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1.1 Introduction

In less than one year after the COVID-19 pandemic outbreak, two mRNA vaccines
received the first emergency use authorization from the Food and Drug Administra-
tion (FDA) and the European Medicines Agency (EMA), i.e. BNT162b2 (Comirnaty)
from Pfizer/BioNTech and mRNA-1273 (Spikevax) from Moderna. In Phase 3 clini-
cal trials, these mRNA vaccines were found to be generally safe and up to 95% effica-
cious after the second dose of vaccination in preventing symptomatic SARS-CoV-2
infection [1, 2]. The outstanding efficacy and unprecedented speed with which these
mRNA vaccines were produced and distributed, strongly helped to curtail the bur-
den of the pandemic and prevented millions of deaths [3, 4].

Now proven against COVID-19, there is explosive growth in research and invest-
ments in mRNA technology. Most notably, the platform of nucleoside-modified
mRNA encapsulated in lipid nanoparticles (LNPs) that is utilized in today’s
COVID-19 mRNA vaccines is poised to have a rapid transformative effect on
the future of medicine. Vaccines based on this platform are now being tested in
Phase 3 clinical trials for several viral diseases other than COVID-19, such as
against influenza (BNT161 and mRNA-1010), cytomegalovirus (mRNA-1647), and
respiratory syncytial virus (mRNA-1345), while many other mRNA vaccines are
being (pre)clinically studied to target diseases, such as bacterial and parasitic infec-
tions, cancer, and autoimmune diseases. In addition, the ability of the mRNA–LNP
platform to deliver genetic information for the temporal production of proteins
inside cells makes it a potential key technology to enable gene editing, protein
replacement, and other immunotherapeutic approaches [5].
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Figure 1.1 Discoveries and milestones in the development of mRNA-based vaccines are
subdivided into three parallel timelines of mRNA-, LNP design, and clinical development.

It may seem that the COVID-19 mRNA vaccines came out of the blue, but in fact,
decades of research were needed to develop this novel vaccine technology. To under-
stand why it took so long for mRNA vaccines to breakthrough, we need to appreciate
the collective efforts made by many scientists and the various problems they have
tackled and solved that ultimately led to the development of this first generation of
mRNA vaccines. As elucidated by Dowdy, the fundamental problem is that a bil-
lion years of evolutionary defenses need to be tackled to successfully deliver RNA.
This includes both cellular barriers that have kept foreign RNAs on the outside of
cells from invading the inside of cells, as well as the many innate immune defense
mechanisms evolved to recognize and destroy foreign RNA [6]. Nonetheless, mRNA
represents a most excellent vaccine modality to mimic viral infections, this is to
trick the immune system to develop memory against the encoded, pathogen antigen.
Indeed, when successfully delivered, mRNA has the potential to process and present
encoded antigens through the same cellular machinery as occurring during viral
infections, while it may also benefit from the specifically designed immune mech-
anisms against viruses to prime and promote durable adaptive immune responses,
i.e. the immune adjuvant potential of mRNA.

In this first chapter section, a short historical overview is given of the development
of mRNA vaccines (Figure 1.1).
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1.2 The Path of mRNA as an Unstable and Toxic Product
to a New Class of Medicine

1.2.1 The Discovery and In Vitro Production of mRNA

In 2015, Cobb wrote an essay that addressed the question of who discovered mRNA.
By reconstructing the collective insights and different kinds of evidence gathered
during the 1950s through the 1960s, Cobb concluded that mRNA was the product
of many years of work by a community of researchers [7]. Ultimately, this research
process gained momentum in the summer of 1961, when the nature and proper-
ties of mRNA were for the first time described in a theoretical model by Jacob and
Monod [8]. In this review article on genetic regulation of protein synthesis, they
proposed the existence of an intermediate molecule, or “messenger ribonucleotide”
that is produced from DNA and that brings the genetic information to the ribosomes
for protein synthesis. At about the same time, experimental support for the exis-
tence of mRNA was provided by two different research teams [9, 10]. Both research
teams had succeeded in isolating mRNA and demonstrating its association with
“pre-existing” ribosomes. This replaced the prevailing theory of the time that new
specialized ribosomes are synthesized from the gene, and that these ribosomes are
specific for the production of the corresponding protein, i.e. the “one gene – one
ribosome – one protein” hypothesis. For detailed information about the remarkable
series of events and some of the outstanding experiments that led to the discovery of
mRNA, see reference [11].

