillers on wear behavior 11
pin-on-drum 239–240	morphology analysis 12–14
repeated impact wear test 240	reinforcement orientation on wear
Rubbing test 241	behavior 8–9
wear behaviour 222	reinforcement volume fraction on
abrasive wear 224–225	wear behavior 9–10
adhesion wear 223–224	surface modification on wear
corrosive oxidative wear 226	behavior 11–12
erosion wear 225–226	tribological characterization 2
fatigue wear 226	biocompatibility 186, 187, 189, 191, 193,
fretting wear 226	197, 205
adhesion wear 223–224	biocomposites 71, 187
Amonton's formula 148	additive manufacturing (AM)
animal fiber 135	220-222

Tribological Properties, Performance, and Applications of Biocomposites, First Edition. Edited by Chandrasekar Muthukumar, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, and Ganesan Chinnachamy.

© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.

biocomposites (contd.)	cobalt-based alloys 189, 191
classification 254, 255	coconut coir reinforcement 4
natural fiber polymer composites	coconut fiber 164, 271
254–255	Cocos nucifera 164
natural fiber-reinforced composites	coefficient of friction (COF) 3, 27, 69, 86
255–256	108, 144, 170
orthopaedic applications 200–203	composite biomaterials 193–194
friction and wear of biocomposites	composite materials 19, 20, 29, 34, 48,
203–207	51, 65, 117, 131, 135, 185, 187
sliding wear 173–177	compression molding method 40, 262
biomaterials 185	conventional composites 60, 67, 199,
classification of	200, 219
ceramic biomaterials 193	corn stalk fibers 12, 13
composite biomaterials 193-194	corrosive wear 2, 90, 170, 226
metallic biomaterials 189–193	cotton fiber 137
dental applications 197	cotton plant 137
desired properties of 188	crystalline polymers 131
wear of biomaterials	
friction and technique 196-197	d
wear testing methods 195–196	date palm fibers (DPF) 250, 262
bio-polymer composite	dental applications 197
biofiller incorporated 173–175	friction and wear of
synthetic/inorganic filler incorporated	dental resins composites in vitro
175–177	199–200
block-on-disc (BOD) machine 4, 26	dental restorations in vivo 200
block-on-ring apparatus 84	non-metallic implants in 198
2-body abrasive wear 68, 225	dental resins composites in vitro
3-body abrasive wear 67, 225, 262	199–200
Boehmeria nivea 5	dental restorations in vivo 200
bone/implant surfaces 201	
Borassus fruit fine fiber (BFF) 92, 264	e
C	energy-dispersive X-ray spectroscopy (EDXS) 196
	erosion wear 225, 259
Calotropis gigantea	erosive wear 70, 90, 169, 225–226
fiber-reinforced epoxy composites 28 reinforcement 5–6	ethylenediaminetetraacetic acid (EDTA)
cane fibers 251	253
	Eulaliopsis binata fiber-reinforced epoxy
carbon fiber reinforced carbon (CFRC) 201	composites 29
carbon footprint 173	_
carbon nanofibers (CNFs) 271	f
cellulose 77	fatigue wear 2, 90, 147, 226
cellulose fibers 131, 250, 253	Fe-based alloys 191
cellulosic natural fibers 21–23, 121, 161	fiber reinforced plastics (FRP) 91, 201
cement by-pass dust (CBPD) 68, 259	fiber-reinforced polymer composites
ceramic biomaterials 193	(FRP) 149, 255
ceramic matrix composites (CMC) 185	fiber-reinforced polymers 187
ceramic palm fiber composite 161	fibers 133, 248
chemical wear 147	fiber volume fraction 10