In 1969, protein synthesis from mRNA inside ribosomes was first demonstrated
in cell-free systems. In these experiments, RNA fractions purified from reticulo-
cytes dictated the synthesis of globin when incubated with ribosomes obtained from
Escherichia coli [12] or a different mammalian species [13]. Later on, the translation
of mRNA into hemoglobin was also proven in living cells after the microinjection
of 9 s RNA from rabbit reticulocytes into frog oocytes [14, 15]. While these studies
might have sparked one’s imagination to use mRNA for therapeutic applications, at
the time, the focus was solely on understanding its biological function.

In 1984, a simple and efficient method was established for in vitro mRNA synthesis
using template DNA and a bacteriophage SP6 polymerase that initiates transcription
at an SP6 promoter located upstream of the gene of interest [16]. In the following
years, T7 and T3 RNA polymerases were also reported for successful in vitro tran-
scribed (IVT) RNA synthesis [17–20]. These methods still represent the foundation
of how mRNA is manufactured in today’s COVID-19 mRNA vaccines. However,
a limitation of IVT mRNA production using phage polymerases is that it can give
rise to multiple contaminants in the form of short and long double-stranded RNA
(dsRNA) strands [21, 22]. These dsRNA byproducts have been shown to be largely
responsible for the innate immune response to IVT mRNA, and when not controlled,
have the potential to jeopardize the safety and functionality of mRNA vaccines (dis-
cussed in more detail below). There is, therefore, continuing interest in optimizing
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the IVT process of mRNA in order to reduce the formation of dsRNA byproducts, as
well as in finding (more) cost-effective purification methods [23–25].

Decades of basic research into the structural characteristics of mRNA and the
biological interactions of mRNA with numerous proteins inside the cell not only
brought new insights into mRNA metabolism and mRNA translation process but
also leveraged IVT mRNA to reach a more optimal design [26]. The genetic informa-
tion in mRNA is encoded in a codon sequence, where a triplet of adjacent nucleotides
specifies an amino acid to be incorporated in a protein, also referred to as the open
reading frame (ORF). The ORF is flanked at the 5′ and 3′ positions with start and
stop codons. Because most amino acids are encoded by more than one codon, the
codon usage in the ORF can be varied, also referred to as synonymous codon usage.
Over the years, several strategies have been proposed to optimize codons so as to
improve the translation and half-life of the mRNA, including methods of adjusting
codons to match host transfer RNA abundances [27] for the enrichment of GC con-
tent [28, 29], and to optimize mRNA folds in the construct [30, 31]. It is important,
however, to consider that these methods may have unintended effects on the perfor-
mance of mRNA vaccines, such as altering protein folding and changing the sites of
posttranslational modifications that may affect the immunogenicity and function of
the encoded antigen, reviewed in [32].

Different nontranslated structural elements are present in eukaryotic mRNA,
which were found to have essential roles in different stages of the mRNA life cycle.
In 1975, the cap structure was discovered, which is an N7-methylated guanosine
linked to the first nucleotide of the RNA via a reverse 5′ to 5′ triphosphate linkage
[33–36]. By binding to the eukaryotic initiation factor (eIF) 4E, the cap structure
enables the recruitment of translating ribosomes to mRNA. The cap structure
and its methylation state are also significant determinants of how the host cell
distinguishes itself from nonself RNA, as well as they are important for mRNA
stability. At the 3′ end of mRNA, a poly(A) tail made up of a long stretch of repeating
adenosine nucleotides was found [37, 38], which functions synergistically with the
cap structure to promote translation and regulate mRNA stability [39]. Further-
more, directly upstream and downstream of the ORF, two untranslated regions
(UTRs) are positioned, which contain multiple regulatory elements [40]. Since their
discovery, continuous efforts and progress have been made in optimizing these
structural elements for improved stability and expression of IVT mRNA through
empirical screening approaches and computational models [30, 31, 41–43].

Alternative forms of RNA have also been investigated as a therapeutic modality,
such as those based on self-amplifying RNA (saRNA) and circular RNA (circRNA).
saRNA includes the genetic information for a viral replicase in addition to the vac-
cine antigen or gene of interest in the ORF sequence and was already introduced
in the mid-1990s for vaccine development [44, 45]. This replicase complex typically
derived from alphaviruses allows the intracellular amplification of RNA and, in the-
ory, can significantly increase and/or prolong the antigen expression capacity. The
replication kinetics of saRNA may provide potential dose-sparing effects, while more
prolonged antigen exposure may benefit the quality and duration of vaccine-induced
immunity. Another more recent research avenue is the exploration of circRNA. This
form of RNA characterized by its closed-ring structure was first reported in 1976
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as an independent plant pathogens known as viroids, and later on also found to
be prevalent in eukaryotic cells [46, 47]. Due to its unique structure, circRNA is
protected from exonuclease-mediated degradation, which may confer improved sta-
bility compared to linear mRNA counterparts. Since circRNA lacks a cap and poly(A)
tail structure, translation from circRNA into proteins is typically enabled through
the insertion of an internal ribosome entry site [48].

1.2.2 The Inflammatory Nature of mRNA

A key bottleneck impeding the therapeutic use of RNA has been its inflammatory
capacity. In the early years, it was already demonstrated that mRNA can induce
antiviral innate immunity in mammalian cells. In 1957, it was found that adding
heat-inactivated influenza virus to cells makes a protein substance that interferes
with the replication of viruses, which was called “interferon” [49]. A few years later,
it became clear that IFN must act by interfering with the viral RNA metabolism in
virus-infected cells [50] and that the viral RNA itself was the component responsible
for this antiviral immune reaction [51]. More than 30 years later, the discovery of
pathogen recognition receptors by Hoffman and Beutler laid the groundwork for
further studies into how mRNA triggers an innate immune response. Several intra-
cellular sensors that are activated by structural features of mRNA were identified.
As an example, dsRNA species were shown to be recognized by Toll-like receptor
(TLR) 3 in the endosomes [52], and upon arrival in the cytosol by receptors such as
Retinoic acid-inducible gene I (RIG-I) [53] and Melanoma differentiation-associated
gene 5 (MDA5) [54]. TLR7 and TLR8 were identified as receptors for viral and
synthetic single-stranded RNAs and their degradative products [55–58], while the
cap1 structure (m7GpppNm) on mRNA was found to be critical to avoid recognition
by RIG-I [59, 60]. These discoveries brought explanations of how mammalian cells
are capable of distinguishing nonself from self RNA. The reader should refer to the
following reviews [61, 62] on this topic for a comprehensive list of RNA sensors, the
involved signal transduction pathways, and more details on the molecular basis of
mRNA recognition.

The immune recognition of mRNA activates downstream signaling pathways,
which leads to the production of inflammatory cytokines, including type I IFNs,
inducing in the cells an antiviral state. This has some very important implications
for the design of mRNA vaccines and therapeutics. First of all, the immune
recognition of mRNA is considered as one of the mechanisms underlying the
cause of reactogenicity symptoms, and thus, to a large extent, will determine the
safety of mRNA therapeutics. Second, the innate immune response to mRNA can
drastically impair the translation of IVT mRNA, thereby reducing the antigen avail-
ability for T-cell and B-cell recognition. For example, dsRNA elements in mRNA
products are sensed by intracellular enzymes, such as protein kinase R (PKR) and
2′−5′-oligoadenylate synthetase (OAS), which in turn activate other proteins that
cause translational shutdown and cell death [63, 64]. Yet, on the upside, the innate
immune response to mRNA has the potential to provide an important adjuvant
effect on vaccine potency, and it can be argued, maybe even play a crucial role in the
success of mRNA vaccines. Indeed, downstream signaling from the RNA sensing
receptors also activates the expression of several genes involved in the mobilization
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and activation of antigen-presenting cells (APCs), while RNA-driven cytokines
are capable of exerting direct immune-stimulatory effects on T cells and B cells.
Therefore, the most challenging task with mRNA vaccines was to find an optimal
mRNA design that could minimize the problems posed by its immune recognition
on mRNA translation and vaccine safety while still providing enough adjuvant
properties to drive strong vaccine responses against the encoded antigen.