fibre cell 77 fibre-reinforced composites 20 fibre-reinforced polymers (FRPs) 19, 21 tribological properties 25–33 flax/epoxy based composites alkali treatment 40, 43	k Kenaf fibers 6, 7, 26, 111, 140, 270 kinetic friction 106, 143 l
compression moulding method 40 method 40 wear results 41–43 wear testing 40	lamina 3, 4, 8, 10–15, 51 lignin 5, 23, 77, 80 low-density polyethylene (LDPE) composites 267–268
flax fiber 139	m
fluorocarbon base (FA) 50 fretting wear 90, 226 friction 142 frictional resistance 10 friction test method 148	maleated coupling agents 252 maleate polypropylene (MAPP) 264 maleic anhydride-g-polypropylene (MA-g-PP) 111 Malvaceae 6, 137, 139
g	man-made fibers 22, 75, 248, 250
glass fiber (GF) 22, 32, 68, 149, 262 glass-vinyl ester (GVE) composites 67 graft copolymerization (GC) 251 graphitic nanoplatelets (GNP) 267	metallic-based biomaterials 189 metal matrix composites (MMC) 185 metal oxide fillers, biocomposite bamboo fibre 162–163
h Handy lay-up method 52 hardness 225 hemicellulose 13, 21, 49, 77, 118, 161 hemp fiber (HF) 4, 112, 139, 269 high corrosion resistance 170, 189 high-density polyethylene (HDPE) composites 271 high wear resistance 187, 189, 207 himalayan agave fiber (HAF) 262 human body	coconut fiber 164 jute fiber 161–162 oil palm fiber 160–161 micro emulsion silicon (MS) 50 milkweed 5 mineral fiber 141 mudar 5 multi walled carbon nanotube (MWCNT) 5, 176 Musaceae fiber (MF) 69–71 Musa fiber 4
different polymers and composite 194 implant material 188 hybrid polyester-composites 50–51 hydrophilic fibers 161, 253 hydroxyapatite (HA) 193 i Ipomoea carnea fibre-reinforced epoxy composites 28 isocyanate treatment (IT) 251 Izod method 240	nano-clay treated fiber (NC-BF) 257 natural fiber-based PLA composite 71 natural fiber-based VE composite 70 natural fiber-filled composites 254 natural fiber-filled polymer wear properties of 257–260 natural fiber flax 40 natural fiber-polymer composites (NFPCs) 254 natural fiber-reinforced high-density
j jute fiber (JF) 111, 112, 138, 161, 265 jute-reinforced polymer composites 162	polyethylene composites 267 natural fiber-reinforced hybrid biocomposites 270–273

natural fiber-reinforced low-density	polyamide 134–135
polyethylene composites 267–268	polymer materials 129
natural fiber-reinforced polyamide	production 141-142
composites 269–270	thermoplastic composites 131
natural fiber reinforced polyester	thermoplastic polymer matrix 132
composites 260–262	thermoplastic polymers 130
natural fiber-reinforced polyethylene	thermosetting polymers 130
terephthalate composites 269	wear 145–147
natural fiber reinforced polyimide	wear test methodologies 148
composites	natural fibers (NFs) 1, 20–22, 47, 65, 70,
driving forces 115–117	75, 109, 247, 248
hand layup 120–121	advantages 124
materials and methods 117–118	biological treatment 253–254
natural fibres 118–119	categories of 78
production of 119	chemical treatment
natural fibers/polyimides composites	acetylation treatment 252
121–122	alkaline treatment 251
polyimides 121	benzoylation treatment 252
stratification 120	esterification 251
triblogical applications of	maleated coupling agents 252
natural fibers/polyimides composites	peroxide treatment 252
122–124	silane treatment 251
vacuum bagging technique 121	as compared to conventional
natural fiber reinforced polylactic acid	reinforcing glass fiber 136
composites 265–267	composites 115
natural fiber reinforced polypropylene	mechanical and chemical
composites 263–265	characteristics 79
natural fiber reinforced thermoplastic	natural fiber reinforced polyimide
composites	composites 118–121
load 107	natural fiber reinforcement polyamide
	composites 135–141
motion type 107	
performance metrics from wear test 108–109	natural fibre reinforced polypropylene composites 76–80
	physical treatment 252–253
temperature 108 test duration 108	polyester based biocomposites 49–50
	treatments of 250
velocity 107–108	
wear behaviour of composite 107 wear test 109–112	tribological studies 86
	natural fibers/polyimides composites 121
wear testing methods 105–107	
natural fiber reinforced vinyl ester composite 262–263	natural fibers polymer composites (NFPCs) 1, 159
-	
natural fiber reinforcement 249	natural fibre composites 49
natural fiber reinforcement polyamide	natural fibre PP composites
composites	wear rate and friction coefficient 87
applications 149–150	natural fibre-reinforced epoxy composites
fibers 133–134	environment and industry 23–25
friction 142–145	FRP 25
friction test methodologies 148	tribological properties of 25–30
natural fibers 135–141	tribological test 30