At least part of this problem was overcome by the work of Karikó, Weissman,
and colleagues at the University of Pennsylvania (UPenn), who were studying the
immune-stimulatory effects of IVT mRNA on dendritic cells (DCs) in vitro, i.e. the
innate immune cell type specialized in antigen presentation and T-cell activation
[65]. By comparing the immune-stimulatory activity of IVT mRNA with RNA types
derived from different sources, they found that both bacterial (total) RNA, mam-
malian mitochondrial RNA, and IVT mRNA primed the DCs to produce high levels
of tumor necrosis factor-alpha (TNF-α). In contrast, they found that total-, nuclear-,
and cytoplasmic RNAs from mammalian sources were less potent inducers of DC
activation, while mammalian transfer RNA was noninflammatory. This finding led
the researchers to hypothesize that posttranscriptional modifications commonly
present in mammalian RNA, such as pseudouridine and methylated nucleosides,
might serve as another molecular signature by which cellular RNA sensors dis-
criminate self-RNA from foreign RNA. When applied to IVT mRNA, modified
nucleotides, in particular pseudouridines and their derivatives, indeed protected
IVT mRNA from activating the aforementioned RNA sensors; TLR3, TLR7, TLR8,
PKR, OAS, RIG-I, and MDA5 [22, 63–66]. Consequently, the use of modified uridines
strongly improved the translation and safety profile of IVT mRNA products [67, 68].
It is noteworthy that the following studies also evidenced that the use of modified
uridines in the IVT reaction reduces the formation of dsRNA byproducts, which
might at least in part explain the reduced immunogenicity of uridine-modified
mRNA [22]. In addition, it was shown that pseudouridine not only acts as a major
controller of the innate immune activity of IVT mRNA but can also contribute to the
intrinsic stability and the dynamics of mRNA molecules with ribosomes, reviewed
in [69]. Taken together, the use of modified uridines was a great leap forward for
producing more translatable, less immunogenic, and safer IVT mRNA products.
Note that for the COVID-19 mRNA vaccines BNT162b2 and mRNA-1273, every
uridine residue in the mRNA is replaced with N1-methylpseudouridine (m1ψ).

1.3 How Studying Lipid Bilayer Structures in Cell
Membranes Gave Rise to the Eventual Development of
Lipid Nanoparticles for RNA Delivery

1.3.1 From Biological Cell Membranes to Liposomal Drugs

RNAs are inherently unstable as they are easily degraded by ribonucleases (RNases),
which act as the first line of defense against foreign RNAs as well as allow our
cells to regulate RNA metabolism. In addition, the lipid bilayer structure that forms
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the foundation of cell membranes is uniquely designed to prevent the permeation
of such large, negatively charged RNA molecules, protecting the cells from exoge-
nous RNA entering them. Ironically, long-standing efforts to understand the physi-
cal properties and functional roles of lipids in cell membranes led scientists to model
lipid membrane systems, which have been instrumental in the development of the
delivery technology enabling intact nucleic acids to cross these biological barriers;
LNPs containing ionizable cationic lipids.

The history of LNPs began in 1964 when Bangham and Horne first described
electron microscopy observations of dispersed lecithin (phosphatidylcholine) in
water, showing the formation of lamellar “spherulites” structures [70]. In follow-on
papers, Bangham and his colleagues described the bimolecular leaflet structure of
lecithin vesicles and proved the dispersed phospholipids were spontaneously form-
ing a closed membrane system, i.e. a lipid bilayer completely enclosing an aqueous
space [71]. It was Weissmann who named these lipid vesicles “liposomes.” Subse-
quently, the development and characterization of the physical properties of lipids
and liposomes quickly followed [72–76]. These studies on the structures that lipids
adopt [72] bilayer permeability [77], and membrane fusion [78] helped lay down the
cornerstone for the understanding of the biophysical properties of liposomes [79, 80].

In parallel to understanding the membrane biophysics of liposomes, liposome
research has extended into areas of therapeutic application. In 1970, Sessa and
Weissman first demonstrated that these liposomes have the ability to entrap
lysozyme [81], followed by others that started to explore the therapeutic potential
of liposomes as drug carriers for enzymes and proteins in rodent models [82–84].
With the experimental methods available at the time, these studies demonstrated
that liposomes were removed from the blood within minutes and accumulated in
the liver and spleen of the rats, in which liposome-entrapped protein eventually
localized in the lysosomes of cells. However, the major initial advances of liposomes
as drug delivery systems came with applications for the delivery of anticancer
drugs. Two important advances made in the 1980s were the development of the
extrusion process for the rapid production of unilamellar vesicles with diameters
in the 100 nm size range [85] and the “remote loading” pH gradient technique for
efficiently loading liposomal systems with cancer drugs [86, 87].

The third advance involved the development of techniques to increase the
circulation lifetime of liposomes following i.v. administration. The incorporation
of cholesterol in phosphatidylcholine liposomes reduced bilayer permeability and
increased the stability of these systems in vitro and in vivo [88, 89]. The presence
of gangliosides and sphingomyelin reduced liposome clearance rates, which led to
the concept of “stealth” liposomes [90]. Incorporation of polyethylene glycol (PEG)
lipids further improved the blood circulation half-life of liposomes [91]. PEGylation
quickly became popular to improve pharmacokinetics and biodistribution of lipo-
somes, which along with the improvement of liposomal generation (by extrusion)
and drug-loading procedures (using pH gradients) have led to the first liposomal
drugs for systemic delivery of small molecule drugs to treat fungal infections and a
variety of cancers.
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With regard to nucleic acid-based drugs, the idea of using liposomes to deliver
DNA and RNA into host cells was introduced simultaneously by Dimitriadis
and Ostro [92, 93]. Both studies demonstrated the encapsulation and delivery
of rabbit globin mRNA and rabbit reticulocyte 9S mRNA into eukaryotic cells
by using large unilamellar liposomes. However, these studies were not pursued
due to limited transfection potency, lack of scalable methods of manufacture,
and poor-encapsulation efficiencies. The introduction of cationic lipids such as
1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA) rekindled interest
in the late 1980s [94, 95]. The electrostatic interaction between the positively
charged quaternary ammonium head group of the lipid and the negatively charged
phosphate backbone of nucleic acids leads to the formation of “complexes” with
high-encapsulation efficiencies. In addition, the cationic lipid has membrane desta-
bilization properties enabling the delivery of nucleic acid payloads across cellular
barriers [96, 97]. In 2001, Hafez et al. proposed that the membrane destabilization
properties of cationic lipids were related to their ability to form disruptive nonbilayer
structures in combination with the negatively charged lipids found in biological
membranes ([96]). This research resulted in products such as LipofectinTM, a
liposomal composition of the cationic lipid DOTMA and 1,2-dioleoyl-sn-glycero-3-
phosphatidyl-ethanolamine (DOPE), followed by other polyvalent cationic lipid
containing liposomal formulations such as LipofectamineTM and TransfectamTM.
These lipofection reagents are commonly used in biochemistry and molecular
biology research for the in vitro delivery of DNA and RNA in eukaryotic cells.

1.3.2 Ionizable Lipid Nanoparticles for Systemic Delivery of Nucleic
Acids

Delivery of nucleic acid-based drugs presents significantly more problems than the
delivery of small molecular drugs. In addition to reaching target tissue, the delivery
system has to protect the cargo from degradation, facilitate uptake into target cells,
and subsequently deliver the cargo into the cytoplasm of target cells. Complexes of
DNA or RNA with cationic liposomes result in a heterogeneous mixture of com-
plexes that are relatively unstable and can change properties such as size over time
[98]. In addition, cationic lipids can be toxic and cause membrane disruption, hemol-
ysis and induce inflammatory responses limiting therapeutic applications [99, 100].

The major breakthrough for delivering nucleic acid was the introduction of
ionizable cationic lipids. In 1994, Bailey and Cullis synthesized 1,2-dioleoyl-3-
dimethylammonium propane (DODAP), an ionizable version of a cationic lipid
1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) to study the influence of
lipid asymmetry on the fusion of liposomal systems [101]. Subsequently, Cullis
and colleagues used lipid-based systems containing ionizable lipids to encapsulate
nucleic acids [102]. They showed that DODAP had an apparent pK (pKa) of approx-
imately 6.5 and that these systems could be used to encapsulate nucleic acids at pH
values where the lipids are protonated and positively charged (e.g. pH 4) and that
the nucleic acid polymers were retained when the pH was raised to physiological
values (pH 7.4). Further investigations showed that these lipid systems had a “solid
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core” hydrophobic interior surrounded by a lipid monolayer [103]. These systems
were called “LNPs” to distinguish them from liposomes, which exhibit bilayer
structures. An important benefit of encapsulation using ionizable lipids such as
DODAP is that the LNP are effectively neutral at physiological pH, rendering them
less toxic than lipid-based systems containing permanently positively charged
lipids, allowing systemic administration. In 2001, the first report was published on
the therapeutic potential of a lipid formulation composed of DODAP, cholesterol,
1,2-distearoyl-sn-glycero-3-phosphocholine, and PEG ceramides for the systemic
delivery of antisense oligodeoxynucleotides in mice [104].