natural fibre-reinforced epoxy hybrid	hybrid polyester–composites 50–51
composites 30-33	natural fibre composites 49–50
natural fibre reinforced polypropylene	natural fibres 49
composites 80	stratification 51
dry sand rubber wheel test 84	tribological applications 59-60
friction coefficient of 86-90	tribological characteristics of 53-59
natural fibres 76–80	tribological tests on natural fibre
pin-on-drum test 84	52-53
polypropylene 76	vacuum bagging technique 52
tribological properties of 83–86	polyester composites 48
wear behaviour of 90-94	polyester hybrid composites 56
natural fibre reinforced vinyl ester	poly ether-ether ketone (PEEK) 197
composites	polyethylene terephthalate (PET) 255
composite materials 67	polyethylene terephthalate-glycol (PETG)
natural fiber-based PLA composite 71	221
natural fiber-based VE composite	polyimides 121
70–71	polylactic acid (PLA) 3, 109, 110, 221,
	265, 270
0	polylactide/jute composites 266
oil palm fiber 56, 160–161	polymer-based composites 65
organosilanes 251	polymer coating (PT) 251
orthopaedic applications 200–203	polymer composites 185
friction and wear of biocomposites	polymeric resin 10
203–207	polymer matrix composites (PMC) 167,
oxidative wear 226	185
_	polymers
p	classification of 130
palm fiber composites (PFC) 161	wear classification 59
palmyra palm-leaf stalk fiber (PPLSF)	polypropylene (PP) 76, 111
260	polytetrafluoroethylene (PTFE) 149,
partially crystalline polymers 131	172, 203
pectin 13, 22, 77, 80, 250, 256	polyurethane/KF composite 111
petiole date palm fiber (PDPF) 262	polyvinyl alcohol (PVA) 69
pin-on-disc type test 198	potassium permanganate treatment (PPT)
pin on disk (POD) 56, 106, 239	251
method 196	pressure-velocity (PV) 204
tribometer 84	pristine polyurethane (PU) 110
pin-on-drum 84, 239–240	
plant-based bio-resources 66	r
plant fiber 135	Ramie fiber (RF) 5, 6, 112
polyalthia longigolia seed (PLS) 68	response surface methodology (RSM)
polyamide	31, 112
matrix composites 132	restorative dentistry 197
natural fiber reinforcement polyamide	Rubbing test 241
composites 134–141	Radding test 271
polycarbonate (PC) 255	
nolvector based biocompositos	\$
polyester based biocomposites	S scanning electron microscope/light
polyester based biocomposites driving forces 47–48 handy lay-up method 52	scanning electron microscope/light microscope (SEM/LM) 196

290 Index	
scanning electron microscopy (SEM) 4, 198, 241, 260, 263, 266 semi-crystalline polymers 131 short fiber reinforcements 133	tribometer 2, 83, 106, 239 tribotester 83 tricalcium phosphate (TCP) 193
silane treatment (ST) 251, 257, 260, 267, 269, 272 silk fibers 135 sisal fiber (SF) 8, 29, 32, 50, 89, 91–93, 112	ultra-high molecular weight polyethylene (UHMWPE) 149, 203–206 untreated Jute fibers (UJF) 92, 111, 265
sliding friction 144 sliding wear 168, 169 in bio composites 173 bio-filler incorporated bio-polymer composite 173–175 measure wear method 170–171	vacuum bagging technique 52, 121 VE composites 68–71 VE/Polyalthia longifolia seed (PLS) composites 68 vinyl ester (VE) resin 66
in polymer composites 171–173 synthetic/inorganic filler 175–177 wear general aspects 168–170 specific wear rate (SWR) 40, 41 vs sliding distance 42	W wax 13, 22, 77, 80, 252, 256 wear 145–147 characteristics 224
vs sliding speed 42 specific wear resistance (SWR) 263 stainless alloys 191 static friction 80, 143 static vs. kinetic friction 143	wear and friction test acoustic emission monitoring test 241 pin-on-disc or tribometer 239 pin-on-drum 239–240
stearic acid treatment (SAT) 251 stratification 51, 120 subtractive manufacturing 220 surface-to-surface friction 188	repeated impact wear test 240 rubbing test 241 wear mechanism 7, 25, 58, 71, 90, 94, 123, 162, 176
syngonanthus nitens 27 synthetic fibers 19, 22, 25	wear of biomaterials friction and technique 196–197 wear testing methods 195–196 wear parameters 146
thermoplastic composites 89, 131–132 thermoplastic polymer matrix 132–133 thermoplastic polymers 130–131, 133, 221, 254 thermosetting polymers 65, 67, 130	wear rate vs. friction coefficient 150 wear test 40 merits and demerits of 196 methodologies 148 methods 105–107, 195–196
TiO ₂ nanoparticles 163 titanium-based alloys 187, 191 tribological effects 2 tribological tests 29, 30, 52, 53, 256	X X-ray photoelectron spectroscopy (XPS) 197