Subsequent efforts focused on the delivery of small interfering RNA (siRNA)
to the liver following i.v. administration to silence genes in hepatocytes. LNPs
containing DODAP were able to induce gene silencing in the liver but only at very
high doses (see supplemental information for [105]). This led to the synthesis of
1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA), a more stable version of
DODAP, which, when formulated in LNP siRNA systems, showed early preclinical
promise in nonhuman primates for silencing of apolipoprotein B expression in the
liver [106]. Further studies guided by a “rational design” approach to adjust the ion-
izable lipid pKa and shape properties to drive the formation of membrane disruptive
nonbilayer structures and encourage endosomal escape of siRNA contents resulted
in DLin-KC2-DMA. LNP siRNA systems containing DLinKC2DMA exhibited
improved gene-silencing properties [105], leading to an intense screening program
involving the synthesis of hundreds of ionizable lipids and testing in preclinical
animal models to find ionizable lipids with optimal silencing properties when
incorporated into LNP siRNA systems. This led to DLin-MC3-DMA [107], which
was incorporated into the first RNAi drug to be approved by the FDA [108]. Further
iterations focused on the degradability of ionizable lipids led to the inclusion of
bio-cleavable ester functions within the lipid acyl chains [109]. Later studies aimed
at optimizing the liver transfection properties of LNP systems containing mRNA
led to new generations of ionizable lipids incorporating branched structures as
illustrated in the SM-102 and ALC-0315 lipid utilized in the mRNA-1273 and
BNT162b2 vaccine, respectively [109–111].

A different screening approach was taken by Langer and Anderson from the Mas-
sachusetts Institute of Technology, who synthesized a library of ionizable lipid-like
polyvalent material called lipidoids; these screens identified potent lipidoids such as
C12-200 and generated lipidoid-based LNPs that were used to successfully deliver
siRNAs in mice and nonhuman primates [112–114].

The PEG-lipid components also required improvement. A PEG-conjugated
lipid is required during formulation to generate small, stable LNP systems [115],
however a disadvantage is that the steric barrier created by the PEG coating
inhibits the cellular uptake, and thus the transfection potency, of LNP contain-
ing nucleic acid-based drugs. Thus, the PEG-lipids employed were designed to
diffuse away from the LNP following systemic administration [116]. Previous
work has shown that PEG-lipids with short (C14) acyl chains readily exchange
out of lipid-based systems if a suitable “sink” is available [117]. In addition to
enhanced cellular uptake, another benefit was that the “diffusible” PEG-conjugated
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lipids mitigate the risk of inducing anti-PEG antibody responses [118, 119]. This
unwanted immunogenicity has been associated with accelerated blood clearance
and pseudo-allergic reactions upon repeated injections of PEGylated LNPs in
preclinical models [120]. Further optimization to balance out the effects of the
PEG-conjugated lipid on the efficacy, safety and stability of nucleic-acid loaded
LNPs together with the synthesis of the more easily produced PEG-diacylglycerol
lipids [121], eventually resulted in the identification of what was to become
the gold standard PEG-lipid; 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene
glycol-2000 (DMG-PEG 2000) [122].

A final challenge in the establishment of the LNP technology was to find a
reproducible and scalable manufacturing method that could obtain LNPs with
high encapsulation efficiencies. Initial work on LNP systems made use of a method
based on the ethanol dilution principle first described by Batzri and Korn [123]
and followed a three-step procedure: (i) lipid components dissolved in ethanol
are diluted in an acidic citrate solution containing nucleic acid to form vesicular
structures; (ii) the intermediate mixture is downsized using extrusion; (iii) the mix-
ture is dialyzed to remove ethanol and to raise the pH to 7.4 [104]. This procedure
was further optimized by using rapid-mixing devices such as by means of a T-tube
junction [124] and microfluidics [125], which allowed for the scalable production
of LNP systems with higher encapsulation efficiencies and smaller particle sizes
under well defined, reproducible conditions. For more in-depth information on
the production of LNPs and how these methods were improved and simplified, the
reader is referred to the following reviews [126–128].

Starting from the 2010s, the LNP system became the preferred nonviral delivery
system for nucleic acids, which eventually culminated in the clinical approval of
the first siRNA-LNP-based product to treat neuropathies associated with hereditary
transthyretin amyloidosis, Onpattro® (patisiran) [129]. The clinical approval of
Onpattro® was a milestone not only for gene therapies in general but also as a
precedent that enabled the clinical progress of mRNA vaccines, as will be discussed
in Section 1.4.

1.4 The Journey of Developing Clinical mRNA Vaccines

The exploration of the therapeutic use of IVT mRNA started in the early 1990s with
Felgner and coworkers first providing proof-of-concept that naked IVT mRNA or
DNA can be translated into protein in living animals [130]. The therapeutic potential
of IVT mRNA was first demonstrated in a study where vasopressin-encoding mRNA
was injected into the hypothalamus, achieving a temporary reversal of diabetes
insipidus in rats [131]. Next, a few pioneering studies reported the usefulness
of RNA for immunization in mice; Martinon et al. demonstrated that liposomes
containing mRNA encoding the influenza virus nucleoprotein were capable of
inducing virus-specific cytotoxic T-cell responses [132]; Conry et al. reported the
activation of humoral immune responses by using a naked mRNA vaccine encoding
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a carcinoembryonic antigen [133]; while Zhou et al. were the first to show the
feasibility of a saRNA vaccine [45].

However, before the development of the COVID-19 mRNA vaccines, there
was plenty of trial and error, testing many different mRNA designs and delivery
approaches. IVT mRNA was first tested in humans using an ex vivo approach, where
monocyte-derived DCs are transfected with tumor antigen mRNA and reinfused
into patients with cancer as a cellular vaccine [134, 135]. Later on, CureVac, a
German biotech company founded in 2000, organized the first-in-human clinical
trials testing two RNA cancer vaccine approaches for the treatment of melanoma;
one based on the direct dermal administration of naked mRNA in combination with
granulocyte macrophage colony-stimulating factor as an adjuvant, and the other
using mRNA complexed with protamine [136, 137]. Applying the lessons learned
from these early clinical trials helped CureVac to systematically develop and test
the next generations of mRNA technologies.

These pioneering clinical trials also inspired other researchers/entrepreneurs
to come up with novel concepts. Before COVID-19, BioNTech’s activities were
mainly focused on the field of immuno-oncology, where they have clinically tested
various RNA-based technologies for active and passive immunization strategies. In
early work, BioNTech evidenced that lymph node-resident DC could be transfected
and activated by the direct “intranodal” administration of naked mRNA (using
calcium-rich buffers), which resulted in an efficient expansion of T cells against
the encoded antigen [138]. The feasibility of this naked mRNA vaccine approach
was further demonstrated in patients with melanoma, showing clinical promise
in developing T-cell responses against patient-specific neo-epitopes [139]. In
2016, BioNTech introduced another delivery approach for the systemic delivery
of unmodified mRNA cancer vaccines using DOTMA/DOPE liposomes [140].
They found that the charge ratio between cationic lipids and mRNA could be
used to change the in vivo organ transfection of these systems; with lipoplexes
exhibiting an excess negative charge specifically targeting DCs in the spleen and
lymph nodes. This mRNA vaccine platform is currently being investigated by the
company in Phase 1 and Phase 2 clinical trials for various cancer indications, such
as monotherapy or in combination with immune checkpoint inhibition [141].

Over the years, the feasibility of the LNP technology has been demonstrated in
academic literature for various applications and different nucleic acid cargo. It also
became clear that exploiting the interaction of LNPs with immune cells, rather than
escaping it, provides opportunities for vaccination and other immunotherapeutic
approaches [142, 143]. The first example of combining LNP and RNA as a new
vaccine platform was reported by Geall and his colleagues at Novartis in 2012 [144].
An LNP formulation with the ionizable lipid DLinDMA was used to encapsulate
a saRNA encoding the fusion glycoprotein of the respiratory syncytial virus. After
intramuscular immunization, the saRNA–LNP vaccine demonstrated noninferior
immune responses compared to a viral delivery technology in mice with the major
advantage of removing the inherent limitations of viral vectors. In the search
for a suitable delivery system, the Weissman lab (UPenn) partnered with the
LNP-specialized company Acuitas Therapeutics founded by Cullis, Madden, and
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Hope in 2009. They first reported on a study that showed the potential of delivering
LNPs loaded with m1ψ-modified mRNA via different administration routes in
mice [145], followed by several reports on preclinical studies demonstrating the
outstanding capacity of this vaccine platform to elicit immune responses against
viral pathogens, such as zika, influenza, herpes simplex virus, and human immun-
odeficiency virus [146–149]. In 2018, this success led to collaborations between
BioNTech and Pfizer to co-develop an mRNA influenza vaccine based on these
technologies, where it was recently announced by Pfizer that first volunteers have
entered a Phase 3 clinical trial [150]. Likewise, CureVac entered an agreement with
Acuitas Therapeutics, and before COVID-19, already worked on a prophylactic
mRNA–LNP vaccine against rabies by applying their sequence-optimized mRNA
platform and Acuitas’ LNP technology [151, 152]. In 2017, Moderna was the first
company to report interim results from a Phase 1 clinical trial on the immunogenic-
ity and reactogenicity of a m1ψ-modified mRNA–LNP vaccine against H10N8 and
H7N9 influenza viruses [153, 154].

So, when the SARS-CoV-2 pandemic hit, several mRNA vaccine platforms had
already reached a substantial degree of maturity. This allowed companies such as
CureVac, BioNTech/Pfizer, and Moderna to produce clinical-grade mRNA vaccine
candidates against SARS-CoV-2 in record times. However, none of these mRNA
vaccine platforms had made it to Phase 3 clinical testing before, which made the
COVID-19 pandemic the first great opportunity to investigate and compare the
potential and safety of these different mRNA vaccine platforms in large-scale clin-
ical trials [155]. The m1ψ-modified mRNA vaccines, BNT162b2 and mRNA-1273,
have been the first to get results from Phase 3 clinical trials, and although no direct
comparisons were made between the different vaccine candidates, these vaccines
have demonstrated a significantly greater efficacy for preventing symptomatic
COVID-19 disease (∼95%) compared to other mRNA vaccine candidates, e.g.
CVnCoV, CureVac’s sequence-optimized mRNA vaccine candidate: 47% [156] and
ARCT-154, Arcturus’s saRNA vaccine candidate: 55% [157]. Note that, all of these
mRNA vaccine candidates were using LNPs to enable their delivery following the
intramuscular administration route.

1.5 Concluding Remarks

In this chapter section, we focused on some of the fundamental discoveries and
technological improvements that contributed to the development of the COVID-19
mRNA vaccines. Here, we highlighted nucleoside modification and ionizable LNPs
as two key enabling technologies of this novel vaccine platform, which have drasti-
cally increased the therapeutic index and potency of mRNA vaccines.

However, there are many aspects to the success of mRNA vaccines, and we
believe that we might soon learn that alternative mRNA vaccine platforms will be
clinically useful as well. For SARS-CoV-2 as an example, Providence Therapeutics
recently announced positive results from an unmodified uridine mRNA–LNP
vaccine (PTX-COVID19-B) that showed noninferior immunogenicity and equal
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safety compared to BNT162b2 in Phase 2 clinical trial [158]. Also, CureVac has
further optimized its COVID-19 mRNA vaccine candidate by adjusting the UTRs
and poly(A) tail structure, which achieved greatly improved immunogenicity and
protective efficacy compared to their first-generation COVID-19 vaccine in nonhu-
man primates [41]. For saRNA-based vaccines, it was suggested that modifications
or additional measures that could minimize the innate immune response early
during saRNA vaccination may prove to be critical to increasing primary expression
and the resulting clinical performance [159, 160]. Moreover, there might also be
a need to select and/or optimize mRNA vaccine design depending on the disease
indication and the types of immune response that correlate with protection. For
instance, it was recently demonstrated that LNPs loaded with purified unmodified
mRNA elicited a higher CD8+ T-cell response and achieved more effective anti-
tumor immunity in B16-melanoma bearing mice compared to a m1ψ-modified
mRNA–LNP counterpart, which highlights the positive effect of unmodified mRNA
and the induction of type I IFN responses for cancer vaccination [161]. Interestingly,
several studies have also recently demonstrated that the LNP formulation not only
enables the delivery of mRNA vaccines but also contributes to their reactogenicity
and immunogenicity by providing innate immune stimulation [162–164]. These
findings could open up new avenues for the design of more effective and potentially
safer mRNA vaccine generations. However, the underlying mechanisms of these
LNP adjuvant properties and how these properties can be more fine-tuned remain
largely unknown and will require further exploration [165].

Finally, it needs to be mentioned that other factors also helped the rapid develop-
ment and production of the COVID-19 mRNA vaccines, which were not discussed in
this chapter section, such as the prior knowledge that was available on SARS-CoV-1
and other coronaviruses and the huge financial investments and scientific collabo-
rations which allowed some of the steps in the research and development process to
be conducted in parallel. Future development of mRNA medicines is poised to ben-
efit from the enormous steps and hurdles taken with respect to various industrial
aspects, such as the establishment of supply chain systems for starting materials,
the infrastructure that was built for large-scale production of LNP–mRNA products,
and the better regulation guidelines that are now set out to bring these products to
the market.

Taken together, the development of the COVID-19 mRNA vaccines was a great
achievement, which was built on decades of fundamental and translational science.
Based on the continuous effort being made by a growing field of multidisciplinary
researchers, we believe that multiple therapeutic modalities will become available
using (m)RNA technologies for a variety of diseases.
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